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1. Introduction

It is consensus in the community that the next project in high-energy particle physics should
be a Higgs factory. There exist proposals for two linear colliders ILC and CLIC and two circular
machines, FCCee and CEPC. The study of the process e+e− → ff in high-energy e+e− collisions
at Higgs factories is complementary to the actual Higgs program and bears discovery potential by
precision measurements on its own. Linear colliders with their extendability in energy allow for
detecting the onset of deviations in the electroweak couplings at smaller energies and for following
the growth of effects towards higher energies. On the other hand the t quark mass is an important
parameter in global analyses of electroweak parameters [1]. If the scale of new physics would be
comparable to the Planck scale then the actual t quark mass drives the stability of the vacuum.

2. Determiniation of the top quark mass

At the tt production threshold the small size of the quasi-bound state of the tt pair is an ideal
premise for precision measurements. The cross section around the threshold is affected by several
properties of the t quark and by QCD. These are the mainly top quark mass, the t quark width and
the strong coupling constant 𝛼𝑠. The dependence of the top-Yukawa coupling is rather weak. The
parameters are extracted from a scan over the tt threshold. Typically 10 data points with around
10 fb−1 at each point are needed for a precision of the top quark mass of about 50 MeV. The study
in Ref. [2] searched for an optimal distribution of the data points around the threshold. It makes
use of a non-dominated sorted genetic algorithm. In short, several sets of scanning points “breed" a
new set of scanning points until the result, i.e. the physics parameters, cannot be further optimised.
The left part of Fig. 1 shows the distribution of scanning points optimised for the determination of
the t quark mass and the t quark width. The right part of the figure shows that an optimisation of
threshold scan yields 25% improvement in statistical precision of t quark mass compared with scan
using equally distributed scan points.

Initial state radiation, i.e. the process e+e− → tt + 𝛾 allows to determine the t quark mass
at different (squared) centre-of-mass energies s′ = s(1 − 2E𝛾/

√
s) and therefore gives evidence for

the running of the t quark mass as expected from renormalisation in a consistent field theoretical
treatment. A conceptual study has been published in Ref. [3]. The left hand side of Fig. 2 shows
pseudo data generated for the e+e− → tt + 𝛾 cross section for a centre-of-mass energy of 500 GeV.

The renormalisation scale is chosen to be the momentum of the top quark, i.e. R = m1S
t v∗, with

m1S
t being the t quark mass at the 1S resonance peak and with v∗ being the velocity of the t quark

in the tt centre-of-mass frame. Results have been obtained for a fixed point close to the tt threshold
and three further bins in R. The running of the t quark mass (MSR mass) is evident from the right
hand panel of Fig. 2. Though for the last three bins the error is comparatively large, the running of
the t quark mass is confirmed with a significance of more than 5𝜎.

3. Electroweak couplings of the top quark and lighter quarks

In general electroweak di-fermion production in the process e+e− → ff is driven by the
electromagnetic charges Q𝛾

e,f of the initial and final state particles to the photon and by the couplings
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Figure 1: Left: Distribution of scanning points in a threshold scan for optimising the measurements of mass
and the width of the 𝑡 quark. Right: Improvement of the statistical precision on the determination of the 𝑡

quark mass achieved with the optimised scenario for different Higgs factories.
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Figure 2: Left: Pseudo data of the process 𝑒+𝑒− → 𝑡𝑡 + 𝛾 at
√
𝑠 = 500GeV using the ILC luminosity

spectrum.Right: Expected running of the MSR mass as a function of the scale R.

gZ(′)
(e,f)L , gZ(′)

(e,f)R of fermions with left-handed and right-handed helicities to the Z boson and to a
potential Z′ boson of new physics. In a general form the couplings can be expressed as:

𝑄𝑒𝑖 𝑓 𝑗 = 𝑄
𝛾
𝑒𝑄

𝛾

𝑓
+

𝑔𝑍𝑒𝑖𝑔
𝑍
𝑓 𝑗

sin2 \𝑊 cos2 \𝑊

𝑠

𝑠 − 𝑚2
𝑍
+ 𝑖Γ𝑍𝑚𝑍

+
∑︁ 𝑔𝑍

′
𝑒𝑖
𝑔𝑍

′

𝑓 𝑗

sin2 \𝑊 cos2 \𝑊

𝑠

𝑠 − 𝑚2
𝑍′ + 𝑖Γ𝑍′𝑚𝑍′

(1)

with 𝑖, 𝑗 = 𝐿, 𝑅 and \W being the weak mixing angle at Born level. The first part of the equation
describes the electromagnetic couplings to the photon. The second part describes the couplings of
the fermions to the Z boson. This second term may be affected by Z − Z′ mixing as for example

