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Within the Phase-II upgrade of the LHC, the readout electronics of the ATLAS Liquid Argon
(LAr) Calorimeters are prepared for high luminosity operation expecting a pile-up of up to
200 simultaneous proton-proton interactions. Moreover, the calorimeter signals of up to 25
subsequent collisions are overlapping, which increases the difficulty of energy reconstruction.
Real-time processing of digitized pulses sampled at 40 MHz is performed using FPGAs. To
cope with the signal pile-up, new machine learning approaches are explored: convolutional and
recurrent neural networks outperform the optimal signal filter currently used, both in assignment
of the reconstructed energy to the correct bunch crossing and in energy resolution. Very good
agreement between neural network implementations in FPGA and software based calculations is
observed. The FPGA resource usage, the latency and the operation frequency are analyzed. Latest
performance results and experience with prototype implementations are analyzed and are found
to fit the requirements for the Phase-II upgrade.
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1. Introduction

TheATLAS detector [1] is one of the general purpose detectors at the LargeHadronCollider [2]
(LHC) measuring the properties of the particles produced in high-energy proton-proton collisions
that happen every 25 ns (40 MHz). In the Run-4 of the LHC starting in 2027, also known as the high-
luminosity phase of LHC (HL-LHC), the machine is expected to produce instantaneous luminosities
of 5–7× 1034 cm−2s−1 corresponding to 140–200 simultaneous proton-proton interactions. The
liquid-argon (LAr) calorimeters of ATLAS mainly measure the energy of electromagnetic showers
of photons, electrons and positrons using their ionization signal that causes an electronic pulse.
This pulse is shaped to a bi-polar shape that takes up to 25 bunch crossings (BCs) shown in Figure 1
which can lead to out-of-time pileup by overlapping with previous pulses in the HL-LHC conditions.

A new energy reconstruction method capable of continuous energy measurement and selection
of subsequent collision events is required for the LAr calorimeter for the HL-LHC era [3]. The
energy reconstruction is done by field-programmable gate arrays (FPGAs) for the 182 000 calorime-
ter cells with 384 or 512 LAr calorimeter cells per one Intel Stratix-10 FPGA [4] with a latency
requirement of about 150 ns [3, 5]. For this small Artificial Neural Networks (ANNs) based on
Convolutional [6] and Recurrent Neural Networks [7] (CNNs, RNNs) are developed to replace the
current optimal filtering [8] (OF) algorithm.

2. Energy Reconstruction

The current energy reconstruction method is based on the optimal filter method. A peak finder
is used to assign energies to the correct BCs. The two shortcomings of this method for the use
in the HL-LHC are that the optimal filter assumes a perfect pulse shape which leads to degraded
performance when the pulse is distorted by previous events as well as peak finder failing to assign
the energy to the correct BC. ANNs can use information from previous collisions to mitigate the
effect of distorted pulse shape and to assign the energy to the correct BC.

The ANNs are trained using simulated data of HL-LHC conditions created with AREUS [9]
containing electronics noise and low-energy deposits from particles produced in inelastic proton-
proton collisions of up to 1 GeV combined with higher energy deposits up to 5 GeV injected
randomly with a mean interval of 30BCs. The simulation is of a LAr calorimeter cell in the
middle layer of the barrel (labelled EMB middle) (η = 0.5125, φ = 0.0125) with an average pileup
〈µ〉 = 140.

Figure 1: Left - cutout of the LAr calorimeter, right - shaped and digitized LAr calorimeter pulse [1].
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2.1 Convolutional Neural Networks

The developedConvolutional Neural Networks for en-
ergy reconstruction use 1-dimensional filters to pro-
cess time-series data and they consist of a two-staged
architecture shown in Figure 2 where the first two
layers are trained to detect deposit above the noise
threshold and the later layers reconstruct the energy.
Their input is a sliding-window of the detector sig-
nal with a window size of 28 for the network labeled
Conv-3 and window size of 13 for Conv-4.
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Figure 2: The CNN architecture [13].

2.2 Recurrent Neural Networks

Recurrent neural networks are a family of neural net-
works for processing sequential data. Long Short Term
Memory (LSTM) [10] contains complex internal struc-
ture to gate the flow of information to the next timestep
using neural network layers with sigmoid and tanh
activation functions. This allows LSTM to process
longer sequences and as such it can be applied in both
sliding window in which the digitized signal from the
calorimeter is split into overlapping sub-sequences of
length of 5 where each sub-sequence has a single re-
constructed energy shown in Figure 3 as well as single
cell method in which the full signal is processed in a
stream. Vanilla RNN is a simpler network structure for
which a ReLU activation was chosen has significantly
fewer parameters. Only sliding window architectures
are used to train the Vanilla RNN due to its simplicity
which makes it unstable to longer sequences.
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Figure 3: Sliding window application of RNNs
[13].

2.3 Performance

The transverse energy resolution given by various ANNs for energy deposits 3σ above the
noise level (ET > 240 MeV) is shown in Figure 4. The ANNs perform better than the OF with
MaxFinder by having both smaller bias for the mean and a better resolution. The main improvement
is with overlapping events as shown in Figure 5. Networks using more samples from past events
yields a better correction for overlapping events.
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Figure 4: Resolution for energy deposits 3σ

above over noise level [13].
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Figure 5: Resolution as a function of the distance to previ-
ous high energy deposit (gap) [13].

3. FPGA Implementation

The CNNs are implemented using Very High-speed integrated circuit hardware Description
Language (VHDL). RNNs are implemented using High Level Synthesis (HLS). The fixed point
bitwidths are chosen to ensure a resolution of the order of 1%. The results shown in Figure 6
compare the Keras output to the FPGA implementations simulated with Quartus 20.4 [11] and
Questa Sim 10.7c [12]. The small differences observed are caused by quantization and by the
LookUp Table (LUT) based realization of the activation function. To be able to reconstruct the
energies of up to 384-512 calorimeter cells with a single board, it is necessary to compute the
energies of several cells with a single instance of the NNs between the inputs coming in every 25 ns.
This is referred to as multiplexing. The required cell count with one FPGA for the Phase-II upgrade
can be achieved by the 3-Conv CNN and the Vanilla RNN implementations as shown in table 1.
Further performance comparison is available in [13].
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Figure 6: Relative deviation of the
firmware and software results [13].

Multiplexing Freq Latency LAr Resource Usage
Fmax MHz clkcore cycles Channels DSP/ALM

3-Conv 6 344 81 390 0.8% / 1.5%

Vanilla 15 640 120 576 2.6% / 0.6%

Table 1: Occupancy, latency, maximum achievable clock frequency
and themaximumnumber of LAr channels that can fit in one Stratix-10
FPGA assuming all FPGA resources are dedicated to energy recon-
struction algorithms [13].
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4. Conclusion

CNNs and RNNs have shown to outperform the optimal filter algorithm in reconstructing the
energies deposited in the LAr calorimeter in HL-LHC conditions. The performance increase is
greatest in the case of overlapping events. Latencies of about 200 ns and maximum execution
frequencies of 344–640 MHz of the multiplexed networks partially fill the real-time processing
requirements of the LAr.

The deployment of ANNs on FPGAs has a great potential to improve the energy reconstruction
by the ATLAS LAr calorimeters at high luminosities, which will allow more sensitive physics
analyses and a more efficient event selection by the ATLAS trigger system.
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