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Singlet axial current renormalization Long Chen

1. Introduction

It is well known that special attention is needed in the treatment of the intrinsically 4-dimensional
object γ5 in dimensional regularization (DR) [1, 2]. At the root of the issue is that a fully anticom-
muting γ5 is algebraically incompatible with the Dirac algebra in D ( 6= 4) dimensions, which on the
other hand is essential for the concept of chirality of spinors in 4 dimensions and (non-anomalous)
chiral symmetries in quantum field theory. In any regularization scheme where the invariance of
loop integrals under arbitrary loop-momentum shifts is ensured, an anticommuting γ5 would lead
to the absence of the axial or Adler-Bell-Jackiw (ABJ) anomaly [3, 4]. Despite these issues, var-
ious γ5 prescriptions in DR have been developed in the literature [1, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19] over a span of nearly 50 years, albeit each with its own pros and cons.
This technical point matters when computing perturbative QCD corrections to form factors (FF)
of the vertex that couples an external axial current to a pair of quarks (or gluons), which are im-
portant ingredients for calculating a number of phenomenologically interesting processes. In this
talk, we discuss the calculation of the renormalization constant of the singlet axial current opera-
tor with a non-anticommuting γ5 [1, 5, 6] to the third order in QCD, in the variant as prescribed
in refs. [15, 16]. Furthermore, we discuss the subtlety in the renormalized form of a manually
separated axial current component of a given quark flavor, and the closely related renormalization
formulae of the singlet contribution to an axial quark form factor, as well as renormalization group
equations.

2. Renormalization of the singlet axial current

As summarized in refs. [15, 16], the properly renormalized singlet axial current in QCD with
n f massless quarks with a non-anticommuting γ5 can be written as

[
Jµ

5

]
R = ∑

ψB

ZJ ψ̄
B

γ
µ

γ5 ψ
B

= ∑
ψB

Z f
5 Zms

5 ψ̄
B −i

3!
ε

µνρσ
γνγργσ ψ

B , (2.1)

where ψB denotes a bare quark field with mass dimension (D− 1)/2 and the subscript R at a
square bracket denotes operator renormalization. 1 The sum extends over all n f quark fields. Here
and below Jµ

5 denotes the bare flavor-singlet axial current. It is known to renormalize multiplica-
tively [3, 21], as it is the only local composite current operator in the context of QCD that has the
correct mass dimension and conserved quantum numbers (which are preserved under renormaliza-
tion). The factor ZJ ≡ Z f

5 Zms
5 denotes the UV renormalization constant of the current, conveniently

parameterized as the product of a pure MS-renormalization part Zms
5 and an additional finite renor-

malization factor Z f
5 . The latter is needed to restore the correct form of the axial Ward identity,

namely, the all-order axial-anomaly equation [3, 22], which reads in terms of renormalized local

1In ref. [20], a factor µ4−D in the mass scale µ of dimensional regularization was introduced in order for the mass
dimension of the r.h.s. operator be equal to the canonical dimension of the l.h.s. in four dimensions.
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composite operators2

[
∂µJµ

5

]
R = as n f TF

[
FF̃
]

R , (2.2)

where TF = 1/2, FF̃ ≡−εµνρσ Fa
µνFa

ρσ = εµνρσ Fa
µνFa

ρσ denotes the contraction of the field strength
tensor Fa

µν = ∂µAa
ν−∂νAa

µ +gs f abcAb
µAc

ν of the gluon field Aa
µ with its dual form. We use the short-

hand notation as ≡ αs
4π

= g2
s

16π2 for the QCD coupling, and f abc denotes the structure constants of the
non-Abelian color group of QCD. In contrast to the l.h.s. of (2.2), the renormalization of the axial-
anomaly operator FF̃ is not strictly multiplicative (as known from ref. [3]), but involves mixing
with the divergence of the axial current operator [11, 23],[

FF̃
]

R = ZFF̃
[
FF̃
]

B + ZFJ
[
∂µJµ

5

]
B , (2.3)

where the subscript B implies that the fields in the local composite operators are bare.

