
P
o
S
(
C
P
O
D
2
0
2
1
)
0
1
4

How an ω0 condensate can spike the speed of sound in
cold quarkyonic matter
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I describe a novel mechanism where the variation of an ω0 condensate can generate a “spike” in
the speed of sound in hadronic matter. An ω0 condensate naturally increases the speed of sound;
the real problem is how to get the speed of sound to decrease. I suggest this can happen through
the appearance of a Quantum Pion Liquid.

The International conference on Critical Point and Onset of Deconfinement - CPOD2021
15 – 19 March 2021
Online - zoom

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:pisarski@bnl.gov
https://pos.sissa.it/


P
o
S
(
C
P
O
D
2
0
2
1
)
0
1
4

Spiking the speed of sound with an ω0 condensate Robert D. Pisarski

Consider a SU(Nc) non-Abelian gauge theory, coupled to Nf flavors of quarks in the fundamen-
tal representation, at nonzero temperature and zero quark chemical potential. As the temperature
is raised, theoretically there are two phase transitions possible. One is deconfinement, and for light
quarks, a second for the restoration of chiral symmetry.

The details of these transitions depend upon the number colors and flavors. One particularly
simple example is the case of an infinite number of colors, where the number of flavors is held fixed
as Nc → ∞. Then everything is dominated by the pure glue theory, and we expect (and numerical
simulations on the lattice confirm) that the deconfining transition, at a temperature Td, is of first
order. This is easy to understand. In the confined phase all hadrons are color singlets, and so any
hadron has a degeneracy of order one. Thus the pressure in the confined phase, belowTd, is of order
one. In the deconfined phase, above Td we can certainly have a complicated, strongly interacting
phase until very high temperature. Even so, no matter how strongly the deconfined quarks and
gluons interact, there are ∼ NcNf quarks and ∼ N2

c gluons, with a pressure which is ∼ N2
c . That is,

in the limit of infinite Nc the pressure itself can be used as an order parameter.
If there are also massless quarks, we can also characterize the restoration of chiral symmetry

at a temperature Tχ. If the number of flavors is held finite as Nc →∞, though, the quarks are really
driven by the dynamics in the pure glue theory. Thus it is very hard to imagine that Tχ < Td: why
should the quark dynamics change at all?

Indeed, general arguments suggest that the confined phase is completely independent of tem-
perature. At first sight this sounds surprising, but again it isn’t. Not only are the number of hadrons
of order one, but any interactions between them are suppressed by powers of 1/Nc. Thus in the
strict limit of infinite Nc, there is no way that any quantity can change with temperature. This is
why a first order transition is expected: the confined phase has a pressure of one, and the deconfined
phase has a pressure which is negative below Td and positive above. Thus the derivative of the
pressure is nonzero at Td, which implies that the energy density jumps from ∼ 1 below Td to ∼ N2

c

above. If one works hard, one can use the Hagedorn spectrum to get a second order deconfining
transition at infinite Nc [1], but as I said, the numerical evidence strongly disfavors this.

Similarly, it is possible that Tχ is greater than Td, but again, it would be unexpected. Instead,
the safest best is simply that when deconfinement occurs, chiral restoration also occurs, Tχ = Td.

Let me make another, apparently trivial, comment. At zero quark chemical potential, in
the confined phase there is no condensate which affects deconfinement. The order parameter for
deconfinement is zero below Td, and is only nonzero above Td. Of course below Td the chiral
condensate, 〈ψψ〉, is nonzero. Still, any loop which contributes to a change in the chiral condensate
with temperature involves a coupling to the hadronic state, and so the change will be suppressed by
some power of 1/Nc.

All of these clean results are special to holding Nf fixed as Nc → ∞. If Nf is as large as Nc,
then most of the above results go away. In particular, since there are ∼ N2

f hadronic states, then
we don’t even know the order of the transition: it could be first order, but it could be second, or
crossover. The pressure is then ∼ N2

f ∼ N2
c at all temperatures. Similarly, if neither Nf nor Nc is

large, then we need the results of numerical simulations on the lattice.
Let us then return to the case of Nf � Nc → ∞, and consider nonzero quark chemical

potential, µqk . For the pressure, the quark contribution is no larger than ∼ Nf Ncµ
4
qk
, so at nonzero
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temperature, the quark contribution is only commesurate with that from gluons, ∼ N2
cT4, when

µqk ∼ N1/4
c T . This is the basic idea behind a quarkyonic regime at nonzero density, where the

free energy is that of (interacting) quarks and gluons, but excitations near the Fermi surface are still
confined [2–9].

