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We revisit the conformal anomaly for a Weyl fermion in four dimensions that has generated some
debate recently. We employ a perturbative expansion for the metric around Minkowski space,
dimensional regularization and a Breitenlohner–Maison prescription for the chiral γ matrix. We
obtain a vanishing odd-parity contribution for Weyl fermions in four dimensions, while the even-
parity contribution is exactly half the one for a Dirac fermion.
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1. Introduction

Since the foundational papers of Adler [1] and Bell and Jackiw [2], it has been known that
classical symmetries may be broken at the quantum level because of the renormalization process.
In particular, the breaking of conformal symmetry and the resulting trace anomaly of the stress(-
energy-momentum) tensor, first shown in [3], opens an interesting scenario for astroparticle physics
and the inflationary paradigm [4–7].

Recently, building on some previous ideas regarding second-order differential operators for
fields of arbitrary spin [8] and possible CP violations [9] (see also the new results in [10]), it has
been suggested that the stress tensor of Weyl fermions in curved space may display a particular
trace anomaly [11–13]. By dimensional considerations, the most general form for the anomaly in
four dimensions is given by

gµν 〈Tµν〉 = wCµνρσCµνρσ + bE4 + c∇2R + f εµνρσRµναβRρσ
αβ , (1)

where 〈Tµν〉 is the vacuum expectation value (VEV) of the stress tensor, Cµνρσ is the Weyl tensor,
E4 = R2 − 4RµνRµν + RµνρσRµνρσ is the four-dimensional Euler density, and the last term in
Eq. (1) is the Pontryagin density, the only possible parity-odd contribution to the trace anomaly.
Since any local relativistic quantum field theory obeys CPT invariance, its coefficient must be purely
imaginary, which then would violate unitarity of the theory [11] for general background geometries.
In this sense this anomaly could be as harmful as t’Hooft anomalies which have also recently been
discussed in connection with the effective field theory of the standard model [14–17].

One of the major difficulties in the study of the conformal anomaly for a Weyl fermion is
the implementation of the chiral matrix γ∗ (in four dimensions usually called γ5) together with
dimensional regularization [18–20], since not all the properties of γ∗ can be generalized from four
to arbitrary dimensions [21]. Within a consistent prescription for the treatment of γ∗, one can either
preserve cyclicity of the γ matrix trace and the relation γ2

∗ = 1, but at the price of introducing a
nonvanishing anticommutator of γ∗ with the other γµ’s (with a simple anticommutator that breaks
Lorentz invariance [19, 22] or a complicated one that mantains it [23]), or alternatively break the
cyclicity of the trace while preserving the anticommutator {γ∗, γµ} = 0 [24, 25].

The recent work that started the debate is the result of Bonora et al. [11], who computed the trace
anomaly using Feynman diagrams, computing directly the expectation value of the stress tensor in a
perturbative expansion around Minkowski space. They employed dimensional regularization and a
γ∗ that — as far as we can see — does not fall into one of the abovementioned categories. Focusing
on the subset of one-loop triangle diagrams, they obtained

fBonora et al. =
i

96(4π)2
. (2)

This result has been reproduced in [13] by Bonora et al., introducing a new technique called metric-
axial-tensor background, in which the spacetimemetric is allowed to be composed of two terms: one
proportional to the identity and the other to γ∗. This is a generalization of the approach developed
by Bardeen to investigate the coupling of Dirac fermions to vector and axial gauge fields [26].
Additionally, some points of the original derivation are clarified both in that article and in Ref. [12].

On the other hand, the group of Bastianelli et al. has found a vanishing f coefficient. In a
first work, they used Pauli–Villars regularization, after which the one-loop computation can be
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reduced to a Fujikawa-like calculation [27]. Afterwards, they have extended their Pauli–Villars
regularization to consider a metric-axial-tensor background (i.e., the idea developed by Bonora et
al. [13]), obtaining once more a vanishing contribution for the parity-odd term [28]. Their result
also includes the fact that the (parity-even) conformal anomaly in the Weyl case is half the one for
a Dirac fermion.

A vanishing parity-odd anomaly has also been obtained in [29] by one of the authors of the
present manuscript; in that case, a Hadamard subtraction has been introduced for Weyl fermions.
These computations confirm in a completely independent approach the results by Bastianelli et al.

Lately, both the results of Bastianelli et al. and Fröb et al. have been criticized by the group of
Bonora [30], alleging that the employed methods do not reproduce the well-studied chiral anomalies
of Weyl fermions, and would therefore be inappropriate to analyze the conformal anomaly. In order
to pursue further the discussion, we have decided to redo the direct computation using Feynman
diagrams [31], paying attention to possible pitfalls.

2. The trace anomaly computation using the Breitenlohner–Maison scheme for γ∗

We introduce left-handed Weyl fermions as in [31]: they are four-component fermions ψ
which are eigenspinors of the chiral projector P+ (such that their Dirac conjugate ψ̄ B ψγ0 is an
eigenspinor of P−); in formulae we have

ψ = P+ψ B
1
2
(1 + γ∗)ψ, ψ̄ = ψ̄P− B

1
2
ψ̄(1 − γ∗) . (3)

Since we work in dimensional regularization, we have to take the action for a free massless Weyl
fermion in curved space right from the beginning in n dimensions, which reads

S = −
∫

ψ̄P−γ
µ∇µ(P+ψ)

√
−g dnx . (4)

As usual, gµν denotes the metric of the background curved spacetime, g its determinant and ∇µ the
spinorial covariant derivative induced from the Levi–Civita one. From the action (4), one obtains
the symmetric stress tensor [32]

Tµν =
1
2
ψ̄γ(µ∇ν)ψ −

1
2
γ(µ∇ν)ψ̄ψ +

1
2
gµν

(
γµ∇µψ̄P+ψ − ψ̄P−γ

µ∇µψ
)
. (5)

Classically, it is both conserved and traceless when the fermion is on-shell, i.e., satisfies the Weyl
equation γµ∇µ(P+ψ) = 0 that follows from the action (4).

