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1. Introduction

For a generic hadron " and its �% conjugate " , the decay amplitudes into the final state 5 and
its �% conjugate 5 are defined as � 5 ≡ 〈 5 |H |"〉 and � 5 ≡ 〈 5 |H |"〉, where H is the effective
decay Hamiltonian. The �% asymmetry of the decay " → 5 is defined as

A�% (" → 5 ) ≡ Γ(" → 5 ) − Γ(" → 5 )
Γ(" → 5 ) + Γ(" → 5 )

=
1 − |�

5
/� 5 |2

1 + |�
5
/� 5 |2

. (1)

When |�
5
|2 ≠ |� 5 |2, direct �% violation takes place in the decay. For neutral mesons such as

�0, the eigenstates |�� 〉 and |�!〉 of the effective Hamiltonian, which have defined masses (<�
and <!) and decay widths (Γ� and Γ!), can be written as a superposition of flavour eigenstates
|�!,� 〉 = ? |�0〉 ± @ |�0〉, where ? and @ are complex numbers satisfying |? |2 + |@ |2 = 1. The
mixing is described by the parameters

G ≡ <� − <!
Γ

, (2)

H ≡ Γ� − Γ!
2Γ

, (3)

with Γ = (Γ� + Γ!)/2. The time-dependent �% asymmetry between the probability of a meson
produced in the �0 and �0 flavour eigenstates at time 0 to decay into the final state 5 after a time C

A�% (�0(C) → 5 ) ≡ Γ(�
0(C) → 5 ) − Γ(�0(C) → 5 )

Γ(�0(C) → 5 ) + Γ(�0(C) → 5 )
(4)

differs from 0 if �% violation occurs either in the mixing (when |@/? | ≠ 1) or in the interference
between mixing and decay (when q 5 ≡ arg[(@� 5 )/(?� 5 )] ≠ 0). In the �0 meson system, the
mixing parameters are predicted to be O(10−3) [1–6], and the time-dependent �% asymmetry can
be written as

A�% (�0(C) → 5 ) ≈ A�% (�0 → 5 ) +
4|� 5 |2 |� 5 |2

( |� 5 |2 + |� 5 |2)2
Δ. 5

C

g�0
, (5)

where g�0 is the �0 lifetime and Δ. 5 is the observable describing the amount of time-dependent
�% violation [7, 8]. The coefficient in front of Δ. 5 differs from unity by O(10−6), resulting in Δ. 5
being equal to the slope of A�% (�0(C) → 5 ).

In the StandardModel (SM) the�% asymmetries in charm decays are expected to be of the order
of 10−4–10−3. Due to the presence of low-energy strong-interaction effects, theoretical predictions
are difficult to compute reliably [9–26].

The measurement of ΔA�% ≡ A�% (�0 →  + −) − A�% (�0 → c+c−) with the full data
sample collected by the LHCb detector led to the first observation of �% violation in the decay of
charm hadrons [27]. The result challenges perturbative estimates of ΔA�% [25, 28] and therefore
prompted a renewed interest of the theory community in the field, sparking a discussion whether
the measured value is consistent with the SM or if it is a sign of new physics [29–39]. Additional
measurements of �% violation in the charm sector are thus crucial to clarify the picture and solve
open theoretical puzzles.

In this document, the most recent results obtained by the LHCb collaboration in the field of �%
violation in charm are summarised.
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2. Measurements of direct �% asymmetries in �0 and �+(B) decays

The LHCb collaboration has recently published two measurements of direct �% asymmetry in
the decay of charm mesons. The first one is the measurement of �% asymmetry of the �0 →  0

B 
0
B

decay. The only contributing amplitudes in the �0 →  0
B 

0
B decay proceed via tree-level exchange

and loop-suppressed diagrams of similar size which vanish in the flavour-SU(3) limit, and their
interference could result in a �% asymmetry up to O(10−2) in the SM [40]. The result of the
measurement, performed with data collected during the LHC Run 2, corresponding to an integrated
luminosity of 6 fb−1, is

A�% (�0 →  0
B 

0
B ) = (−3.1 ± 1.2 ± 0.4 ± 0.2)%,

where the first uncertainty is statistical, the second systematic and the third is related to the knowledge
of A�% (�0 →  + −) [41]. This is the most precise determination of this quantity to date, it is
in agreement with the previous measurements [42–44] and it is compatible with no �% violation at
the level of 2.4 standard deviations.