However, unlike the case of nonzero temperature, the confined phase can depend upon density.
This is because while couplings between mesons are suppressed at large Nc, those between mesons
and baryons are not: they are large, ∼ N1/2

c . This suggests that it is possible for the chiral transition
to split from the deconfining transition at nonzero µqk , so that as µqk increases, Tχ is less than the
deconfining temperature. Of course µqk only matters when one can first generate a Fermi sea of
baryons, which requires µqk > mB/Nc, where mB is the mass of the lightest baryon.

Further, at nonzero density there is uniquely one condensate which plays a privileged role.
The importance of this was first noted by Zeldovich [10]; it also provides the basis for the effective
theory of nuclear matter, Quantum HadroDynamics [11]. At nonzero density, by definition there
is a nonzero expectation value for the timelike component of the current for fermion number,
〈ψγ0ψ〉 , 0. But this current couples directly to that for the ω0 meson, as that couples to nucleons
as gωψ

†
γµωµψ. Thus if nB is the baryon density, nonzero density generates a term linear in ω0,

and induces an expectation value for ω0:

LB
ω = −gωnBω0 +

m2
ωω

2
µ

2
⇒ 〈ω0〉 =

gω

m2
ω

nB . (1)

Here mω is the mass of the ω meson. With nB ∼ N0
c and gωN1/2

c , this contributes to the free energy
as ∼ Nc, as expected for the quark contribution.

The mass of the ω meson can be nontrivial. I take the effective Lagrangian for the ω meson as

Lω =
F 2
µν

4
+

1
2

(
m̃2
ω + κ

2 ®φ 2
)
ω2
µ . (2)

Fµν = ∂µων − ∂νωµ is the standard, Abelian field strength for the ωµ meson. The mass m̃ω is a
constant, but in addition I also add a quartic coupling, ∼ κ2, between ωµ. Here ®φ is the O(4) chiral
field for two light flavors, ®φ = (σ, ®π). The coupling κ2 must be positive to ensure stability for large
values of the ωµ and ®φ fields.

In the vacuum, theσ field acquires a vacuum expectation value from chiral symmetry breaking,
〈σ〉 = fπ , so that theωµmass ism2

ω = m̃2
ω+κ f 2

π . In vacuum this is fine, as one can’t really distinguish
between the part of the ωµ mass which is bare, and the part induced by chiral symmetry breaking.
Similarly, vector meson dominance is used to characterize the coupling of the ρµ meson to the
photon, but it doesn’t constrain how the ρµ mass arises.

At the stationary point in ω0, the effective Lagrangian of Eq. (1) becomes

LB
ω = −

gω

m2
ω

n2
B . (3)

As demonstrated first by Zeldovich [10], this gives a speed of sound equal to the speed of light.
This also arises at nonzero isospin density, in the limit of asymptotically large density.

Of course this is only a leading term, and cannot be taken as exact. Instead, one should use a
model of Quantum HadroDynamics (QHD) [11], where saturation arises from a balance between
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attraction, due to exchange of a σ-meson, and repulsion, from exchange of the ωµ meson. This
balance tends to weaken the effect of the leading order term in Eq. (3), but still, the speed of sound
tends to increase strongly.

This is important for astrophysics. Drischler et al. [12] use chiral effective field theory to
extrapolate from the saturation density of nuclear matter, n0, to twice that. Given the observation
of neutron stars with masses above two solar masses [13, 14], it is imperative to have a region of
density in which the EoS is stiff, with a speed of sound significantly above that of an ideal quark
gas, where c2

s = 1/3. Using the small tidal deformability observed from GW170817, though, the
EoS of nuclear matter must be soft until nB ∼ 1.5 − 1.8n0, and then increase sharply. That is, there
is a “spike” in the speed of sound, with a relatively narrow peak at a density significantly above n0,
Fig. (1) of Ref. [15].

As I argued above, an ω0 condensate naturally gives an increase in the speed of sound. The
question which I wish to stress is the following: how can one get the ω0 condensate to evaporate,
and thus for the speed of sound to decrease?

In a quarkyonic phase, which is confined, it is manifestly sensible to speak of an ωµ meson.
This is very different from the case of increasing temperature at zero density: then there is no
condensate for the ω0, and vector mesons just fall apart into the constituent quarks. But at nonzero
density, in the quarkyonic phase the ωµ meson remains confined, and as a confined meson, can’t
fall apart into quarks.

This problem does not appear to have been appreciated previously. Either a QHD-type result
was used uniformly, or a QHD model was matched onto constituent quarks, as in the model of Cao
and Liao [16]. But the ωµ meson doesn’t go away: there must be a dynamical reason why the
contribution of the ω0 condensate evaporates at nonzero density.

