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The IDEA Experiment envisaged at future 𝑒+𝑒− circular colliders (FCC-ee and CEPC) is currently
under design and optimization with dedicated full-simulation investigations. We review the design
of the IDEA fully-projective fiber-based dual-readout calorimeter simulation. Particular attention
is given to general and fundamental limitations of calorimeters operating at colliders, together
with the path for the reconstruction of events with complex topologies. Through the study of the
distinction between 𝛾 and 𝜋0, we illustrate the outstanding particle identification capabilities given
by a millimeter shower sampling coupled to modern convolutional neural networks.
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1. Detector studies

At future 𝑒+𝑒− circular colliders, the majority of final-state topologies are two- and four-jet
ones. An elegant approach to properly reconstruct such events is to fully absorb each particle
within jets in a highly granular calorimeter with a response approximately equal for all particle
species. To achieve that, the IDEA experiment adopts a fiber-sampling longitudinally-unsegmented
dual-readout calorimeter. This design has been reproduced with a Geant4 application, illustrated
in fig. 1. The detector response is calibrated with electron beams and, for both single hadrons and
jets, the energy is reconstructed with the dual-readout formula [1].

Figure 1: Sketch of the IDEA tower-based dual-readout calorimeter structure (left). Artistic view of a
simulated 𝑒+𝑒− → 𝑗 𝑗 event showering in the IDEA calorimeter (right).

By exploiting the scintillation signal in scintillating fibers and the Cherenkov signal in clear
plastic fibers, it is possible to measure the electromagnetic fraction on an event-by-event basis
and correct the calorimeter response for its degree of non compensation (ℎ/𝑒 ≠ 1) [1]. This has
proven to be beneficial in suppressing energy response variations when absorbing different hadron
species. Fig. 2 shows, for instance, the simulated energy distribution as reconstructed by the IDEA
Calorimeter for 100 GeV 𝜋−, 𝐾−, 𝑛 and 𝑝. It clearly indicates that the residual response variations
are kept below 1%, while ATLAS quotes differences of ≃ 5% in the response to 𝜋± and 𝑝 [2], and
this difference increases to ≃ 10% in the case of the CMS Forward Calorimeter for energies below
100 GeV [3]. Simulations also indicate that the dual-readout correction leads to a superior jet energy
resolution, as indicated by fig. 3, which shows the𝑊 , 𝑍 and 𝐻 bosons masses as reconstructed with
the IDEA Calorimeter.
The IDEA Calorimeter design can also be combined with a dual-readout crystal electromagnetic
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Figure 2: 100 GeV 𝜋−, 𝑘−, 𝑛 and 𝑝 energy as reconstructed with the IDEA Calorimeter. Energies are not
corrected for the longitudinal shower leakage. Image from [4].
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Figure 3: 𝑊 , 𝑍 and 𝐻 bosons invariant masses as reconstructed with the IDEA Calorimeter through the
processes 𝑒+𝑒− → 𝑍𝐻 and 𝐻 → 𝜒0

1 𝜒
0
1 𝑍 → 𝑗 𝑗 , 𝑒+𝑒− → 𝑊+𝑊− and 𝑊+ → `a 𝑊− → 𝑗 𝑗 , 𝑒+𝑒− → 𝑍𝐻

and 𝐻 → 𝑏�̄� 𝑍 → aa. Excluding and including 𝑏 semileptonic decay, left and right respectively. Image
from [4].

section. This configuration highly improves the electromagnetic energy resolution and leads to a
better isolation of 𝛾 in jets, thus opening the possibility to adopt Particle-Flow-Like approaches for
jet reconstruction. First results in this respects were presented at this Conference and indicate a
further improvement in the jet energy resolution [5].
Here, for sake of brevity and to add something new, we will report on the recent results on particle
identification exploiting the fiber calorimeter transverse granularity.

2. 𝛾/𝜋0 identification with neural networks

In the current calorimeter simulation, each fiber is coupled to a dedicated Silicon PhotoMul-
tiplier and the fiber-to-fiber pitch considered is 1.5 mm. This solution guarantees a millimetric
transverse shower sampling leading to some spectacular results. Fig. 4 shows the integrated charge
at each SiPM, obtained with the Cherenkov signals only, for 40 GeV 𝛾 or 𝜋0 induced shower when
the primary particle is shot from the interaction point. Such detailed information is certainly useful
when coupled to modern convolutional neural networks for pattern identification in images.
To distinguish between 𝛾 and 𝜋0 with energies ranging from 1 to 80 GeV, the information from the
shower sampling, as shown in fig. 4, was used as input to a VGG [6] and a Residual neural network
[7]. The training was performed over 50 epochs on 24000 events. Fig. 5 (left) shows the distri-
bution of the activation neuron values corresponding to the 𝜋0 detection, after the training phase,
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Figure 4: 40 GeV 𝛾 (left) and 𝜋0 (right) shower as sampled and reconstructed by the IDEA Calorimeter
Cherenkov fibers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Activation

1

10

210

310

C
ou

nt
s

Pions

Photons

0.95 0.96 0.97 0.98 0.99 1 1.01
Efficiency

0.5

0.6

0.7

0.8

0.9

1

R
ej

ec
tio

n

VGG Network

Residual Network

Figure 5: Distribution of the 𝜋0 activation neuron, after the training phase, for the VGG neural network
for 𝜋0 and 𝛾 events separately (left). ROC curve for 𝜋0 identification and 𝛾 rejection for the VGG and the
Residual neural networks exploiting the IDEA Calorimeter millimetric shower sampling (right).

for two data sets containing exclusively 𝜋0 or 𝛾 events. By changing the threshold for identifying
a 𝜋0, it is possible to estimate the efficiency in 𝜋0 detection as a function of the 𝛾 rejection. This
curve, known as the ROC curve, is shown in fig. 5 (right). Both neural networks can achieve a 𝜋0

identification efficiency of 99% with a 𝛾 rejection of ≃ 85% and ≃ 99.9% for the Residual and the
VGG, respectively.
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