3. Deriving the result for ZJ

We choose to determine the renormalization constant ZJ ≡ Z f
5 Zms

5 of the singlet axial current to
O(a3

s ) in DR by computing matrix elements of operators appearing in the axial-anomaly equation
between the vacuum and a pair of off-shell gluons evaluated at a specifically chosen single-scale
kinematic configuration [24, 16, 20]. Let us denote by 〈0|T̂

[
Jµ

5 (y)Aµ1
a (x1)Aµ2

a (x2)
]
|0〉|amp the

amputated one-particle irreducible (1PI) vacuum expectation value of the time-ordered covariant
product of the (singlet) axial current and two gluon fields in coordinate space with open Lorentz
indices. Subsequently, we introduce the following rank-3 matrix element Γ

µµ1µ2
lhs (p1, p2) in mo-

mentum space, defined by

Γ
µµ1µ2

lhs (p1, p2)≡
∫

d4xd4ye−ip1·x−iq·y 〈0|T̂
[
Jµ

5 (y)Aµ1
a (x)Aµ2

a (0)
]
|0〉|amp (3.1)

where p2 = −q− p1. Rather than performing the projection for the axial anomaly literally as
devised in eq. (19) of ref. [16] where a derivative w.r.t the momentum q is taken before going to the
limit qµ → 0 (see also ref. [24]), we use instead the following projector

Pµµ1µ2 =−
1

6 p1 · p1
εµµ1µ2ν pν

1 , (3.2)

and directly project Γ µµ1µ2(p1,−p1) onto this structure right at q = 0 (i.e. p2 = −p1). This leads
to the mass-dimensionless matrix element

Mlhs = Pµµ1µ2 Γ
µµ1µ2

lhs (p1,−p1) . (3.3)

Although, at first sight, the projector Pµµ1µ2 in eq.(3.2) does not seem to have anything to
do with the divergence or anomaly of the axial current, it can be shown that with the appropriate
regularity condition it is indeed equivalent to the operation devised for projecting out the anomaly

2When inserted into a Green’s function, the time component of the derivative generates contact terms in the respec-
tive Ward identity.
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in eq.(19) of ref. [16]; see the Appendix of ref. [20]. Another useful way to appreciate the connec-
tion between this projector and the anomaly of the axial current is by examining the form factor
decomposition of the matrix element Γ

µµ1µ2
lhs (p1, p2) in eq.(3.1). It involves the following 3 tensor

structures [25],

Γ
µµ1µ2

lhs (p1, p2) = F1 ε
µ µ1 µ2 (p2−p1)

+ F2
(

pµ1
1 ε

µ µ2 p1 p2− pµ2
2 ε

µ µ1 p1 p2
)

+ F3
(

pµ2
1 ε

µ µ1 p1 p2− pµ1
2 ε

µ µ2 p1 p2
)

(3.4)

each of which is respectively parity-odd and Bose-symmetric w.r.t the two external gluons. 3 The
form factors F1,2,3 are functions of the Lorentz invariants made out of p1, p2. With this parame-
terization, the contraction of this tensor with the sum of p1 and p2 receives contribution from just
F1:

−qµΓ
µµ1µ2

lhs (p1, p2) = 2F1 ε
µ1 µ2 p1 p2 ,

which corresponds to the divergence of the axial current. With on-shell p1 and p2, the F1 is known
to vanish at q2 = 0 in an abelian theory with all fermions massive, due to a low-energy theorem
[26]. It is also clear from eq.(3.4) that there is only εµ µ1 µ2 (p2−p1) surviving at the chosen kinemat-
ics q = 0, p2 = −p1. Consequently, the projector Pµµ1µ2 projects out the form factor in front of
this unique structure, which is not vanishing in the limit q = 0 with off-shell p1 (and p2). Strictly
speaking, the squared norm of the Lorentz structure εµµ1µ2ν pν

