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We report on the calculation of next-to-next-to-leading order (NNLO) QCD corrections to the
width difference ΔΓ𝑠 in the neutral 𝐵-meson mixing process 𝐵0

𝑠 − 𝐵̄0
𝑠 . These contributions

represent an important step in the task of reducing the existing large perturbative errors in the
theory prediction for ΔΓ𝑠 and approaching the current experimental uncertainties. We explain
the theoretical framework employed in this computation and point out important subtleties in the
treatment of evanescent operators and the renormalization. Part of our new results is already
available in the literature, while the remaining pieces are expected to be published later this year.
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1. Introduction

In view of current null searches for new physics at the LHC, the increasing number of anomalies
in the flavor sector of the Standard Model (cf. e. g. [1] for a recent overview) hints that the much
anticipated beyond the Standard Model (BSM) particles might indeed be discovered at the precision
and not at the high-energy frontier. Amid the well justified efforts of the BSM community to
explain such anomalies by developing suitable models and studying their implications, one should
not forget about the existence of flavor precision observables and their importance for our present
understanding of the SM. The word “precision” indicates that such observables are equally well
accessible to experimental measurements and theoretical calculations, which creates a friendly
competition between these two particle physics communities.

One of such observables is the width difference ΔΓ𝑠 that arises in the 𝐵0
𝑠 − 𝐵̄0

𝑠 oscillations.
This time-dependent process can be described via

𝑖
𝑑

𝑑𝑡

(
|𝐵0

𝑠 (𝑡)〉
|𝐵̄0

𝑠 (𝑡)〉

)
=

(
𝑀̂ − 𝑖

2
Γ̂

) (
|𝐵0

𝑠 (𝑡)〉
|𝐵̄0

𝑠 (𝑡)〉

)
, (1)

where 𝑀̂ and Γ̂ are Hermitian matrices. In the absence of mixing 𝑀̂ and Γ̂ would have no off-
diagonal elements, while their diagonal entries would correspond to the 𝐵0

𝑠 meson mass and width
respectively. Yet by exchanging𝑊-bosons in box diagrams, 𝑏- and 𝑠-quarks can turn into 𝑏̄ and 𝑠,
which corresponds to the flavor eigenstate 𝐵0

𝑠 transforming into its antiparticle and back via weak
interactions. This loop-suppressed flavor changing neutral current induces nonzero values of 𝑀12

and Γ12. Solving Eq. (1) one arrives at two mass eigenstates |𝐵𝐿〉 (lighter, almost CP-even) and
|𝐵𝐻 〉 (heavier, almost CP-odd)

|𝐵𝐿/𝐻 〉 = 𝑝 |𝐵0
𝑠〉 ± 𝑞 |𝐵̄0

𝑠〉 , with 𝑝2 + 𝑞2 = 1. (2)

The mass and lifetime differences between these eigenstates are given by

Δ𝑚𝑠 ≡ 𝑀𝐻 − 𝑀𝐿 = 2|𝑀12 |, ΔΓ𝑠 ≡ Γ𝐿 − Γ𝐻 ≈ 2|Γ12 | (3)

The width difference ΔΓ𝑠 is of limited sensitivity to new physics and would deviate from its SM
value only if BSM particles contributing through loops are light and weakly coupled to SM fields.
In fact, Δ𝑚𝑠 and ΔΓ𝑠 are complementary probes of new physics because of the former quantity
probing effects of heavy (multi-TeV-mass) particles.

This implies thatΔΓ𝑠 is a superb probe for our understanding of the SM and higher perturbative
corrections thereto. Indeed, in the past years experimentalists have done a great job on reducing the
statistical and systematic errors in their measurements [2–4] of ΔΓ𝑠 and achieving per cent level
precision [5] with

ΔΓ
exp
𝑠 = (0.085 ± 0.004) ps−1 (4)

as compared to the current theory predictions [6–11]

ΔΓMS
𝑠 = (0.088 ± 0.011pert. ± 0.002𝐵,𝐵̃𝑆

± 0.014ΛQCD/𝑚𝑏
) ps−1, (5)

ΔΓ
pole
𝑠 = (0.077 ± 0.015pert. ± 0.002𝐵,𝐵̃𝑆

± 0.017ΛQCD/𝑚𝑏
) ps−1, (6)
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that suffer from large perturbative uncertainties (denoted as “pert.”). The two values given in Eqs.(5)
and (6) correspond to different renormalization schemes. The reduction of these uncertainties
necessitates an inclusion of the missing QCD corrections to the 𝐵0

𝑠 − 𝐵̄0
𝑠 mixing at 2- and 3-loop

level, which is the main task of our project.