The second result concerns the search for �% violation in �+(B) → ℎ+c0 and �+(B) → ℎ+[

decays, where ℎ+ is c+ or  +,that provides interesting tests of the SM. In particular, the two
different weak phases contributing to the �+B →  +c0, �+ → c+[ and �+B →  +[ decays allow
�% violation of the order of 10−3–10−4 at tree-level, according to the SM [14]. The result of the
measurement of the �% asymmetries in the �+(B) → ℎ+c0 and �+(B) → ℎ+[ decays (excluding
�+B → c+c0, that is highly suppressed) performed by LHCb with an integrated luminosity of 9 fb−1

and 6 fb−1, respectively, is

A�% (�+ → c+c0) = (−1.3 ± 0.9 ± 0.6)%,
A�% (�+ →  +c0) = (−3.2 ± 4.7 ± 2.1)%,
A�% (�+ → c+[) = (−0.2 ± 0.8 ± 0.4)%,
A�% (�+ →  +[) = (−6 ± 10 ± 4 )%,
A�% (�+B →  +c0) = (−0.8 ± 3.9 ± 1.2)%,
A�% (�+B → c+[) = ( 0.8 ± 0.7 ± 0.5)%,
A�% (�+B →  +[) = ( 0.9 ± 3.7 ± 1.1)%,

where the first uncertainty is statistical and the second systematic [45]. All of the results are
consistent with previous determinations [46, 47] and with no �% violation, and the first five
constitute the most precise measurements to date of the corresponding observables.

2.1 Search for Time-Dependent �% Violation in �0 →  + − and �0 → c+c− Decays

The magnitude of the Δ. 5 parameter is expected to be about 2 × 10−5 for the final states
5 =  + −, c+c− [39, 48]. LHCb has performed a measurement of Δ. 5 with data collected during
the LHC Run 2, corresponding to an integrated luminosity of 6 fb−1, using �∗+ → �0c+ decays
originated from primary proton-proton interactions, where the �0 →  + −, �0 → c+c− and
�0 →  −c+ decays are reconstructed. The �% asymmetry of the �0 →  −c+ decay is known to
be smaller than the current experimental uncertainty, so this mode is used as a control sample to
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validate the analysis. The data sample is divided in 21 intervals of �0 decay times in the range 0.45–
8 g�0 , where g�0 is the �0 lifetime [49]. The signal yield in each decay-time interval is obtained by
means of background subtraction in the <(�0c+) distribution. The flavour of the �0 candidate at
production is determined by the charge of the accompanying pion in the �∗+ → �0c+ decay. The
weight assigned to the background candidates is determined with a binned maximum-likelihood fit
to the <(�0c+) distribution, whose results are shown in Figure 1.
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Figure 1: Distribution of <(�0c+) for (left) �0 →  −c+, (center) �0 →  + − and (right) �0 → c+c−

candidates. The vertical dashed lines delimit the signal window and the sideband window used to remove
the combinatorial background. Fit projections are overlaid.

The selection requirements introduce a correlation between the kinematic variables and the �0

decay time, resulting in an indirect time dependence of the production and detection asymmetries.
The nuisance asymmetries are therefore removed by equalising the kinematics of tagging c+ and c−

and of �0 and �0 candidates, by weighting their kinematic distributions to their average. Although
the decays of �∗+ mesons originating from � mesons are suppressed by a requirement on the
impact parameter (IP) of the �0 meson, some contamination is still present in the sample, resulting
in a possible bias in the measured time-dependent asymmetry. The effect of these secondary
decays on the final measurement is corrected for by determining the size and asymmetry of this
background by means of a binned maximum-likelihood fit to the bidimensional distribution of IP
and decay time of the �0 →  −c+ candidates. Systematic uncertainties are assessed related to
charge-dependent biases on the reconstruction of the �∗+ mass, background removal, correction
due to secondary decays, kinematic weighting and presence of misidentified background peaking
in <(�0c+) distribution.