1 is equal to (6-11D+6D2-D3)p1 · p1

with all Lorentz indices of the space-time metric tensors resulting from contracting a pair of Levi-
Civita tensors taken to be D-dimensional, but it is known [27, 28] that the parameter D here can
be safely set to 4 consistently throughout the computation in DR without problem. The very same
projector Pµµ1µ2 is also used in extracting a scalar quantity from the matrix element of

[
FF̃
]

R
between the vacuum and the same external (off-shell) gluon state, denoted as Mrhs.

We compute the pertubative QCD corrections to Mlhs and Mrhs in terms of Feynman dia-
grams, which are manipulated in the usual way. We refer to ref. [20] for details on the technical
aspects of the computation. Although the off-shell Mlhs and Mrhs depend on the gauge-fixing
parameter ξ , the ZJ ≡ Zms

5 Z f
5 of the gauge-invariant axial-current operator Jµ

5 is independent of
ξ . The MS part Zms

5 can be extracted based on the UV divergences remaining in the Mlhs after
performing the renormalization of the external (off-shell) gluon fields and the QCD coupling as, as
well as the renormalization of the covariant-gauge fixing parameter ξ . The finite renormalization
constant Z f

5 is determined by demanding the equality between the fully renormalized Mlhs and
Mrhs, originating from eq. (2.2). It reads [20]:

Z f
5 = 1+as

{
−4CF

}
+a2

s

{
CACF

(
− 107

9

)
+C2

F

(
22
)
+CFn f

(31
18

)}
3There are 6 linearly independent rank-3 Lorentz tensor structures that one can compose in 4 dimensions out of

the two momenta p1, p2 and one Levi-Civita tensor. They can be reduced to the three included in eq.(3.4) upon impos-
ing Bose symmetry and parity odd conditions. We note further that the external gauge bosons are not required to be
transversal in this decomposition.
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+a3
s

{
C2

ACF

(
56ζ3−

2147
27

)
+CAC2

F

(5834
27
−160ζ3

)
+CACFn f

(110
3

ζ3−
133
81

)
+C3

F

(
96ζ3−

370
3

)
+C2

Fn f

(497
54
− 104

3
ζ3

)
+CFn2

f

(316
81

)}
. (3.5)

We note that the explicit perturbative result in eq.(3.5) is given in terms of the usual MS-renormalized
QCD coupling as with n f quark flavors. The first two orders of eq. (3.5) agree with ref. [16], while
the third order terms are our new result.

4. Renormalization of Jµ

5,q

We note that the difference between Z f
5 in eq. (3.5) and the additional finite renormalization

constant for the non-singlet axial current computed to O(a3
s ) in ref. [15] starts at O(a2

s ), and is pro-
portional to n f CF just like their MS counterparts. There is actually a quite interesting point related
to this, which we elaborate below, given the common practice of splitting the QCD corrections to
the axial part of the quark form factors into the so-called non-singlet and singlet contribution (see,
e.g., [29, 30, 31].) It starts with the following question: if there are n f flavors of quarks active in
the QCD Lagrangian, what should be the renormalized form of a manually separated axial current
component with one particular quark flavor. Namely, instead of the complete singlet axial current
in eq.(2.1), we consider the renormalization of an individual component ψ̄q γµγ5 ψq with the sub-
script q denoting the quark flavor in QCD with n f quarks active. Apparently, by definition, one
should have

n f

∑
q=1

[
Jµ

5,q

]
R =

[
Jµ

5

]
R (4.1)

with
[
Jµ

5

]
R the renormalized complete singlet axial current in eq.(2.1) and

[
Jµ

5,q

]
R denoting an indi-

vidual component of a given quark flavor q. The point is that it would be incorrect to make the naive
identification of