2. Calculation

In the calculation ofΔΓ𝑠 we work with the |Δ𝐵| = 1 effective Hamiltonian that can be expressed
using the following set of operators [12]

H |Δ𝐵 |=1
eff =

4𝐺𝐹√
2

[
−𝜆𝑠𝑡

( 6∑︁
𝑖=1

𝐶𝑖𝑄𝑖 + 𝐶8𝑄8

)
− 𝜆𝑠𝑢

2∑︁
𝑖=1

𝐶𝑖 (𝑄𝑖 −𝑄𝑢
𝑖 ) (7)

+𝑉∗
𝑢𝑠𝑉𝑐𝑏

2∑︁
𝑖=1

𝐶𝑖𝑄
𝑐𝑢
𝑖 +𝑉∗

𝑐𝑠𝑉𝑢𝑏

2∑︁
𝑖=1

𝐶𝑖𝑄
𝑢𝑐
𝑖

]
+ h.c.,

where 𝑉𝑖 𝑗 stand for the CKM matrix elements and 𝜆𝑠𝑎 = 𝑉∗
𝑎𝑠𝑉𝑎𝑏 denote products thereof, while 𝐶𝑖

are matching coefficients arising the matching between SM and H |Δ𝐵 |=1
eff . The basis also includes

so-called evanescent operators 𝐸 [𝑄𝑖] [13, 14] that are formally of order O(𝜀) and therefore vanish
in the limit 𝑑 → 4. Their relevance arises from the fact that certain relations from the 4-dimensional
Dirac algebra such as Fierz identities or the Chisholm identity cannot be translated to 𝑑 dimensions
in a unique fashion. The proper handling of the evanescent operators during the renormalization
and in the matching is one of the conceptual challenges accompanying this calculation. Explicit
definitions of all |Δ𝐵| = 1 operators entering our matching calculations at 2 and 3 loops can be
found in [15] and [16] respectively.

In quantum field theory ΔΓ𝑠 ≈ 2|Γ12 | is related to Γ12, the absorptive part of a bilocal matrix
element featuring a time-ordered product of two |Δ𝐵| = 1 effective Hamiltonians. Simplifying this
quantity by means of the Heavy Quark Expansion (HQE) [17–25] we arrive at [9]

Γ12 = −(𝜆𝑠𝑐)2Γ𝑐𝑐
12 − 2𝜆𝑠𝑐𝜆

𝑠
𝑢Γ

𝑢𝑐
12 − (𝜆𝑠𝑢)2Γ𝑢𝑢

12 , (8)

with

Γ𝑎𝑏
12 =

𝐺2
𝐹
𝑚2

𝑏

24𝜋𝑀𝐵𝑠

[
𝐻𝑎𝑏 (𝑧)〈𝐵𝑠 |𝑄 |𝐵̄𝑠〉 + 𝐻𝑎𝑏

𝑆 (𝑧)〈𝐵𝑠 |𝑄𝑆 |𝐵̄𝑠〉
]
+ O(ΛQCD/𝑚𝑏), (9)

where 𝑧 ≡ 𝑚2
𝑐/𝑚2

𝑏
. The determination of the relevant QCD corrections to the Wilson coefficients

𝐻𝑎𝑏 (𝑧) and 𝐻𝑎𝑏
𝑆

(𝑧) is the main goal of our project. The |Δ𝐵| = 2 operators appearing in Eq. (9)
are defined as

𝑄 = 𝑠𝑖𝛾
𝜇 (1 − 𝛾5) 𝑏𝑖 𝑠 𝑗𝛾𝜇 (1 − 𝛾5) 𝑏 𝑗 , 𝑄𝑆 = 𝑠𝑖 (1 − 𝛾5) 𝑏 𝑗 𝑠 𝑗 (1 − 𝛾5) 𝑏𝑖 , (10)

with 𝑖, 𝑗 specifying the color indices of the quark fields. The complete |Δ𝐵| = 2 operator basis
(cf. [15]) also features suitable evanescent operators as well as the operator 𝑅0 whose renormalized
matrix elements are 1/𝑚𝑏-suppressed, while its bare matrix elements are not [6].