3



P
o
S
(
E
P
S
-
H
E
P
2
0
2
1
)
4
9
1

Top and heavy quark studies at linear colliders Roman Pöschl

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
tθcos

0

5

10

15

20

25

310×
E

nt
rie

s 
/ 0

.1

LO EW matrix element - Whizard 1.95

IDR-L

IDR-S

ILD

 @ 500GeVt t→+
Re-

Le

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
tθcos

0

5

10

15

20

25

30

35

40
310×

E
nt

rie
s 

/ 0
.1

LO EW matrix element - Whizard 1.95

IDR-L

IDR-S

ILD

 @ 500GeVt t→+
Le-

Re

Figure 3: Polar angle distributions of the top quark for different configurations of the beam polarisation.
Note for completeness that IDR-L and IDR-S represent different variants of the ILD Detector Concept.

suggested in [4]. The third term takes into account couplings to new vector bosons Z′. The relative
importance of the contributions is determined by the Breit-Wigner functions characterised by the
squared centre-of-mass energy s and the mass mZ (mZ′) and the width Γ𝑍 (ΓZ′) of the Z (Z′) boson.

The differential cross-sections for s-channel, i.e. f ≠ e, di-fermion production using fully
polarised electron and positron beams read:

𝑑𝜎

𝑑 cos \
(𝑒−𝐿𝑒+𝑅 → 𝑓 𝑓 ) = Σ𝐿𝐿 (1 + cos \)2 + Σ𝐿𝑅 (1 − cos \)2 + (Σ′

𝐿,𝐿𝑅/𝛾 𝑓 ) sin2 \

𝑑𝜎

𝑑 cos \
(𝑒−𝑅𝑒+𝐿 → 𝑓 𝑓 ) = Σ𝑅𝐿 (1 − cos \)2 + Σ𝑅𝑅 (1 + cos \)2 + (Σ′

𝑅,𝑅𝐿/𝛾 𝑓 ) sin2 \

(2)

Here, \ is the polar scattering angle and 𝛾 𝑓 the Lorentz factor of the final state fermion. The
terms containing (1±cos \)2 or sin2 \ represent helicity conserving or violating contributions at the
final state vertex. In the Standard Model the helicity violating contributions vanish at relativistic
energies. The coefficients Σ and Σ′ are functions of the couplings defined in Eq. 1. In case of e.g. the
Z boson these couplings appear as vector couplings ∝ (gZ

fL
+ gZ

fR
) or as parity-violating axial-vector

couplings ∝ 𝛽f (gZ
fL
− gZ

fR
) with 𝛽f being the velocity of the final state fermion. The difference in the

coefficients leads to the well known left-right and forward-backward asymmetries.
Figure 3 shows the polar angle distribution of the top quarks in the process e+e− → tt at√

𝑠 = 500 GeV [5]. The result has been obtained using full simulation of the ILD detector [6]
and assuming 3200 fb−1 integrated luminosity shared equally between two different configura-
tions of the beam polarisation. The generated spectra are accurately reproduced. The different
shapes of the distributions are reminiscent of the different weights with which left and right-
handed couplings of the t quark enter the distrubtions. Characteristic observables as the cross-
sections and the forward-backward asymmetries can be measured with a statistical accuracy of
0.2-0.3% and 0.5-0.7%, respectively. This sets the goal for systematic and theoretical uncertainties.
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Figure 4: Precisions the on electromagnetic 𝑡 quark
form factors expected after ILC compared with those
expected after the full HL-LHC running and an es-
timation for FCC-ee after 2400 𝑓 𝑏−1.

