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1. Introduction

Quantum chromodynamics (QCD) is a gauge theory describing the strong interaction between
partons (quarks and gluons). Jets are reconstructed using hadrons produced by the fragmentation
of partons in collisions [1]. The study of the distribution of particles within a jet referred to as jet
substructure is very useful to improve the understanding of QCD [2–4]. For example, the application
of jet grooming techniques, developed based on the understanding of jet substructure, greatly
enhances the region of the applicability of perturbative QCD [5, 6]. Jet substructure techniques
have also found applications in measuring the parameters of the standard model of particle physics,
e.g., top quark mass [7], the evolution of strong coupling with energy [8], among others. Several
techniques have been developed to distinguish the jets capturing decay products of heavy particles,
for example, top quark, W, Z, and Higgs bosons, produced at high transverse momentum (pT)
from jets originating from a single parton [9–11], and are used both in precision measurements
and new physics searches at LHC. Dedicated measurements of jet substructure observables help to
understand and model the heavy particle identification algorithms better. Recently, experimental
measurements have used jet substructure variables to sense the emergent phenomena in QCD, for
example, the formation of quark-gluon plasma [12], dead-cone effects due to heavy-quarkmass [13],
among others. In the following, a few recent jet substructure measurements performed by the CMS
experiment are reported.

2. Study of quark and gluon jet substructure

The difference in Casimir color factor between quarks and gluon leads to differences in particle
composition in jets originated from quarks and gluons: gluon jets are expected to be wide and
characterized by a large number of soft constituents, whereas quark jets are likely to contain a small
number of hard particles inside. A class of observables, known as jet angularities (λκβ) as defined
in Eq. (1), is sensitive to the differences between quark- and gluon-initiated jets [14].

λκβ =
∑
i∈jet

zκi

(
∆Ri
R

)β
(1)

In Eq. (1), R is the jet distance parameter, and zi and ∆Ri represent the fractional transverse
momentum carried by the i-th jet constituent and its displacement from the jet axis, respectively.
Measurements of λκβ with (κ, β) = (0, 0), (1, 0.5), (1, 1), (1, 2), (2, 0), which correspond to physical

quantities: multiplicity, Les Houches angularity, width, thrust, and pD
T

2
, used previously in quark-

gluon tagging [15, 16], are performed with jets reconstructed using anti-kT algorithm [17] in
events with Z(µµ)+jet and dijet production in back-to-back topology [18], selected according to
the conditions mentioned in Table 1. At low pT, the jet from the Z+jet sample is likely to have
originated from a quark, whereas the central jet in the dijet sample is more likely to have been
initiated by a gluon. Dijet forward sample is enriched by jets originated by gluons at low pT and
those initiated by quarks at high pT.

A two-dimensional unfolding in
(
pT, λ

κ
β

)
is performed using TUnfold package [19] to remove

the detector effects as modeled by simulation. Several experimental and theoretical sources of sys-
tematic uncertainty are considered. Among them, the dominant contribution comes from modeling
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Table 1: Summary of the selection criteria for the Z+jet and dijet event samples. Here, y and η denote
rapidity and pseudorapidity, respectively.

Sample Event selection
Z(µµ)+jet A pair of oppositely charged muons each satisfying |η | < 2.4 and pµT > 26GeV

|mµµ − mZ | < 20GeV
≥1 jet with |y | < 1.7 and pj

T > 30GeV not overlapping with muons from Z
∆φ( j1,Z) > 2
|pj1

T − pZ
T |/(p

j1
T + pZ

T) < 0.3
Dijet ≥2 jets with |y | < 1.7 and pj

T > 30GeV
(central and forward) ∆φ( j1, j2) > 2

|pj1
T − pj2

T |/(p
j1
T + pj2

T ) < 0.3
Dijet (central) The jet with smaller |y | among two leading jets in the dijet sample
Dijet (forward) The jet with larger |y | among two leading jets in the dijet sample

Table 2: Parameters varied in the measurement. Each column represents one dimension in the variation.

Sample Kinematic region Jet distance parameter Constituents Jet grooming
Z(µµ)+jet [50, 65]GeV, 0.4 All particles No grooming
Dijet (central) ..., 0.8 Charged particles only Soft drop [20]
Dijet (forward) > 1000GeV

of parton shower and hadronization, which is estimated taking the difference of unfolded results
obtained using pythia and herwig++ simulations. Results are presented at the particle level in
multiple variants as summarized in Table 2.

Average values of λκβ in quark- and gluon-enriched jet samples are shown in Fig. 1, where the
values in data are compared to those predicted by various simulations. Several important features
are present in Fig. 1. The data-to-simulation comparison in the top panel reproduces the well-known
fact that quark jets are better modeled, particularly by pythia parton showering model. In contrast,
predictions from pythia and herwig++ parton showers for gluon jets are on two opposite sides of
data. Predictions from modern generators sherpa and herwig7, and the ones from pythia using
the latest underlying event (UE) tunes [21] model gluon jets better than quark jets, which implies
that the latest LHC measurements used as inputs to the simulations have a significant effect in
the modeling of quark-gluon responses. Fig. 1 also shows that angularities with κ = 1, which are
infrared- and collinear-safe are not necessarily better modeled than the other two, which points to the
fact that the mismodeling of data by simulations and also the variation between different predictions
are not only due to non-perturbative effects but also occurs from the treatment of collinear radiation.
Comparing pythia predictions with different UE tunes, it is found that the prediction using CP2
tune, which uses a larger value of strong coupling and a smaller color reconnection range, describes
data better than the one with the CP5 tune.

