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We consider Nielsen-Olesen vortices under Einstein gravity in an AdS3 background. We find
numerically non-singular solutions characterized by three parameters: the cosmological constant
Λ, the winding number 𝑛 and the vacuum expectation value (VEV) labeled by 𝑣. The mass (ADM
mass) of the vortex is expressed in two ways: one involves subtracting the value of two metrics
asymptotically and the other is expressed as an integral over matter fields. The latter shows that
the mass has an approximately 𝑛2 𝑣2 dependence and our numerical results corroborate this. We
also observe that as the magnitude of the cosmological constant increases the core of the vortex
becomes slightly smaller and the mass increases. We then embed the vortex under gravity in a
Minkowski background and obtain numerical solutions for different values of Newton ’s constant.
There is a smooth transition from the non-singular origin to an asymptotic conical spacetime
with angular deficit that increases as Newton’s constant increases. We end by stating that the
well-known logarithmic divergence in the energy of the vortex in the absence of gauge fields can
be seen in a new light with gravity: it shows up in the metric as a 2 + 1 Newtonian logarithmic
potential leading to a divergent ADM mass.
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1. Introduction

The Nielsen-Olesen vortex [1] is a 2 + 1 dimensional non-perturbative solution composed of
complex scalar fields and gauge fields that have finite energy and are stable due to its topology. These
topological objects have been known for a while but how they act under gravity has been studied
only more recently. Black hole vortex solutions were investigated in [2] in an AdS3 background.
The scalar field profile for the vortex had a singularity at the origin 𝑟 = 0 and approached zero
asymptotically. They obtained an analytical expression for the black hole mass 𝑀 in terms of the
scalar charge 𝑐 and the winding number 𝑛. Later, how vortices affect the tunneling decay of a
symmetry-breaking false vacuum in 2 + 1 dimensional Einstein gravity was studied in [3]. There
have also been recent studies of gravitating magnetic monopoles [4].

In this work, we embed the vortex under Einstein gravity in an AdS3 background. We find
non-singular numerical solutions in contrast to the singular black-hole vortex discussed above. Our
solutions depend on three parameters: the cosmological constant Λ, the winding number 𝑛 and
the vacuum expectation value (VEV) 𝑣. The mass (ADM mass) of the vortex is obtained in two
ways: by subtracting the asymptotic values of two different metrics and via an integral formula over
matter fields. The two results must match and they do. The integral formula shows that the mass
has an approximately 𝑛2 𝑣2 dependence and our numerical results show that the cases with 𝑛 = 2
or 𝑣 = 2 have masses that are significantly larger than their 𝑛 = 1, 𝑣 = 1 counterparts. We observe
that the core of the vortex becomes more compressed and its mass increases as the magnitude of
the cosmological constant increases. The vortex is then embedded under gravity in a Minkowski
background. There is no singularity at the origin and the spacetime transitions smoothly to an
asymptotic conical spacetime with a given angular deficit [5]. As Newton’s constant increases, the
angular deficit increases whereas the mass of the vortex hardly changes. We end by mentioning that
the well-known logarithmic divergence in the energy of the vortex in the absence of gauge fields
shows up in the metric as the 2 + 1 dimensional Newtonian logarithmic potential when gravity is
included.

2. Nielsen-Olesen vortex under Einstein gravity with cosmological constant

The Lagrangian density for the vortex embedded in Einstein gravity with cosmological constant
is given by

L =
√−𝑔

(
𝛼 (𝑅 − 2Λ) − 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 1
2
(𝐷𝜇𝜙)†(𝐷𝜇𝜙) − 𝜆

4
( |𝜙 |2 − 𝑣2)2

)
. (1)

The covariant derivatives are defined in the usual fashion by 𝐷𝜇𝜙 = 𝜕𝜇𝜙 + 𝑖𝑒𝐴𝜇𝜙 where 𝐴𝜇 is
the gauge field and 𝑒 is the coupling constant. 𝐹𝜇𝜈 is the electromagnetic field tensor, Λ is the
cosmological constant, 𝑅 is the Ricci scalar, 𝑣 is the VEV of the scalar field, 𝜆 is a coupling
constant and 𝛼 = 1/(16𝜋𝐺) where 𝐺 is Newton’s constant. We consider circularly symmetric static
solutions. The metric takes on the form

