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The Muon g-2 Experiment at Fermilab (E989) aims to measure the muon magnetic anomaly
(aµ) with a final accuracy of 140 parts per billion (ppb). The first result on the Run-1 dataset
was unveiled on April 7, 2021, showing a very good agreement with the previous result from
the Brookhaven National Laboratory (BNL) experiment, with a slightly better uncertainty. The
corresponding experimental average increases the significance of the discrepancy between the
measured and Standard Model predicted aµ to 4.2 σ. Four different beam dynamics corrections
must be applied to obtain the final value of the anomalous precession frequency. In the following
contribution, this high precision measurement is presented, focusing on the beam dynamics
corrections to ωa.
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Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

1. Introduction

The magnetic moment of a lepton with spin s, charge q, mass m and gyromagnetic ratio g is defined
as:

®µl = gl

(
q

2ml

)
®s. (1)

Dirac predicted ge = 2 [2] for the electron (and, consequently, any spin 1
2 elementary particle).

Schwinger proposed an additional contribution to the electron magnetic moment from a radiative
correction, predicting the anomaly ae =

ge−2
2 = α/2π ' 0.00116 in agreement with experiment [3].

Afterwards, a series of experiments confirmed that themuon behaves as a heavy electron, confirming
gµ ≈ 2. Subsequently, the theoretical calculation showed how each sector of the Standard Model
contributes, through the vacuum polarization, to the estimate of aµ. At the Muon g-2 Experiment
at Fermilab, polarized muons, with a momentum of 3.1 Gev/c, are injected into a superconducting
storage ring of 14 meters in diameter. In the rest frame, the muon’s spin rotates with a frequency
proportional to the g-factor according to the Larmor precession formula:

®ωS = g
e

2m
®B. (2)

In the same time, the relativistic muons are collected in the storage ring and orbit with a frequency
defined by the cyclotron frequency:

®ωC =
e ®B
mγ

. (3)

By computing the two quantities ωC and ωS in the lab frame, we can define a new quantity
obtained from their difference that represents the rotation frequency of the muon spin relative to
its momentum, called ®ωa. This frequency (called "anomalous precession frequency") is the "g-2
frequency" and, together with the measurement of the storage ring magnetic field, represent the
most important observable of the g-2 experiment. The most general expression of ®ωa is:

®ωa = ®ωS − ®ωC =
e
m

[
aµ ®B −

(
aµ −

1
γ2 − 1

)
( ®β × ®E) − aµ

(
γ

γ + 1

)
( ®β · ®B) ®β

]
. (4)

We can simplify this expression and cancel the effect of the E-field by choosing a specific value
for the Lorentz boost. Computing γ from Equation 4, we find that γ =

√
1 + 1

aµ
≈ 29.3 that

corresponds to a momentum pµ = 3.094 GeV/c called "magic momentum". The experiments from
CERN III ([5]) to E989 use the magic momentum to reduce at minimum the influence of the E-field
on the muon beam in the storage ring. In this configuration, the relationship between aµ and B is
reduced to:

®ωa = aµ
e ®B
m
, (5)

from which we need to know the ratio between ®ωa and the B-field to obtain aµ. In E989, the muon
anomalous magnetic moment is computed as:

aµ =
ge

2
ωa

ω̃p
′

µp

µe

mµ

me
, (6)

where ge
2
µp
µe

mµ

me
are external quantities measured with very high precision. R = ωa

ω̃p
′ is the quantity

measured by theMuon g-2 Collaboration, where ω̃p
′ represents the equivalent precession frequency
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Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

of a proton shielded in a spherical sample of water.

1.1 ωa measurement

In the Muon g-2 experiment at Fermilab, polarized muons are produced by pions decay. Due to the
parity violation in theweakmuon decay, high energy positrons produced are emitted preferably along
the muon’s spin direction. The emitted positrons are detected by 24 electromagnetic calorimeters,
which measure the energy and the arrival time of the positrons, each made up of 54 (1296 in total)
crystals of lead fluoride (PbF2) read by silicon photomultipliers (SiPM). By counting the number
of positrons over a certain energy range over the time, the precession frequency of the muon spin
is measured; together with the measurement of the magnetic field, this allows us to extract aµ. The
simplest description of the positron time modulation is:

N(t) = N0 · e−t/τ · (1 + Acos(ωa · t + ϕa)). (7)

Due to the beam’s motions around the ring, a 22 parameters fit function is needed to account for
vertical and radial oscillations that affect the determination of aµ. Such non-fitted frequencies can
be seen by the Fast Fourier Trasform (FFT) of the fit function residuals as shown in Fig. 1, where
the FFTs of the 5 and 22 parameters fit functions are shown.