I suggest a rather speculative argument as to how this could happen. Consider the effective
mass of the ωµ meson, including the κ coupling:

〈ω0〉 =
gωρB

m̃2
ω + κ2〈φ2〉

. (4)

As the chiral transition is approached, this will tend to increase, as the chiral condensate decreases,
〈φ2〉 ≈ 〈σ〉2. This stiffens the equation of state.

The simplest way for the ω0 condensate to become small is for the ωµ meson to become large.
This is where the κ coupling enters. In a linear σ model [17], this can arise as follows. Consider an
effective chiral Lagrangian,

Lφ =
1
2
(∂0 ®φ)

2 +
1

2M2 (∂
2
i
®φ)2 +

Z
2
(∂i ®φ)

2 +
m2

0
2
®φ 2 +

λ

4
( ®φ 2)2 . (5)

This includes higher spatial derivatives, but by causality, only two time derivatives. If the coefficient
of the termwith two spatial derivatives, Z , is negative, in mean field theory spatially inhomogeneous
structures (“chiral spirals”) are generated. The simplest chiral spiral is one where although ®φ winds
along a single spatial direction, that ®φ 2 is constant (a “single mode”). This is no problem, unless
there are Goldstone bosons. In that case, the Goldstone bosons have zero energy at a non-zero
spatial momentum, k0:

∆
−1
transverse(ω, ®k) = ω

2 +
1

M2 (
®k2)2 + Z ®k2 + m2 + λφ2

c = ω
2 +
(k − k0)

2

M2 , (6)
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In isospin space, the Goldstone bosons are transverse in isospin space to the field for the background
chiral spiral, ®φc, whose period is 2π/|k0 |, where k2

0 ∼ −Z M2. However, consider the tadpole
diagram for fluctuations over the Goldstone modes. For simplicity, I consider the integral at nonzero
temperature, taking the static mode in energy, and the integral over the three spatial momenta [17]:

δm2 ∼ λ〈 ®φ 2〉 ∼ λT
∫

d3k
1

(k − k0)2
∼ λT k2

0

∫
dδk
(δk)2

. (7)

Because the Goldstone boson has zero energy at nonzero momentum, there is a linear infrared
divergence, about the momentum for the chiral spiral. (This happens in any number of spatial
dimensions.) The only way to avoid this divergence is if a dynamical mass is generated for
the Goldstone bosons, which adds a term m2

dyn to the propagator. This is a non-perturbative
phenomenon, and generates a novel form of the symmetric phase, which in Ref. [7] I termed a
“quantum pion liquid” (QπL). (In Ref. [17] we used the term a pion quantum spin liquid, which
isn’t as accurate, since pions don’t carry spin.) In this QπL, one can show that the fluctuations are
very large at large Z , 〈 ®φ 2〉 ∼ Z2. This means that theωµ mass squared is m2

ω ∼ Z2, so 〈ω0〉 ∼ 1/Z2.
At zero temperature, after integrating overω the integral over spatial momenta gives a logarith-

mic instead of a linear infrared divergence [7], so that the dynamical mass is exponentially small.
The magnitude of the fluctuations remains the same, 〈 ®φ 2〉 ∼ Z2, because a much smaller dynamical
mass compensates the weaker infrared divergence. As a non-perturbative result, to demonstrate this
we considered an O(N) model, and solving in the limit of infinite N . It is not clear if it is valid for
N = 4, but it is reasonable to suspect that it is.

This leaves a raft of questions open. The analysis of the sigmamodel assumes that when Z < 0,
that 〈 ®φ 2〉 is constant. Under this assumption, it is easy to show that the energy of the Goldstone
bosons vanishes at a nonzero momentum, characteristic of the would be momentum of the spatially
inhomogeneous condensate. This appears to be a technical assumption, but certainly one expects
that the energy of the Goldstone bosons will vanish at some momentum. If Z is positive, then it is
certainly at zero momentum. When Z is negative, however, it is natural to expect that the zero of
the energy is at nonzero momentum, which naturally generates a QπL.

There are many other avenues of investigation. Couplings similar to κ, which couple chiral and
vector mesons, have been introduced by Refs. [18]. It is imperative to consider these couplings, as
a neutron star is not isospin symmetric.

In the end, the most direct conclusion is the following. The standard assumption is that in the
plane of temperature and chemical potential, that there is a single transition which is something like
a semi-circle. Instead, the example of small Nf and large Nc suggests that cold, dense quark matter
may look nothing like the deconfined phase at zero density. Understanding the properties of such
nuclear matter brings together results from condensed matter to astrophysics.
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