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1. Introduction

A good theoretical understanding of 2 → 2 gluon fusion processes is important for a wide
variety of on-going studies at theLargeHadronCollider (LHC). Such processes include the dominant
productionmode for Higgs boson pairs, as well as forming an important contribution to backgrounds
for Higgs boson decays. In these proceedings we consider, in particular, the production of ��,
// and /� final states in gluon fusion. At leading order (LO), which corresponds to one loop,
exact expressions have been known for these amplitudes for a long time [1–6]. At next-to-leading
order (NLO), however, exact analytic expressions are still unknown some thirty years later, due to
the complexity of 2→ 2 Feynman integrals with massive external legs and internally propagating
particles.

Nonetheless, there have been great efforts to understand the NLO amplitudes through the use
of numerical evaluation [7, 8] or various expansions, including the large-<C limit [9–12], around
the top quark threshold [13, 14] and for small transverse momenta [15, 16]. The topic of these
proceedings is an expansion in the high-energy region [17–19], in which numerical evaluations are
very expensive and other expansions do not converge.

These proceedings are organised as follows: in Section 2 some notation and definitions will be
given and in Section 3 we describe how the high-energy expansion is computed. In Section 4, we
discuss amethod bywhich the high-energy expansion can be further improved byPadé approximants,
in order to expand the kinematic region which can be described.

2. Notation and Setup

The amplitudes for 66 → ��, 66 → // and 66 → /� can be written as linear combinations
of Lorentz structures and so-called “form factors”. The number of structures depends on the
processes; for the ��, // and /� final states we define 2, 18 and 6 form factors, respectively:

M`a

66→�� =

2∑
8=1

�
`a

8
�8 , M`adf

66→// =

18∑
8=1

�
`adf

8
�8 , M`ad

66→/� =

6∑
8=1

�
`ad

8
�8 , (1)

where the �8 and �8 are, of course, specific to each process. The form factors are computed by
projecting them out of the amplitude with projectors %8 such that, e.g., %8,`aM`a

66→�� = �8 .
The form factors are functions of the final-state particle masses and the Mandelstam variables
B = (@1 + @2)2, C = (@1 + @3)2 and D = (@2 + @3)2 where @1, @2 are the momenta of the incoming
gluons and @3, @4 = − @1 − @2 − @3 are the momenta of the final-state particles. We have that
@2

1 = @2
2 = 0 but @2

3 and @
2
4 depend on which process is being considered.

Once the form factors have been computed and ultra-violet renormalized, infra-red divergences
remain at NLO. These are removed by a subtraction procedure

�NLO
8 = �

NLO,UV−ren
8

−  (1)6 �LO
8 , (2)

where  (1)6 can be found in Ref. [20]. In terms of these infra-red subtracted form factors, we
construct “virtual-finite cross sections”, which take the form

VNLO
fin ∼

(
��

2
c2 − ��

2
log2 `

2

B

) (∑
8

���LO
8

��2) +∑
8

(
�LO ∗
8 �NLO

8 + �LO
8 �NLO ∗

8

)
, (3)
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up to overall constants. We will later compare the high-energy expansion of these virtual-finite
cross sections to evaluations by numerical methods in Fig. 4.

3. High-Energy Expansion

Having introduced the general setup and notation, we now discuss how the high-energy expan-
sion of the form factors can be computed. We start by generating the Feynman diagrams for the
amplitude of interest with qgraf [21]. The programs q2e and exp [22, 23] are then used to convert
the output to a suitable notation and match the diagrams to a set of 2 → 2 integral topologies.
The result is a set of diagram files which are processed by FORM [24], which applies the Lorentz
projectors for the form factors discussed in Section 2, computes traces and colour factors (using
COLOR [25]), finally writing each diagram as a linear combination of scalar Feynman integrals.