[
Jµ

5,q

]
R as ZJ ψ̄B

q γµγ5 ψB
q , the later of which is actually not UV finite, although the

condition (4.1) would be trivially fulfilled. Indeed, treated as an external local-composite operator,
all contributing Feynman diagrams to the matrix elements of the bare Jµ

5,q = ψ̄B
q γµγ5 ψB

q must have
the Z boson directly coupled to this particular current made out of field q; while on the other hand,
one can have more than one quark flavors active in the QCD Lagrangian which generates all stan-
dard QCD-loop corrections to matrix elements. The correct renormalized form should read [32]

[
Jµ

5,q

]
R = Zns ψ̄

B
q γ

µ
γ5 ψ

B
q + Zs

n f

∑
i=1

ψ̄
B
i γ

µ
γ5 ψ

B
i

=
(
Zns + Zs

)
ψ̄

B
q γ

µ
γ5 ψ

B
q + Zs

n f

∑
i=1,i 6=q

ψ̄
B
i γ

µ
γ5 ψ

B
i , (4.2)

with Zs ≡ 1
n f

(
ZJ−Zns

)
and Zns denoting the full renormalization constant for the non-singlet axial

current operator (i.e., including the non-MS finite piece). Owing to the aforementioned feature
regarding the difference between the non-singlet and singlet axial-current renormalization con-
stants, the so-defined Zs starts from O(a2

s ) and is free of n f in the denominator. It is interesting
to observe that in the explicit renormalized form

[
Jµ

5,q

]
R of an axial-current component with one

4
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particular quark flavor, there appears some mixing terms made out of the fields of the remaining
quark flavors. It is straightforward to see that the condition (4.1) is satisfied by the formula (4.2).
Consequently, one can also derive the RG equation for

[
Jµ

5,q

]
R based on eq.(4.2), which reads

µ
2 d

dµ2

[
Jµ

5,q

]
R = γs

[
Jµ

5

]
R , (4.3)

where γs is defined by µ2 dZs
dµ2 = γs

(
Zns +n f Zs

)
. We note that it is the renormalized complete axial

current
[
Jµ

5

]
R that appears in the r.h.s. of eq.(4.3).

5. Renormalization of the singlet contribution to quark FFs

The 3-loop singlet contribution to the axial part of the quark FF in purely massless QCD was
determined recently in ref. [30] where the result (3.5) entered. However, for physical application
of the result for the axial quark FF, such as for theoretical predictions of the Z-mediated Drell-Yan
processes to the third order in as (similar as for those mediated by a virtual photon [33, 34] or
a W boson [35]), one should incorporate the singlet QCD contribution with top quark loops [36,
37, 38, 39, 40] due to the presence of the axial-anomaly type diagrams [3, 4]. Here we would
like to briefly comment on why this is necessary from the point of view of renormalization scale
dependence [37, 38]. We refer to ref. [31] for the detail of the definition of the so-called singlet-
type QCD contribution to the (massless) quark FFs, in particular the axial part, considered in the
remainder of this proceeding.

As far as the following discussion is concerned, it is sufficient to know that the renormalized
axial quark FF can be formally viewed as the projection of the matrix element of the current op-
erator

[
Jµ

5,q

]
R between an external pair of on-shell (massless) quarks |qq̄〉 and the vacuum onto a

specifically constructed form-factor projector which we denote as P̂ . Based on eq.(4.2), one can
directly read off the renormalized total axial quark FF:

P̂ 〈0|
[
Jµ

5,q

]
R|qq̄〉 = Zns Z2

(
FA

ns(âs, m̂t)+FA
s,q(âs, m̂t)

)
+ Zs Z2

(
FA

ns(âs, m̂t)+
n f

∑
i=1

FA
s,i(âs, m̂t)

)
,

=
(
Zns + Zs

)
Z2

(
FA

ns(âs, m̂t)+FA
s,q(âs, m̂t)