After the quantization of the theory, the stress tensor in (5) becomes an operator [33], and its
VEV contains divergent contributions that need to be regularized and subtracted by the process of
renormalization. Therefore, the question is whether its renormalized VEV is still conserved and
traceless, namely by the subtraction an anomaly may arise.

For the chiral γ∗ matrix in dimensional regularization, we employ the consistent Breitenlohner–
Maison (BM) scheme [22]. As mentioned in the introduction, this is a key point since not all the
properties that γ∗ enjoys in four dimensions can be extended to an arbitrary number of dimensions.
Otherwise, we use the same standard perturbative expansion around Minkowski space as [11],
setting

gµν ≡ ηµν + κhµν , (6)
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Figure 1: Schematics of Feynman diagrams involved in the computation of the anomaly at first order in
κ. Wavy lines correspond to insertions of the external gravitational field, while straight lines are fermion
propagators. The VEV of the stress tensor is evaluated at x, while y is integrated over.

Figure 2: Schematics of Feynman diagrams involved in the computation of the anomaly at second order in
κ. Wavy lines correspond to insertions of the external gravitational field, while straight lines are fermion
propagators. The VEV of the stress tensor is evaluated at x, while y and z are integrated over.

where ηµν is the flat metric and κ =
√

16πGN with Newton’s constant GN is the perturbative
parameter. Working to second order in κ, we thus obtain an expansion for the VEV of the stress
tensor of Weyl fermions in the external field hµν, with the terms in the expansion being certain
expectation values in the Minkowski vacuum state for the fermions.

Diagrammatically, the computation involves several contributions, which are schematically
displayed in Figs. 1 and 2, corresponding respectively to first and second order in κ. The wavy lines
correspond to insertions of the external field hαβ , while the straight lines are fermion propagators.
The dots generically indicate vertices that could involve scalar as well as tensorial factors; these
factors have been omitted to simplify the discussion, and dots in a single diagram do not necessarily
correspond to the same type of vertex. Obtaining the actual contribution to the stress tensor involves
contractions between all the indices, including those that are not shown.

Since the Riemann tensor is of first order in the metric perturbation hµν when expanded around
flat space, the coefficients of the trace anomaly (1) can be fixed by a computation to second order.
Because higher-order contributions become quickly complicated, we thus restrict to second order
in κ. The most challenging computation is the one corresponding to the κ2 contribution displayed
in Fig. 2(c), which involves around 104 − 105 terms when expanded in terms of free expectation
values of the Weyl fermion in the Minkowski vacuum. For the complicated tensor algebra, we have
used the computer tensor algebra suite xAct [34, 35].

In the computation, it is easy to separate parity-even contributions from parity-odd ones: while
the first kind involves an even number of chiral γ∗ matrices, the second kind involves an odd number
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of them. Since the identity γ2
∗ = 1 and the cyclicity of the trace are preserved by the BM scheme,

(anti-)commuting γ∗ with the other γ matrices we could reduce the parity-even contributions to γ
matrix traces without any γ∗, while the parity-odd contributions could be reduced to a single γ∗.
However, since in the BMscheme γ∗ anticommuteswith γ0, . . . , γ3 and commuteswith γ4, . . . , γn−1,
Lorentz invariance is explicitly broken and one has to introduce the purely four-dimensional metric
η̄µν in additional to the n-dimensional one ηµν.

For the parity-even part of the stress tensor VEV, we have shown that the difference between our
result and the naive computation (with γ∗ anticommuting with all γmatrices) is a finite counterterm,
such that we recover the well-known result for the trace anomaly after renormalization. On the other
hand, for the parity-odd part all possible contributions vanish for one of two reasons: either one
contracts an antisymmetric tensor with a symmetric one, or one has to antisymmetrize a purely
four-dimensional expression over five or more indices. The prototype of such an expression is
ε [µνρσ η̄α]β = 0, since in the BM scheme the antisymmetric Levi–Civita tensor is also purely four-
dimensional. Such expressions (and the resulting relations) are known in general as dimensionally
dependent identities [36]. Since the full stress tensor VEV does not have a parity-odd part, there is
also no parity-odd contributions to its trace anomaly. For further details, we refer to [31].

3. Conclusions and outlook

We have computed the full renormalized stress tensor VEV for Weyl fermions, up to second
order in an expansion around Minkowski spacetime. The renormalized VEV is conserved, and its
trace anomaly is of the form (1) with the coefficients

w = −
18

720(4π)2
, b = −

12
720(4π)2

, c =
11

720(4π)2
, f = 0 . (7)

Since the coefficient of the parity-odd Pontryagin density vanishes, no unitarity problem arises in
the quantum theory. The result for the trace anomaly is half of the result for a Dirac fermion, in
agreement with [27–29], but contrary to [11, 30]. It thus seems that the prescription for γ∗ that was
employed in the latter works is not consistent.

It is of course possible to perform further verifications of this result. On one hand, one may try
to implement the more general prescription for γ∗ introduced in [23] to check once more whether the
parity-odd term of the trace anomaly arises or not; however, the computations will naturally be much
more involved. Alternatively, one could use the Breitenlohner–Maison scheme for γ∗ and verify
that the Kimura-Delbourgo-Salam anomaly [37] for the axial current in presence of a background
gravitational field is reproduced. Possibilities along these lines are under study.
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