The precisions on the cross-sections and the
forward-backward asymmetries are translated into
precisions on electromagnetic form factors of the
t quark. Figure 4 shows the precisions at the
1𝜎 level expected at the ILC. The precisions are
compared with those expected after the full HL-
LHC running and estimations produced for FCC-
ee [7] at the same confidence level. For the ILC,
the two sets F1 and F2 have been extracted sep-
arately but within each set the uncertainties have
been extracted simultaneously. The projections
for HL-LHC are derived from the individual con-
straints of EFT Wilson coefficients presented in
Table C2.3 of Ref. [8]. The figure demonstrates
clearly the superiority of a e+e− collider compared
with HL-LHC. For about equal total integrated lu-
minosities the results are similar for circular and
linear colliders. The exception is the axial-vector
form factor FZ

1A = 1
2 𝛽f (gZ

tL − gZ
tR). This form fac-

tor benefits from the higher velocity of the t quark
at higher centre-of-mass energies available at lin-
ear colliders.

The b quark is the second heaviest fermion and builds, in the Standard Model, an iso-doublet
with the t quark. Be reminded on the discrepancy between LEP and SLC on the weak mixing angle
and that at LEP the parameter has been extracted from the forward-backward asymmetry observed
for the b quark [9]. This motivates further studies at future e+e− colliders. Figure 5 shows the
polar angle distributions for the process e+e− → bb at a centre-of-mass energy of 250 GeV for an
integrated luminosity of 2000 fb−1 and two different configurations of the beam polarisation.

The generated distributions are accurately reproduced for a wide range of the polar angle.
The difference in the shape is even more striking than in case of the top quark. In particular the
configuration e−Re+L gives a good access to right-handed polarised b quarks. Figure 6 gives the
expected precision in terms of a) the coefficients of the helicity amplitudes defined in Eq. 2 and b)
in terms of the left and right-handed couplings that are expected from a running of the ILC at the
Z-Pole [10, 11]. For the former case there doesn’t exist a result to compare with. For the latter the
improvement w.r.t. LEP/SLC is obvious.

The results introduced before are subject to a global analysis in the EFT framework as shown
in Fig. 7 [8]. From this three conclusions can be drawn: a) Translation of results into EFT language
confirms the superiority of e+e− colliders w.r.t. HL-LHC; b) Several operators benefit already from
running at 250 GeV; c) Top specific operators are constrained by running at 500 GeV.

Reference [14] points out that the sensitivity to four-fermion operators improves considerably
with higher energies. On the other hand Ref. [15] underlines for models based on Grand Higgs
Unification a) that deviations from the Standard Model are already measurable at

√
𝑠 = 250 GeV,

5
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Figure 5: cos \𝑏 distributions obtained for 𝑒−
𝐿
𝑒+
𝑅
(left) and 𝑒−

𝑅
𝑒+
𝐿
(right). The generator distribution is the

green histogram and the red and blue dots show the reconstructed distributions after correction charge for
charge migration and two different methods for the correction for efficiency and acceptance.
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Figure 6: Left: Precisions expected on the coefficients of the helicity ampliudes defined in Eq. 2 (here
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new physics models with Randall-Sundrum extra dimensions [4, 12, 13].
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Figure 7: Prospects on the expected precisions of the Wilson Cofficients of EFT operators relevant for
the 𝑒+𝑒− → 𝑡𝑡 and 𝑒+𝑒− → 𝑏𝑏 processes for HL-LHC and future 𝑒+𝑒− colliders. The solid lines are the
individual constraints and the shaded bars are the constraints resulting from a 10-parameter fit.

b) that the effects get amplified by polarisation, c) that these effects are further amplified at higher
energies (when the effects of the new propagators get more important) and d) that effects are visible
also for quarks lighter than t or b.

4. Summary and outlook

This article gives a brief overview on the status of the determination of the top quark mass and
the measurement of electroweak couplings of quarks as can be expected from experiments at linear
e+e− colliders. The determination of the top quark mass may benefit from an optimisation of the
points along a threshold scan. The optimisation made use of a genetic sorting algorithm and the
statistical precision can be improved by around 25% giving more confidence that a precision of the
top quark mass of 50 MeV is in reach. Radiative events allow for measuring with great evidence
the running of the top quark mass. This has been shown at the example of a generator study that
imply efficiencies expected in a real experiment. Linear Colliders allow for a powerful program to
determine the electroweak couplings of fermions. Beam polarisation and extendability in energy
yields for precision measurement of left and right handed electroweak couplings. If present the
onset of new physics can already be observed at small centre-of-mass energy and amplified effects
can be followed up to higher energies. The variety of models of new physics motivates extending
the study to all fermion types. An analysis for e+e− → cc has been published in [16] and a study of
e+e− → ss has just been started.
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