𝑑𝑠2 = −𝐵(𝑟) 𝑑𝑡2 + 1
𝐴(𝑟) 𝑑𝑟

2 + 𝑟2𝑑𝜃2 (2)

where 𝐵(𝑟) and 𝐴(𝑟) are functions. The ansatz for the scalar and gauge fields are

𝜙(x) = 𝑓 (𝑟)𝑒𝑖𝑛𝜃 and 𝐴 𝑗 (x) = 𝜖 𝑗𝑘𝑥
𝑘 𝑎(𝑟)

𝑒𝑟
(3)
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where 𝑛 is the winding number and 𝑓 and 𝑎 are functions of 𝑟 associated with the scalar and gauge
field respectively . When (2) and (3) is substituted into (1) this yields

L =
√
𝐵/𝐴 𝑟

(
𝛼(𝑅 − 2Λ) − (𝜆/4) ( 𝑓 2 − 𝑣2)2 − ( 𝑓 ′)2𝐴

2
− (𝑛 − 𝑎)2 𝑓 2

2𝑟2 − 𝐴(𝑎′)2

2𝑒2𝑟2

)
. (4)

The prime means derivative with respect to 𝑟 . The Ricci scalar can be expressed in terms of the
metric functions 𝐴(𝑟) and 𝐵(𝑟). The Lagrangian density contains four functions of 𝑟: 𝐴, 𝐵, 𝑓

and 𝑎. The four equations of motion can be reduced to three by expressing 𝐵 in terms of the other
functions. The three equations are

2𝑒2 (𝑛 − 𝑎)2 𝑓 2 − 2𝑒2𝑟2𝑣2𝜆 𝑓 2 + 𝑒2𝑟2𝜆 𝑓 4 + 𝑒2𝑟
(
𝑟𝑣4𝜆 + 8𝑟𝛼Λ + 4𝛼𝐴′

)
+ 2𝐴

(
(𝑎′)2 + 𝑒2𝑟2( 𝑓 ′)2

)
= 0 (5)

− 2 (𝑛 − 𝑎)2 𝑓 + 2𝑟2𝑣2𝜆 𝑓 − 2𝑟2𝜆 𝑓 3 + 𝑟 𝑓 ′

4𝑒2𝛼

(
− 𝑒2𝑟2

(
𝑣4𝜆 + 8𝛼Λ

)
− 2𝑒2 (𝑛 − 𝑎)2 𝑓 2

+ 2𝑒2𝑟2𝑣2𝜆 𝑓 2 − 𝑒2𝑟2𝜆 𝑓 4 + 2𝐴
(
(𝑎′)2 + 𝑒2𝑟2( 𝑓 ′)2

) )
+ 𝑟 (𝑟𝐴′ 𝑓 ′ + 2𝐴 ( 𝑓 ′ + 𝑟 𝑓 ′′)) = 0 (6)

2𝑒2𝑟 (𝑛 − 𝑎) 𝑓 2 − 2𝐴𝑎′ + 𝑟𝑎′𝐴′ + 𝑎′

4𝑒2𝛼

(
− 𝑒2𝑟2

(
𝑣4𝜆 + 8𝛼Λ

)
− 2𝑒2 (𝑛 − 𝑎)2 𝑓 2 + 2𝑒2𝑟2𝑣2𝜆 𝑓 2 − 𝑒2𝑟2𝜆 𝑓 4 + 2𝐴

(
(𝑎′)2 + 𝑒2𝑟2( 𝑓 ′)2

) )
+ 2𝑟𝐴𝑎′′ = 0 . (7)

The metric in vacuum (subscript ‘0’) is obtained by setting 𝑓 = 𝑣 and 𝑎 = 𝑛 identically in Eq. (5)
and yields

𝐴0(𝑟) = −Λ𝑟2 + 𝐶 (8)

where the integration constant 𝐶 sets the initial conditions at 𝑟 = 0 (in this work we set 𝐶 = 1).
The metric function 𝐵 in vacuum turns out to be equal to 𝐴0(𝑟) i.e. 𝐵0(𝑟) = 𝐴0(𝑟). Let 𝑅 be
the computational boundary representing formally infinity. With matter (the vortex) we have that
𝑓 → 𝑣 and 𝑎 → 𝑛 as 𝑟 → 𝑅. The asymptotic form of the metric function 𝐴(𝑟) in the presence
of matter is then given by 𝐴(𝑅) = −Λ𝑅2 + 𝐷. The constant 𝐷 differs from the constant 𝐶 in (8)
because matter is now present.