In the matching between |Δ𝐵| = 1 and |Δ𝐵| = 2 effective theories we choose to treat the 𝑠 quark
as massless and to set its external momentum to zero, while the external momentum of the 𝑏 quark

3
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Figure 1: Sample Δ𝐵 = 1 and Δ𝐵 = 2 Feynman diagrams contributing to the process 𝑏𝑠 → 𝑏̄𝑠. Here (a)
and (b) represent Δ𝐵 = 1 contributions from 𝑄2 × 𝑄8 (2 loops) and 𝑄1 × 𝑄2 (3 loops), while (c) and (d)
visualize 1- and 2-loop matrix elements of Δ𝐵 = 2 operators 𝑄̃𝑠 and 𝑄.

is taken on-shell. Furthermore, at 2 loops we expand in 𝑧 up to O(𝑧), while the 3-loop diagrams are
evaluated in the 𝑧 = 0 limit. On the |Δ𝐵| = 1 side of the matching we calculate all possible operator
insertions up to 2 loops i. e. all combinations of 𝑄1,2, 𝑄3−6 and 𝑄8 appearing in either of the two
vertices. Notice that the 2-loop contribution to 𝑄8 × 𝑄8 actually belongs to NNNLO, but here we
obtain it as a byproduct of our calculation. At 3 loops we evaluate only the 𝑄1,2 × 𝑄1,2 correlator.
As far as the |Δ𝐵| = 2 theory is concerned, the 2-loop |Δ𝐵| = 1 contributions are matched to the
1-loop |Δ𝐵| = 2 diagrams, while the 3-loop 𝑄1,2 × 𝑄1,2 correlator requires us to consider 2-loop
corrections to the |Δ𝐵| = 2 operators. Some of the representative Feynman diagrams visualizing
the corresponding operator insertions are shown in Fig. 1.

3. Technical details

To carry out the analytic evaluation of the Feynman diagrams on both sides of the matching
we make use of our well tested in-house calculational setup. We generate the required Feynman
graphs using Qgraf [26] and employ q2e/exp [27, 28] or tapir [29] to insert Feynman rules and
identify the occurring integral topologies. The resulting amplitudes are then processed with the
aid of the FORM-based [30] calc framework. For cross checks of the results obtained from single
diagrams we also employ FeynRules [31], FeynArts [32] and FeynCalc [33–35]. The latter, in
conjunction with Fermat [36] is also used to derive tensor integral reduction formulas [37] that are
used in our FORM code. Alternatively, we also employ a set of suitable Dirac and color projectors.
FIRE [38] and LiteRed [39] allow us to IBP-reduce [40, 41] the occurring loop integrals to a
small set of master integrals, many of which have already been calculated in the past [42, 43].
Most of the on-shell 3-loop master integrals, however, appear to be new and need to be calculated
from scratch. This is done using FeynCalc, HyperInt [44], HyperLogProcedures [45] and
PolyLogTools [46], so that at the end of the day we are able to obtain explicit analytic results for
all integrals occurring in this matching calculation. We also cross check these results numerically
using pySecDec [47–49] and FIESTA [50].

4. Renormalization and matching

We renormalize the bare |Δ𝐵| = 1 and |Δ𝐵| = 2 amplitudes in the MS scheme. Notice that in
addition to the QCD renormalization constants we also need to take into account the renormalization

4
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of |Δ𝐵| = 1 and |Δ𝐵| = 2 operators. The generic operator renormalization matrix is of the form

𝑍 =

(
𝑍𝑄𝑄 𝑍𝑄𝐸

𝑍𝐸𝑄 𝑍𝐸𝐸

)
, (11)

where the submatrices 𝑍𝑖 𝑗 indicate mixing between different operator subclasses. For example,
𝑍𝐸𝑄 encodes the mixing of evanescent into physical operators at order O(𝛼𝑠). The |Δ𝐵| = 1
renormalization matrix is readily available in the literature [51] and is sufficient for NNLO accuracy.
As far as 𝑍 |Δ𝐵 |=2 is concerned, the situation is less favorable, where mostly only 𝑍𝑄𝑄 can be found
in the literature. For this reason we choose to determine 𝑍 |Δ𝐵 |=2 tailored to our operator basis at 2
loops in a separate calculation.

To ensure the correctness of our matching calculation, at 2 loops we not only regularize UV
and IR divergences dimensionally, but also employ a finite gluon mass as an infrared regulator. The
latter makes the evaluation of the amplitudes and the calculation of the master integrals somewhat
more involved but leads to significant simplifications in the matching. In particular, upon the UV
renormalization our |Δ𝐵| = 1 and |Δ𝐵| = 2 amplitudes are free of 𝜀 poles, so that one can safely
take the limit 𝑑 → 4, where the matrix elements of evanescent operator vanish.

If we choose to work with massless gluons and therefore use the same 𝜀 as our UV and IR
regulator, then the renormalized amplitudes on both sides of the matching still contain IR poles and
the contributions of evanescent operators must be kept. In this case the matching should be carried
out according to the prescriptions outlined in [7]. This way all IR poles cancel and at 2-loops we
obtain the same matching coefficients as in the calculation with massive gluons. At 3 loops we only
work with massless gluons and using the method from [7] we observe an explicit cancellation of all
IR poles in the matching.