)
+ Zs Z2

( n f

∑
i=1,i6=q

FA
s,i(âs, m̂t)

)
= Zns Z2 FA

ns(âs, m̂t) + FA
s,q(as,mt ,µ) , (5.1)

where we have adopted the notations used in ref. [31]. In short, FA
ns(âs, m̂t) denotes the bare non-

singlet QCD corrections where the Z boson coupled directly to the open fermion line of the external
quark q. While the bare singlet contribution FA

s,i(âs, m̂t) features a closed fermion loop which
contains the quark i coupling to the Z boson. The bare QCD coupling âs is to be renormalized
conventionally in the MS scheme and the bare mass m̂t is to be renormalized on-shell by m̂t = Zm mt .
The Z2 is the on-shell wavefunction renormalization constant of the external light quark, which
differs from one due to the presence of massive top loops starting from 2-loop order. In the last
line of eq.(5.1), we have introduced FA

s,q(as,mt ,µ) denoting the renormalized aq-tagged singlet
contribution after subtracting the renormalized purely non-singlet part Zns Z2 FA

ns(âs, m̂t) from the

5
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total. Specifically, one arrives at the following renormalization formulae for this individual aq-
tagged singlet contribution [31]:

FA
s,q(as,mt ,µ) = Zns Z2 FA

s,q(âs, m̂t) + Zs Z2

(
FA

ns(âs, m̂t)+
n f

∑
i=1

FA
s,i(âs, m̂t)

)
. (5.2)

Once expanded up to O(a3
s ) in question, only

Zns Z2 FA
s,q(âs, m̂t) + Zs Z2 FA

ns(âs, m̂t)

contribute, because the singlet quantities, Zs and FA
s,i, all start from O(a2

s ). The remaining terms in
eq.(5.2), which are quite non-trivial due to mixing with singlet diagrams featuring quarks of other
flavors (with potentially different masses), should get involved but only starting from 4-loop order.
Furthermore, the difference between the two subsets of singlet contributions in eq.(5.2), say the
ab-tagged and at-tagged ones from the third quark generation, requires only the non-singlet axial
current renormalization:

FA
s,b(as,mt)−FA

s,t(as,mt) = Zns Z2
(
FA

s,b(âs, m̂t) − FA
s,t(âs, m̂t)

)
, (5.3)

as expected. Starting with eq.(5.2) and noting the non-zero anomalous dimension of the singlet
axial-current operator in eq.(4.3), one can then derive the RG equation for the renormalized aq-
dependent singlet contribution, which reads

µ
2 d

dµ2 FA
s,q(as,mt ,µ) = µ

2 ∂

∂ µ2 FA
s,q(as,mt ,µ) +

(
β − ε

)
as

∂

∂as
FA

s,q(as,mt ,µ)

= γs

(
FA

ns(as,mt ,µ)+
n f

∑
i=1

FA
s,i(as,mt ,µ)

)
, (5.4)

where all FFs on both sides are the UV renormalized ones. Just like the pure non-singlet contri-
bution FA

ns(as,mt ,µ), one sees that the “physical” combination FA
s,b(as,mt ,µ)−FA

s,t(as,mt ,µ) has
a zero anomalous dimension as a direct consequence of eq.(5.3), which is also clear from eq.(5.4).
Therefore, the net µ dependence in the at-dependent singlet contribution FA

s,t(as,mt ,µ) is necessary
to cancel that of FA

s,b(as,mt ,µ), such that the remaining explicit µ dependence is related to the MS
renormalization of as in the usual way. Based on this, one anticipates already that the top-quark
contribution FA

s,t(as,mt ,µ) can not completely decouple in the naive sense in the large top mass or
low energy limit, because the “massless” contribution FA

s,b(as,mt ,µ) still has a non-zero anomalous
dimension to be compensated [36, 37, 38, 39, 40].
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