3. Expressions for the ADM mass

The ADM mass of the vortex suitably generalized to 2 + 1 dimensions is given by [6]

𝑀 = −2𝛼 lim
𝐶𝑡→𝑅

∮
𝐶𝑡

(𝑘 − 𝑘0)
√
𝜎𝑁 (𝑅)𝑑𝜃 (9)

where 𝐶𝑡 is the circle at spatial infinity, 𝑁 (𝑅) is the lapse given by [𝐵0(𝑅)]1/2 = [𝐴0(𝑅)]1/2,
the metric on 𝐶𝑡 is 𝜎𝐴𝐵 and 𝑘 and 𝑘0 are the extrinsic curvatures of 𝐶𝑡 embedded on the two-
dimensional spatial surface of the metric (2) and AdS3 respectively. A straightforward calculation
yields

𝑀 = 4𝜋𝛼
(
𝐴0(𝑅) − [𝐴0(𝑅)𝐴(𝑅)]1/2

)
. (10)
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Since 𝐴0(𝑅) >> (𝐷 − 𝐶) the above formula simplifies to 𝑀 = 2𝜋𝛼 (𝐶 − 𝐷) (with a completely
negligible error) so that the mass in an AdS3 background can be effectively written as

𝑀𝐴𝑑𝑆3 = 2𝜋𝛼 (𝐴0(𝑅) − 𝐴(𝑅)) . (11)

The value of 𝐴0(𝑅) = −Λ𝑅2 + 𝐶 can be calculated directly for a given 𝑅 (and 𝐶 = 1) and the
quantity 𝐴(𝑅) is obtained by solving the equations of motion numerically.

The ADM mass formula (10) applies to asymptotically flat spacetime where Λ = 0. In that
case we obtain 𝐴0(𝑅) = 𝐶 and 𝐴(𝑅) = 𝐷 so that

𝑀 𝑓 𝑙𝑎𝑡 = 4𝜋𝛼
(
𝐶 − (𝐶 𝐷)1/2

)
= 4𝜋𝛼

(
1 − 𝐷1/2

)
(12)

where we used 𝐶 = 1. In asymptotically flat spacetime, 𝐴0(𝑟) = 𝐵0(𝑟) = 1 whereas 𝐴(𝑟) starts at
unity at 𝑟 = 0 and then decreases with 𝑟 until it reaches a plateau at a positive value of 𝐷 that is
obtained numerically. In this asymptotic region the spacetime is conical and the angular deficit is
given by 𝛿 = 2𝜋(1 − 𝐷1/2) [5].

The second and third equations of motion (6) and (7) can be solved for 𝐴(𝑟) in terms of matter
fields. This can then be substituted into the first equation (5) to obtain 𝐴′(𝑟) in term of matter only.
One then obtains the following integral representation for the ADM mass (11) of the vortex in an
AdS3 background

𝑀𝐴𝑑𝑆3 = 𝑛2 𝑣2 𝐹 (13)

where 𝐹 is the integral given by

𝐹 =
𝜋

2

∫ 𝑅1

0

1
𝑢

[
𝑢2 𝜆

𝑒2 + 𝑓 4
1 𝑢

2 𝜆

𝑒2 + 2 𝑓 2
1
(
(−1 + 𝑎1)2 − 𝑢2 𝜆

𝑒2
)

+
2 𝑓1

(
(𝑎′1)2 + ( 𝑓 ′1 )2𝑢2) ((1 − 𝑎1) 𝑓1 𝑓 ′1𝑢2 + 𝑎′1

(
(−1 + 𝑎1)2 + (−1 + 𝑓 2

1 )𝑢2 𝜆
𝑒2

) )
𝑢(2𝑎′1 𝑓 ′1 − 𝑎′′1 𝑓 ′1𝑢 + 𝑎′1 𝑓

′′
1 𝑢)