Quark-gluon differences are quantified using the ratios of average values of the angularities as
shown in Fig. 2. The difference of the ratio of angularities from 1, as seen in Fig. 2, points to the
quark-gluon separation power of the variables. However, this discrimination is overestimated by all
the predictions as compared to data except at high pT, where all of the samples have roughly equal
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Figure 1: Mean of λκβ observables in regions with gluon-enriched and quark-enriched jets, for the following
configurations: (1) ungroomed AK4 120 < pT < 150GeV, (2) ungroomed AK4 1000 < pT < 4000GeV,
(3) ungroomed AK8 120 < pT < 150GeV, (4) ungroomed charged-only AK4 120 < pT < 150GeV, and
(5) groomed AK4 120 < pT < 150GeV; shown for each of the five λκβ variables. The error bars on the data
correspond to the total uncertainties of the experimental data. The error bars on the simulation correspond
to the statistical uncertainties of the simulation [18].
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Figure 2: The ratio of the mean of λκβ in regions with gluon- and quark-enriched jets, for the same
configurations as used in Fig. 1 [18].
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amounts of quark and gluon jets, showing a clear need for improvements in the simulation. It is
also evident that data-to-simulation comparison is not significantly affected by the variation of UE
tune, jet size, composition, and grooming.

3. Calibration of heavy particle taggers

As already mentioned in Sec. 1, several observables are constructed to identify jets initiated
by the decays of high-pT heavy particles in comparison to those initiated by light quarks or gluons.
Among those are n-subjettiness ratios [22], τ21 and τ32, which measure the consistency of a jet
having two and three clusters of energy, respectively. These variables are most commonly used
in searches for new physics to identify large-radius jets originated from W boson and top quark
decay [23]. Here, anti-kT jets with distance parameter 0.8 (AK8 jets) are used after applying the
pileup per particle identification (PUPPI) algorithm [24] for pileup mitigation. Events with µ+jets
final state enriched by semileptonic tt̄ production are used to check the modeling of n-subjettiness
ratios of AK8 jets in data by simulation as shown in Fig. 3 (left) for τ32, which shows that there
is a need for improvement in the modeling. Distributions of soft-drop mass of jets associated to
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Figure 3: (Left) Distribution of n-subjettiness ratio τ32 of AK8 jets with pT > 300GeV. (Right) distribution
of DeepAK8 top tagger of AK8 jets with pT > 200GeV. Events with µ+jets in data and simulations
corresponding to the 2018 run period are shown [25].

hadronic W or top, that pass or fail the criteria on n-subjettiness ratios, are fitted simultaneously
to derive the identification efficiency in both data and simulation [25]. The ratio of identification
efficiencies τ21 and τ32 variables in data and simulation, referred to as scale factor, is shown in Fig. 4.
Systematic uncertainty on the scale factor includes the variations of jet energy scale, jet energy
resolution, parton-showering model, and renormalization and factorization scales. Fig. 4 shows
that the identification efficiencies with n-subjettiness ratios are very similar in data and simulation
across different kinematic regions.

More recently, multi-class particle identification algorithms, referred to as DeepAK8 taggers,
are developed to identify AK8 jets from the hadronic decays of top quark, W, Z, and Higgs
boson. The DeepAK8 algorithm uses a deep one-dimensional convolutional neural network taking
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Figure 4: (Left) data-to-simulation scale factors for all three years in high purity (HP) and low purity (LP)
categories for nominal τ21 and τ21 decorrelated with jet soft-drop mass. HP and LP categories refer to the
cases when τ21 is required to be less and more than a threshold, respectively. (Right) data-to-simulation scale
factors as a function of jet pT for different thresholds on τ32. The inner and outer areas indicate the statistical
and the total uncertainties, respectively [25].

particles and secondary vertices associated with the jet as inputs. These taggers, well modeled by
the simulation as shown Fig. 3 (right) for top tagging, have already been used in searches for new
particles [26]. Scale factors for DeepAK8 taggers are determined in a very similar manner as for
n-subjettiness ratios and are shown in Fig. 5. Tagging efficiencies for DeepAK8 taggers are well
modeled in all three years for the identification of both W- and top-jets.
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Figure 5: Data-to-simulation scale factors as a function of jet pT in three years of data taking in case
of DeepAK8 algorithms for W-tagging (left) and top-tagging (right). Scale factors are shown for four
misidentification rates. The solid open squares correspond to the statistical uncertainty, while the dashed
squares to the total uncertainty obtained by adding statistical and systematic uncertainties in quadrature [25].

4. Conclusion

Measurements of jet substructure variables used for quark-gluon discrimination are presented.
These are very useful to understand the details of parton-to-jet evolution, which results in jet com-
position. Calibration of algorithms for heavy particle tagging, based on both analytical expressions
and machine learning, are presented for W boson and top quark identification. There is also a rich
set of new measurements to appear in the near future.
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