PoS - Proceedings of Science
Volume 398 - The European Physical Society Conference on High Energy Physics (EPS-HEP2021) - T12: Detector R&D and Data Handling
The ESS Neutrino Super-Beam Near Detector
A. Burgman*, J. Park, J. Cederkall, P. Christiansen  on behalf of the ESSnuSB Collaboration
Full text: pdf
Pre-published on: January 28, 2022
Published on: May 12, 2022
The ESS Neutrino Super-Beam (ESSnuSB) is a proposed long-baseline neutrino oscillation experiment, performed with a high-intensity neutrino beam, to be developed as an extension to the European Spallation Source proton linac currently under construction in Lund, Sweden. The neutrinos would be detected with the near and far detectors of the experiment, the former within several hundred meters of the neutrino production point and the latter within several hundred kilometers. The far detector will consist of a megaton-scale water-Cherenkov detector, and the near detector will consist of a kiloton-scale water-Cherenkov detector in combination with a fine-grained tracking detector and an emulsion detector. The purpose of the near detector is to constrain the flux of the neutrino beam as well as to extract the electron-neutrino interaction cross-section in water, which requires high-performance energy reconstruction and particle flavor identification techniques. These measurements are crucial for the neutrino oscillation measurements that will be conducted using the far detector.

Year 2021 sees the finalization of the conceptual design of the near detector after a thorough evaluation of the performance of a number of different design options, and a characterization of the neutrino reconstruction and flavor identification performances. In this talk we report on these studies.
DOI: https://doi.org/10.22323/1.398.0797
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.