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Effective Field Theories such as HEFT, organized as momentum expansions, are a controllable
approximation to strong dynamics only near threshold, as theymiss exact elastic unitarity, reducing
their predictive power at a higher scale if small separations from the Standard Model are found at
the LHC or elsewhere. Unitarized chiral perturbation theory extends their reach to the saturation
of unitarity but, generally with unknown systematics. Here I present a brief “handbook” on how
to put to use the Inverse Amplitude Method to predict a resonance (associated with a new physics
scale in Beyond the StandardModel searches) and more especially on how to control its systematic
uncertainties.
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How to predict a new physics scale and its uncertainty with the IAM

1. Introduction

It is seeming more and more likely that the LHC or other current accelerators will not find
direct evidence of new particles. This is why a huge effort on studying the traces that the new
physics leaves on the visible particle content is being made. This study relies naturally on Effective
Field Theories (EFTs). However, the naive or direct use of an EFT will likely be of no use for
predicting the behaviour of scattered particles above the energies hitherto reached by accelerators.
This is so because an EFT scattering amplitude does not respect unitarity (an illustration of this fact
is shown in Fig. 1). Several unitarization methods have been devised to solve this problem, such
as the K-matrix method; the N/D method; variations of the Bethe-Salpeter equation or the Inverse
Amplitude Method (IAM) [1]. The difference between them is purely empirical, since, usually,
their predictions can only be tested if higher energies are reached. This is why it appears useful to
control the systematic uncertainties of each method ab initio, so that their predictions are also given
within an error-band.

Figure 1: Prediction of the ρ resonance with the IAM using only threshold ππ-scattering data. The pure
EFT amplitude (in blue) completely misses the resonance and fails to reproduce the experimental data (in
orange, taken from [2]) just above threshold. The IAM predicts the resonance with an error of about 10%.

All things said, the most successful unitarization methods in the market also respect the
analyticity properties of amplitudes, this ensures causality in the effective theory (the “old” K-
Matrix method does not). Among these methods, the IAM is salient due to its simple and algebraic
form (the N/D method is based on integral equations and large-NC methods are only approximate
for certain symmetry breaking patterns). This is why, in [3], we have laid out the systematic
uncertainties of the IAM based on a dispersive/analytic approach.
In this Proceedings, I try to make a clear summary on how to put to use the IAM to obtain a
(resonant) new physics scale and its theoretical uncertainty from LHC scattering data (f.e. the
scattering of WLWL in Higgs EFT). This exercise is relevant to assess if, given precision data is
obtained at the LHC or elsewhere, whether the new physics scale may be at the reach of future
colliders (like FCC) or not. In Section 2 I will present an “IAM Uncertainties Handbook”, i.e. a
quick list of the uncertainties of the method and how to calculate them if wanted.
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2. Inverse Amplitude Method’s Uncertainties Handbook

Amplitudes of two-to-two-body scattering for identical particles, T(s, t, u) (expressed in terms
of the usual Mandelstam’s variables s, t and u), admit a low-energy simplification: the partial wave
projection

TI (s, t, u) = 32π
∞∑
J=0
(2J + 1)tIJ (s)PJ (cos θs) . (1)

The partialwaves, tIJ (s), are easily tractable in the context of EFTs since they can beTaylor-expanded
at low energies as t(s) = t0(s)+ t1(s)+ ...1, here only the terms up to NLO (O(p4) = O(s2)) are made
explicit. Unitarity of the S matrix forces the partial waves to follow the relation Im t(s) = σ(s)|t(s)|2

for physical Re (s) > 0 (here σ(s) =
√

1 − s
4m2 is the partial wave two-body phase space factor for

particles of mass m and for s ≥ 4m2). However the EFT expansion satisfies this relation only order
by order, f.e. Im t1(s) = σ(s)|t0(s)|2. On the other hand, if one expands the reciprocal or inverse
amplitude 1/t = 1/t0 − t1/t2

0 + ..., the NLO approximation for t(s),

tIAM(s) =
t2
0 (s)

t0(s) − t1(s)
, (2)

will be found to satisfy unitarity exactly thanks to the simple relation Im 1/t(s) = −σ(s).
In [3], the uncertainties of the IAM are thoroughly studied. The master formula on which [3] leans
on is based on a dispersive approach and amounts to

G(s) = G(0) + G′(0)s +
1
2

G′′(0)s2 + PC(G) +
s3

π
LC[G](s) +

s3

π
RC[G](s) , (3)

where G(s) ≡ t2
0 (s)/t(s) and PC(G) are the pole contributions to the dispersive integral coming

from zeroes of t(s) 2. With this formula at hand it is possible to derive the IAM amplitude in Eq.
(2) by employing the following approximations on Eq. (3):

• Taking the NLO approximation of the subtraction constants G(i)(0) ' (t0 − t1)(i)(0).