]
𝑑𝑢 . (14)

Here 𝑢 = 𝑒 𝑣
𝑛 𝑟 , 𝑓1(𝑢) = 𝑓 (𝑢)/𝑣, 𝑎1(𝑢) = 𝑎(𝑢)/𝑛, 𝑅1 = 𝑒 𝑣

𝑛 𝑅. Derivatives are with respect to 𝑢.
The formula (13) does not necessarily imply that the mass grows exactly quadratically with 𝑣 and
𝑛 because the matter profiles also change with 𝑣 and 𝑛. However, the mass should still increase
significantly if, for example, we double 𝑣 or 𝑛. This is what is observed numerically.

Using the equations of motion, the ADM mass (12) for the Minkowski background can similarly
be expressed as an integral over matter fields

𝑀 𝑓 𝑙𝑎𝑡 = 4𝜋𝛼
(
1 −

√
1 − 𝑛2 𝑣2 𝐹

2𝜋𝛼

)
(15)

where 𝐹 is integral (14) evaluated using the matter field profiles in the flat case. Note that the matter
field profiles are going to be different for the AdS3 and Minkowski cases yielding different values
for the integral 𝐹.

4. Numerical results for AdS3 and Minkowski background

We solve the equations of motion for non-singular profiles of the metric 𝐴(𝑟), the gauge
field 𝑎(𝑟) and the scalar field 𝑓 (𝑟). The boundary conditions are: 𝑓 (0) = 0 ; 𝑎(0) = 0 ; 𝑓 (𝑅) =
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𝑣 ; 𝑎(𝑅) = 𝑛 ; 𝐴(0) = 1 where 𝑅 is the computational boundary representing formally infinity.
We obtain the profiles by adjusting 𝑓 ′(𝑟) and 𝑎′(𝑟) near the origin to give the final boundary
conditions at 𝑅 where 𝑓 and 𝑎 plateau to 𝑣 and 𝑛 respectively. Our numerical simulation for an
AdS3 background involve six parameters: Λ, 𝑛, 𝑣, 𝜆, 𝛼 and 𝑒. We set 𝜆 = 1, 𝛼 = 1 and 𝑒 = 3. We
ran five different cases determined by the values of the three parameters (𝑛, 𝑣, Λ). We calculate
the mass of the vortex in the two ways: one using the metric and the other using an integral over
matter fields. The masses are listed in Table 1 and labeled 𝑀𝑚𝑒𝑡𝑟𝑖𝑐 and 𝑀𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 respectively. The
two values match to within two or three decimal places. Cases 𝐼, 𝐼 𝐼 and 𝐼 𝐼 𝐼 have the same value
of 𝑛 = 1 and 𝑣 = 1 but differ in their value of Λ which are −1, −2 and −3 respectively. In Table
1, the mass increases as one goes from case 𝐼 to case 𝐼 𝐼 𝐼 i.e. as Λ becomes more negative. The
core of the vortex gets smaller (more compressed) and the vortex gains positive energy. The mass
𝑀 = 6.53 of case 𝐼𝑉 with 𝑣 = 2 and the mass 𝑀 = 7.14 of case 𝑉 with 𝑛 = 2 are significantly
greater than the mass of the previous three cases. This is in accord with the 𝑛2 𝑣2 coefficient in the
integral mass formula (13). As already pointed out, the masses are not exactly four times greater
because the matter profiles 𝑓1 and 𝑎1 that enter (13) change with 𝑣 and 𝑛.

(n,v,Λ) A0[10] A[10] Mmetric Mintegral 

I=(1,1,-1) 101 100.588 2.589 2.587 
II=(1,1,-2) 201 200.534 2.928 2.931 
III=(1,1,-3) 301 300.489 3.211 3.210 
IV=(1,2,-2) 201 199.961 6.529 6.529 
V=(2,1,-2) 201 199.863 7.142 7.142 

 

Table 1: Table with values of the metric 𝐴0 and 𝐴 at 𝑟 = 10, 𝑀𝑚𝑒𝑡𝑟𝑖𝑐 evaluated using 𝐴0 and 𝐴 in Eq. (11)
and 𝑀𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 evaluated using the integral mass formula (13). The two masses match (agree to two decimal
places and sometimes at three decimal places).