5. Results

Due to the large number of new matching coefficients obtained in the course of this project,
we summarize the obtained results in Table 1, which also indicates the previous status quo from
the literature. Since our 2- and 3-loop results are of O(𝑧) and O(𝑧0) respectively, it is understood
that when comparing to the literature we also need to expand the relevant expressions in 𝑧. Under
these conditions we confirm all the existing literature results, including the fermionic part of the
3-loop correlator 𝑄1,2 × 𝑄1,2 computed in [10]. The final NNLO theory prediction for the width
difference is still work in progress, due to additional checks required to ensure that our treatment
of the 1/𝑚𝑏-suppressed 𝑅0 operator at 3 loops is correct. As far as the 2-loop contributions are
concerned, explicit results for the 𝑄1,2 ×𝑄3−6 diagrams have already been published in [15], while
the remaining 2-loop matching coefficients are expected to appear soon [53]. The 3-loop result
together with the updated NNLO theory prediction are also in preparation [16].

To highlight the relevance of our computation, let us observe that alone the complete (i. e. not
just its fermionic piece) 2-loop contribution 𝑄1,2 ×𝑄3−6 leads to a significant relative shift of ΔΓ𝑠

as compared to the 1-loop result. This can be seen from building the ratio between full ΔΓ𝑠 and
the 𝑄1,2 × 𝑄3−6 piece only. For the width difference incorporating contributions listed in Table 1

5
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Contribution Literature result This work
𝑄1,2 ×𝑄3−6 2 loops, 𝑧-exact, 𝑛 𝑓 -part only [11] 2 loops, O(𝑧), full
𝑄1,2 ×𝑄8 2 loops, 𝑧-exact, 𝑛 𝑓 -part only [11] 2 loops, O(𝑧), full
𝑄3−6 ×𝑄3−6 1 loop, 𝑧-exact, full [52] 2 loops, O(𝑧), full
𝑄3−6 ×𝑄8 1 loop, 𝑧-exact, 𝑛 𝑓 -part only [11] 2 loops, O(𝑧), full
𝑄8 ×𝑄8 1 loop, 𝑧-exact, 𝑛 𝑓 -part only [11] 2 loops, O(𝑧), full
𝑄1,2 ×𝑄1,2 3 loops, O(√𝑧), 𝑛 𝑓 -part only [10] 3 loops, O(𝑧0), full

Table 1: Overview of the existing and new results required for the NNLO theory prediction of ΔΓ𝑠 that were
considered in this work. With “𝑛 𝑓 -part only” we signify that the corresponding literature result provides
only fermionic contributions, while “full” means that both fermionic and nonfermionic pieces are included.

of [15] and the 1-loop result for 𝑄1,2 ×𝑄3−6 we find

ΔΓ
𝑝,12×36,𝛼0

𝑠
𝑠

ΔΓ𝑠

= 7.6% (pole), ΔΓ
𝑝,12×36,𝛼0

𝑠
𝑠

ΔΓ𝑠

= 6.1% (MS), (12)

while the inclusion of the 2-loop 𝑄1,2 ×𝑄3−6 piece yields

ΔΓ
𝑝,12×36,𝛼𝑠
𝑠

ΔΓ𝑠

= 0.3% (pole), ΔΓ
𝑝,12×36,𝛼𝑠
𝑠

ΔΓ𝑠

= 1.4% (MS). (13)

Here we would like to refer to [15] for explicit values of all numerical parameters entering this
comparison. The notions “MS” and “pole” concern the treatment of the 𝑚2

𝑏
prefactor in Eq. (9).

The former means that it is evaluated in the MS scheme, while the latter implies the usage of the
on-shell scheme. Notice that even in the pole scheme all quantities except for the 𝑚2

𝑏
prefactor are

handled in the MS scheme.

6. Summary

In our quest to improve theory prediction for the width differenceΔΓ𝑠 in 𝐵0
𝑠− 𝐵̄0

𝑠 oscillations we
addressed the problem of uncalculated QCD corrections at 2- and 3-loop accuracy. The evaluation
of these corrections is a crucial step required to achieve a significant reduction of the existing
perturbative uncertainties. In our matching calculation between |Δ𝐵| = 1 and |Δ𝐵| = 2 effective
theories we were able to obtain fully analytic results for all of the required contributions by expanding
the Feynman diagrams in the ratio 𝑧 ≡ 𝑚2

𝑐/𝑚2
𝑏
. Our final results are valid up to O(𝑧) at 2 loops

and O(𝑧0) at 3 loops, while the inclusion of higher orders in 𝑧 is planned for future iterations of
this work. The first part of our results was made public in [15], while the formulas addressing the
remaining 2- and 3-loop contributions will appear in subsequent publications [16, 53]. In [16] we
also intend to provide a new theory update on the value ΔΓ𝑠 featuring NNLO accuracy and reduced
theoretical errors.
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