At this point, the Feynman integrals depend on many parameters, including the masses of the
final-state particles: � ({< 2

/
, < 2

�
}, < 2

C , B, C, n). Since we are interested in the high-energy limit of
the form factors, we assume that {< 2

/
, < 2

�
} < < 2

C � B, C. Therefore, we can Taylor expand the
integrals and their coefficients for {< 2

/
, < 2

�
} → 0, leaving integrals which no longer depend on the

final-state particle masses, for example,

� (< 2
� , . . .) = � (0, . . .) + < 2

�

d
d< 2

�

� (0, . . .) + O(< 4
� ) . (4)

We can now perform an integration-by-parts (IBP) reduction using FIRE [26] to obtain the form
factors in terms of a linear combination of a set of master integrals ®� (< 2

C , B, C, n). The expansion
of Eq. (4) means that the IBP coefficients do not depend on <� or </ , making the reduction
significantly easier. The resulting set of master integrals is suitable to describe 66 → ��,
66 → // and 66 → /� as well as, for example, 66 → WW or 66 → /W. Only the details of the
expansion of Eq. (4) differ between the processes.

The next step is to perform an expansion of the master integrals, assuming that < 2
C � B, C.

This can be performed efficiently by making use of differential equations for the master integrals.
Differentiating each master integral w.r.t. < 2

C and IBP reducing the result leads to a coupled system
of equations of the form

d
d< 2

C

®� = " (< 2
C , B, C, n) · ®� , (5)

where the matrix " encodes the <C dependence of each �0 of ®�. By substituting a series ansatz for
the master integrals,

�0 =
∑
8

∑
9

∑
:

�0,8 9: (B, C) n 8 (< 2
C ) 9 log: (< 2

C ), (6)

into Eq. (5) we obtain a system of linear equations for the coefficients �0,8 9: . By supplying some
boundary values for the system (i.e. values for �0,8 9: at leading 8, 9 , :—see Ref. [27] for a detailed
discussion of their evaluation) the system can be solved order-by-order in 8, 9 , : to obtain a deep
expansion of each �0 in powers of < 2

C .
Fig. 1 shows the effect of expanding to various orders in < 2

�
and < 2

/
, for the leading-order

66 → �� and 66 → // differential cross sections, respectively. In both cases, the curves
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Figure 1: High-energy expansions of leading-order differential cross sections for 66 → �� (left panel)
and 66 → // (right panel), normalized to their exact vales.

are normalized to the exact (i.e. unexpanded) leading-order expressions. We see that in both
cases, the exact results are reproduced by the high-energy expansion at a level better than 1%, for√
B & 750 GeV. Below this value, the expansion in < 2

C diverges. In the case of 66 → �� an
expansion to quadratic order in<� is sufficient, however for 66 → // a quadratic-order expansion
produces a ∼1% difference w.r.t. the exact result, which slowly grows with energy. This is resolved
by including quartic-order expansion terms. This difference in convergence behaviour can be traced
to a factor of 1/< 2

/
in the Z-boson polarization sum. Here it is interesting to note that Refs. [28, 29]

propose a “hybrid” method in which an expansion is performed in the final-state particle masses,
as we discuss here, but the resulting integrals are integrated numerically rather than expanded in
the top quark mass. This leads to an easier IBP reduction compared to Ref. [7], which converges
on the exact result in a similar to way to Fig. 1 (without the divergence of the <C expansion around√
B ∼ 750 GeV).

4. Padé Approximants

As shown in Fig. 1, the high-energy expansions feature a strong divergence around
√
B ≈

750 GeV when compared to the exact leading-order results. This feature persists at NLO, as
can be seen by comparing successive orders in the < 2

C expansion. Nonetheless, the use of Padé
approximants can improve the series expansion, providing stable results for significantly smaller
values of

√
B. An [=/<] Padé approximant of some function 5 (G) is defined as

5 (G) ≈ [=/<] (G) = 00 + 01G + 02G
2 + · · · + 0=G=

1 + 11G + 12G2 + · · · + 1<G<
. (7)

The coefficients 00, . . . , 0=, 11, . . . , 1< can be fixed by comparing the Taylor series of [=/<] (G)
around G → 0 with a series expansion of 5 (G) to order = + <.