• Neglecting the pole contributions of G(s), i.e. zeroes of t(s). These zeroes are of two types
and both appear for real positive s: below threshold they are denominated Adler zeroes and
above threshold they are called Castillejo-Dalitz-Dyson (CDD) zeroes.

• Approximating at NLO the imaginary part of G(s) over the Left Cut (LC), Im G(s) '
−Im t1(s). (The left cut appears on the whole negative real-s axis due to the partial wave
projection, giving a discontinuity in the imaginary part of t(s))

• Neglecting inelastic channels on the whole Right Cut (RC)3. Notice the IAM is exact on the
RC if inelastic channels are turned off.

The next subsection is devoted to explain how these sources of uncertainty can be estimated.

1Here and in the rest of the paper I omit spin and isospin indices.
2Here LC[ f ](s) =

∫ 0
−∞

dz Im f (z)

z3(z−s)
and RC[ f ](s) =

∫ ∞
4m2 dz Im f (z)

z3(z−s)
, where m is the mass of the scattered particles.

3Examples of these inelastic channels in hadron physics would be KK̄ or 2n-π intermediate states for ππ scattering.
In HEFT, for WLWL scattering the inelastic channels would be 2n-WL or n-h.
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2.1 Control of uncertainties

Each source of uncertainty in the method will affect the prediction for the resonance’s mass
and hence the new physics scale predicted by it (see in [4] a comprehensive way of constructing
HEFT partial wave amplitudes). The mathematical procedure is to quantify the absolute value of

∆(s)G(s) ≡
( t(s) − tIAM(s)

tIAM(s)

) t2
0 (s)

t(s)
. (4)

Since it is this factor that modifies the IAM’s condition for a resonance as

t0(sR) − t1(sR) + iσ(sR)t2
0 (sR) = ∆(sR)G(sR) , (5)

for real sR (the resonance’s mass squared). The steps to quantify its magnitude are:

1. To include the NNLO correction on the subtraction constants, one should use Resonance
Effective theory and lean on [5] (Eq. (A4) there). However these constants are not yet known
in HEFT (examples can be found in [6]). One should estimate the size of the O(s3) terms at
the resonance’s squared mass sR and equate it to |∆(sR)G(sR)|.

2. To assess the uncertainty due to neglecting the Adler zeroes simply compute the ratio m4/s2
R.

The appearance of CDD zeroes can be checked by solving the simple algebraic equation
Re t1(sC) + t0(sC) = 0 for sC (zero’s position). If a solution is found, the IAM must fail, but
can be easily modified as tIAM =

t2
0

t0−t1
→

t2
0

t0−t1+
s

s−sc
Re(t1) . This substitution solves the issue.

3. The easiest (though the less reliable and crude among the ones presented in [3]) way of
assessing the uncertainty on the left cut is simply assigning to its uncertainty the LC integral
of t1 since it is presumably an upper bound [3], |∆(sR)G(sR)| = s3

R |LC[t1](sR)|/π.

4. Inelastic channels fall into two types. The two-body ones can be treated using the matrix
form of the IAM (see [2]), and be fully taken into account.
n-body intermediate states can be controlled by evaluating the ratio of the n-body phase space
factor against the two-body one, R(s) = φn(s)/(v2n−4φ2(s)), at the maximum value where one
trusts the EFT unitarization (namely 4πv for HEFT, where v = 246 GeV). Then one equates
the displacement of the pole to |∆(sR)G(sR)| = R((4πv)2) · s3

R |RC[t1](sR)|/π.

Finally, to compute the displacement of the pole, one has to treat each contribution to |∆(sR)G(sR)|
separately depending on their scaling just as is presented in Appendix A of [3].
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