Figure 1: The red dashed curve shows the FFTs for the 5-par fit function, in which peaks of the main
frequencies are shown (ωCBO, ωVW , ωy). The black solid line shows the FFT for 22 parameters fit function
[1].

2. ωa beam dynamics corrections

Due to the extremely high precision of the experiment, four additional beam dynamics corrections
must be applied at the central values extracted by the fit to obtain the final value of the anomalous
precession frequency. Two corrections are associated with the use of electrostatic quadrupole (ESQ)
vertical focusing on the storage ring, CE and Cp, respectively E-field and Pitch corrections. Two
other corrections are caused by a time-dependent phase shift introduced by muons that escape the
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Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

ring during the storage time (Loss Muon correction, Clm) and a vertical/horizontal stored muon
beam drift that occurs during the fill (Phase acceptance correction, Cpa). Thanks to a tracker
system consisting of two tracker stations, the beam profile is measured at multiple locations.

2.1 E-field correction: Ce

The E-field correction Ce comes from the second term in Eq. 4. It depends on the distribution
of equilibrium radii xe = x − R0, which translates to the muon beam momentum distribution via
∆p/p0 ' xe(1 − n)/R0, where n is the field index determined by the ESQ voltage. By performing
a Fast Fourier analysis of the incoming bunched beam, see Fig. 2, we determine the momentum
distribution, the mean equilibrium radius < xe >≈ 6mm, and the width σxe ≈ 9 mm. The final
correction to aµ becomes Ce = 2n(1 − n)β2 < x2

e > /R
2
0 , where < x2

e >= σ
2
xe
+ < xe >2 and the

value of the correction is Ce = (489 ± 53) ppb.

2.2 Pitch correction: Cp

Since the muons inside the ring have a non-zero vertical momentum component, a pitch correction
is required to account for it. In particular, the vertical betatron oscillations lead to a non-zero
average value of the ®β · ®B term in Eq. 4. In Fig. 2, a visual explanation of the effect. The expression
Cp = n < A2

y > /4R2
0 determines the pitch correction to aµ. The vertical amplitude Ay distribution

is measured by trackers. The correction applied to ωa is Cp = (180 ± 13) ppb.

Figure 2: Left: Visual explanation of the pitch correction that arises from the vertical motion of the beam.
There is a slight shift between the planes defined by the spin precession and cyclotron motions. Right: The
radial distribution for the four Run-1 datasets as determined by the Fourier method. [4]

2.3 Loss muon correction: Clm

Any variation as a function of time that affects the muon initial phase, ϕa in Eq. 7, biases the
ωa value. Beamline simulations predict a phase-momentum correlation dϕa/dp = (−10.0 ± 1.6)
mrad/∆p/p0 and losses are known to be momentum-dependent, as shown in Fig. 3.
We verified this relationship by fitting precession data from short runs. During these runs, the
storage ring magnetic field, and thus the central stored momentum p0, varied by ±0.67% compared
to its nominal setting. Next, we investigated the relative rates of muon loss versus momentum in
special runs, in which muon distributions were heavily biased toward high or low momenta using
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Figure 3: Left: Phase-momentum correlation from an end-to-end simulation (blue band) and from a data-
driven approach (black). Right: Muon beam vertical width variation as a function of time. [4]

upstream collimators. Coupling the measured rate of lost muons in Run-1 to these two correlation
factors determines the correction Cml to aµ. The final correction applied is: Clm = (−11 ± 5) ppb.

2.4 Phase-acceptance correction: Cpa

The phase for a given (x, y) decay coordinate depends on the orientation of the muon’s spin that
maximizes the acceptance. Its orientation into the detector system is not parallel to its momentum
but rotated slightly radially inward. This rotation causes an effective phase shift ϕpa, which is
a function of transverse decay coordinates due to acceptance effects. It is mainly caused by the
vertical width variation, shown in Fig. 3, over the muon fill, and the phase-acceptance effect was
exaggerated in Run-1 by damaged ESQ resistors that induced slow changes in the muon distribution
over the first 100 µs. The net effect on ωa is computed via toy MC simulation, obtaining a final
correction of Cpa = (−158 ± 75) ppb.
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