The slope of the time-dependent asymmetry of the control sample is measured to be
(−0.4 ± 0.5 ± 0.2) × 10−4, compatible with 0 as expected. The time-dependent asymmetries of
the �0 →  + − and �0 → c+c− channels are shown in Figure 2, and the resulting slopes are

Δ. + − = (−2.3 ± 1.5 ± 0.3) × 10−4,

Δ.c+c− = (−4.0 ± 2.8 ± 0.4) × 10−4,

where the first uncertainties are statistical and the second are systematic [50–55]. The values are
compatible with each other and with previous determinations. Assuming no final-state dependency,
and taking into account the correlation between the systematic uncertainties, the combination of
the two values is

Δ. = (−2.7 ± 1.3 ± 0.3) × 10−4,
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Figure 2: Asymmetry as a function of �0 decay time, for the (left) �0 →  + − and (right) �0 → c+c−

samples, with linear fit superimposed.
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Figure 3: Binning scheme of the �0 →  0
B c
+c− Dalitz plot [59].

and is consistent with zero within two standard deviations [56]. The combination with previous
LHCb measurements [53–55] leads to

Δ. = (−1.0 ± 1.1 ± 0.3) × 10−4.

This result, which is consistent with no time-dependent �% violation, improves by nearly a factor
of two the precision of the previous world average of Δ. [57].

2.2 Observation of the Mass Difference between Neutral Charm-Meson Eigenstates

The LHCb collaboration has recently measured the mixing and �% violation parameters in
�0 →  0

Bc
+c− decays with the data collected between 2016 and 2018, corresponding to 5.4 fb−1 of

integrated luminosity. The analysis uses the “bin-flip” method [58], which is a model-independent
approach and does not require an accurate modelling of the efficiency. The method consists in
measuring, as a function of the �0 decay time, the ratio of the number of decays between symmetric
bins with respect to the bisector of the Dalitz plot defined by the two squared invariant masses
<2( 0

Bc
±). The Dalitz bins, illustrated in Figure 3, are defined in such a way that the strong-phase

difference between the �0 and �0 amplitudes within each bin is nearly constant [59]. The ratio of
the number of decays between symmetric bins, determined for each decay-time interval and each
�0 flavour, is a function of the parameters G, H, q and |?/@ |.

The flavour of the �0 candidate is determined by the charge of the accompanying pion in
the reconstructed �∗+ → �0c+ decay. The signal yields are determined by means of a fit to the
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Figure 4: (Left) �%-averaged yield ratios and (right) differences of �0 and �0 yield ratios as a function of
�0 decay time, shown for each Dalitz-plot bin. Fit projections are overlaid.

invariant mass difference Δ< ≡ <(�∗+) − <(�0) in each Dalitz-plot bin and decay-time interval,
separately for each �0 flavour. The signal selection includes requirements that introduce efficiency
variations correlated between the phase-space coordinates and the �0 decay time, resulting in a
possible bias on the measurement. The correlation is removed by applying a data-driven correction
that makes the decay-time acceptance uniform in the phase space. A further correction is performed
to cancel detection asymmetries of the pions produced in the �0 decays, since they depend on their
kinematics and therefore on the Dalitz-plot coordinate: the two-track c+c− detection asymmetry is
evaluated on the control samples �+B → c+c+c− and �+B → qc+ .

A fit is performed on all the corrected signal yield ratios to determine the mixing and�% viola-
tion parameters. The result is illustrated in Figure 4. Various sources of systematic uncertainties are
considered and assessed from ensembles of pseudoexperiments, to take into account contributions
due to reconstruction and selection effects, presence of secondary �∗+ decays, decay-time and
<± resolution, c+c− detection asymmetry, fit model and to the approximation that strong-phase
differences are constant within each bin.

A likelihood function of G, H, |@/? | and q is built from the results using a likelihood-ratio
ordering that assumes the observed correlations to be independent of the true parameter values [60],
whose best fit point is

G = (3.98+0.56
−0.54) × 10−3, |@/? | = 0.996 ± 0.052,

H = (4.6+1.5−1.4) × 10−3, q = 0.056+0.047
−0.051 rad.

This is the first observation of a non-zero value of themass difference G of neutral charmmesonmass
eigenstates, with a significance of more than seven standard deviations. This result significantly
improves limits on �% violation in mixing in the charm sector.
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