Fig. 2 shows Taylor series and Padé approximants of a test function 5 (G) = log (1 + G)/(1+ G).
The curves are normalized to 5 (G). We see that “Padé [4/4]”, in particular, reproduces 5 (G)
extremely well compared to the Taylor series, despite being constructed from a Taylor series to G8

only. It also reproduces 5 (G) at the per-mille level for G < 4, far beyond the radius of convergence
of the Taylor series (G < 1).

We construct Padé approximants for the high-energy expansions by replacing < 2=
C → < 2=

C G
=

and < 2=−1
C → < 2=−1

C G=, then inserting a numerical value for <C and building the approximant for
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Figure 2: Normalized Taylor series and Padé approximants of a test function 5 (G) = log (1 + G)/(1 + G).
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Figure 3: Two NLO form factors of 66 → // . The plots show high-energy expansions and Padé-based
approximations, as well the large-<C expansions. The width of the Padé bands denotes their uncertainty.

G → 0. Evaluating at G = 1 gives the approximated value. In practice, we construct approximations
by combining together many different Padé approximants (with different values of =, <), to produce
a central value and error estimate. The central value is an average of the Padé approximants,
weighted according to three criteria: i) the distance of the nearest pole of the denominator to
G = 1 in the complex plane, ii) how much input has been used in constructing the approximant,
= + <, iii) how close to “diagonal” the approximant is, |= − < |. In our experience the most reliable
approximants are those which use as much input as possible, are close to “diagonal”, and do not
have poles close to the evaluation point. Including a collection of “sub-optimal” approximants in
this weighted manner, however, leads to better error estimates.

Fig. 3 shows the result of this procedure for two form factors of the NLO 66 → // amplitude.
As in Fig. 1, we see that the < 2

C expansion diverges for
√
B . 750 GeV, however the Padé-based

approximations discussed above produce stable results for
√
B values as small as 400 GeV. Fig. 4

shows this procedure applied at the level of NLO virtual-finite cross sections (defined in Eq. (3))
for 66 → // (left panel) and 66 → /� (right panel). The left panel shows that the high-energy
expansion, labelled “< 32

C , <
4
/
” breaks down around

√
B ≈ 4<C as usual, and that the Padé-based

approximation agrees with the exact numerical evaluation by pySecDec for
√
B values extending
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Figure 4: Left: (from Ref. [30]) Vfin for 66 → // , normalized to an exact numerical evaluation by
pySecDec. Right: (preliminary1) Vfin for 66 → /�, as a function of ?) ,/ . The “Full” points are an
evaluation by pySecDec, with errors added both linearly and in quadrature when summing the form factors.

below 3<C . The right panel shows a comparison for 66 → /�, as a plot against the Z boson
transverse momentum ?) ,/ rather than

√
B. We observe that the Padé-based approximation agrees

very well with numerical evaluations for all ?) ,/ & 150 GeV. Below this value, the error bars of
the Padé-based approximation (in green) become enormous. Above this value, the error bars are
too small to be seen in the plot.

5. Conclusions

In these proceedings we have discussed the high-energy expansion of 2→ 2 scattering ampli-
tudes, particularly in the context of gluon-fusion processes. We have discussed a method based on
Padé approximants which allows the results of the expansion to be improved, thus describing a larger
kinematic region than the expansion alone. The high-energy region is computationally expensive
to investigate via numerical methods, so an expansion in this region provides valuable input for
various approximations. For example, in Ref. [31] information from the high-energy expansion has
been combined with numerical evaluations in the rest of the phase space to provide an improved
description of the NLO virtual contributions to 66 → ��. Work is on-going to provide a similar
combination of complementary information for 66 → /�.1
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