We also obtained numerical results with gravity in a Minkowski background (Λ = 0) for
different values of 𝛼 = 1/(16 𝜋 𝐺). The spacetime has curvature but no singularity at the origin
and it transitions smoothly to an asymptotic conical spacetime with angular deficit 𝛿. We looked
at three different cases: 𝛼 = 1, 𝛼 = 5 and 𝛼 = 10 (keeping the following parameters fixed: 𝑒 = 1,
𝜆 = 1, 𝑣 = 1, 𝑛 = 1). The metric function 𝐴(𝑟) starts at unity at 𝑟 = 0 and plateaus to the value 𝐷

asymptotically. Table 2 contains the values of 𝐷, the angular deficit 𝛿 = 2𝜋(1− 𝐷1/2) converted in
degrees and the masses of the vortex calculated using the metric (Eq. 12) and the matter profiles
(Eq. 15). The angular deficit has a strong dependence on 𝛼: it basically increases tenfold from
𝛼 = 10 to 𝛼 = 1. In contrast, the mass of the vortex hardly changes with 𝛼.

We end with an insight that we gain when gravity is included in the vortex. In the absence
of gauge fields, it is well-known in the non-gravity case that one cannot construct a stable vortex
because it has a logarithmic divergence in its energy [7]. With gravity, this logarithmic divergence
does not disappear but shows up in the metric [8] in the form of the 2 + 1 Newtonian logarithmic
potential 𝐺 𝑚 𝑙𝑛(𝑟) (the mass 𝑚 here is equal to 8𝜋 𝑛2 𝑣2). Therefore, one way to see that General
Relativity cannot have a Newtonian limit in 2+1 dimensions is that it would lead to a logarithmically
divergent ADM mass.
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 D 𝛿𝛿  Mmetric Mintegral 

𝛼𝛼 = 1 0.501 105.2 deg 3.672 3.674 
𝛼𝛼 = 5 0.887 20.9 deg 3.643 3.643 
𝛼𝛼 = 10 0.943 10.4 deg 3.638 3.638 

 

Table 2: The quantity 𝐷 is where the metric function 𝐴(𝑟) plateaus to asymptotically and 𝛿 is the angular
deficit quoted in degrees. The mass 𝑀𝑚𝑒𝑡𝑟𝑖𝑐 is obtained using the metric and calculated via (12) and 𝑀𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙

is evaluated via (15) as an integral over the matter profiles. The two masses should match and they do.

Acknowledgments

A.E. acknowledges support from a discovery grant of the National Science and Engineering
Research Council of Canada (NSERC).

References

[1] H. B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61, (1973) 45.

[2] M. Cadoni, P. Pani and M. Serra, Scalar hairs and exact vortex solutions in 3D AdS gravity,
JHEP 01 (2010) 091 [arXiv:0911.3573].

[3] É. Dupuis, Y. Gobeil, B.-H. Lee, W. Lee, R. Mackenzie, M.B. Paranjape, U. A. Yajnik
and D.-h. Yeom, Tunneling decay of false vortices with gravitation, JHEP 11 (2017) 028
[arXiv:1709.03839].

[4] A. Edery and Y. Nakayama, Gravitating magnetic monopole via the spontaneous symmetry
breaking of pure 𝑅2 gravity, Phys. Rev. D 98 (2018) 064011 [arXiv:1807.07004].

[5] S. Deser, R. Jackiw and G. ’t Hooft,Three-Dimensional Einstein Gravity: Dynamics of Flat
Space, Ann. of Phys. 152 (1984) 220.

[6] E. Poisson, A Relativist’s Toolkit, Cambridge University Press, Cambridge, UK, 2004.

[7] E.J. Weinberg, Classical Solutions in Quantum Field Theory, Cambridge University Press,
Cambridge, UK, 2012.

[8] A. Edery, Non-singular vortices with positive mass in 2+1-dimensional Einstein gravity with
AdS3 and Minkowski background, JHEP 01 (2021) 166 [arXiv:2004.09295]

6


	Introduction
	Nielsen-Olesen vortex under Einstein gravity with cosmological constant
	Expressions for the ADM mass
	Numerical results for AdS3 and Minkowski background

