PoS - Proceedings of Science
Volume 398 - The European Physical Society Conference on High Energy Physics (EPS-HEP2021) - T12: Detector R&D and Data Handling
Test of ATLAS Micromegas detectors with ternary gas mixture at the CERN GIF++ facility.
F. Vogel* and  On behalf of the ATLAS Muon Collaboration
Full text: pdf
Pre-published on: February 24, 2022
Published on: May 12, 2022
The ATLAS collaboration at LHC has chosen the resistive Micromegas technology, along with the small-strip Thin Gap Chambers (sTGC), for the high luminosity upgrade of the first muon station in the high-rapidity region, the New Small Wheel (NSW) project. Four different types of Micromegas quadruplets have been constructed at four construction sites in Italy (SM1), Germany (SM2), France (LM1) and CERN$/$Greece$/$Russia (LM2). At CERN, the final validation and the integration of the modules into Sectors and their commissioning are in progress. The achievement of the requirements for these detectors revealed to be even more challenging than expected. One of the main features being studied is the HV stability of the detectors. Several approaches have been tested in order to enhance the stability, among them the use of different gas mixtures. A ternary Argon-CO$_2$-iC$_4$H$_{10}$ mixture has shown to be effective in dumping discharges and dark currents. It allows the operation of the Micromegas detectors at working points with high cosmic muon detection efficiency. The presence of Isobutane in the mixture required a set of aging studies, ongoing at the GIF++ radiation facility at CERN, where the expected HL LHC background rate is reached by a $^{137}$Cs 14 TBq source of 662 keV photons. Preliminary aging results and effectiveness of the ternary mixture will be shown.
DOI: https://doi.org/10.22323/1.398.0757
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.