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Freezing out critical fluctuations

Maneesha Pradeep∗a, Krishna Rajagopalb, Misha Stephanova, Yi Yinc

a University of Illinois at Chicago
b Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, US
c Quark Matter Research Center, Institute of Modern Physics , Chinese Academy of Sciences,
Lanzhou, Gansu, 073000, China
E-mail: mprade2@uic.edu

We introduce a novel freeze-out procedure connecting the hydrodynamic evolution of a droplet
of quark-gluon plasma (QGP) that has, as it expanded and cooled, passed close to a posited
critical point on the QCD phase diagram with the subsequent kinetic description in terms of
observable hadrons. The procedure converts out-of-equilibrium critical fluctuations described by
extended hydrodynamics, known as Hydro+, into cumulants of hadron multiplicities that can be
subsequently measured. We introduce a critical sigma field whose fluctuations cause correlations
between observed hadrons due to the couplings of the sigma field to the hadrons. We match the
QGP fluctuations obtained via solving the Hydro+ equations describing the evolution of critical
fluctuations before freeze-out to the correlations of the sigma field. In turn, these are imprinted
onto fluctuations in the multiplicities of hadrons, most importantly protons, after freeze-out via
a generalization of the familiar half-a-century-old Cooper-Frye freeze-out prescription [1] which
we introduce [2]. This framework allows us to study the effects of critical slowing down and the
consequent deviation of the observable predictions from equilibrium expectations quantitatively.
We can also quantify the suppression of cumulants due to conservation of baryon number. We
demonstrate the prescription in practice by freezing out the Hydro+ simulation in a simplified
azimuthally symmetric and boost invariant background discussed in Ref. [3].
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1. Introduction

A simulation of heavy-ion collisions is a multi-stage process involving initial state dynamics,
hydrodynamic evolution and a hadronic afterburner. Transitions between subsequent stages involve
matching and translating dynamical variables used at one stage into those used at the next stage in
a way consistent with physics laws. In this work, we discuss the transition between the hydro-
dynamic stage and the hadronic stage, for the special case of heavy-ion collisions that produce a
droplet of matter whose hydrodynamic evolution occurs in the vicinity of a critical point on the
phase diagram of QCD. Traditionally, the macroscopic description of the quark gluon plasma in
terms of the hydrodynamic variables is translated into a simplified hadronic description in terms of
kinetic variables of an expanding ideal resonance gas of hadrons via the well-known Cooper-Frye
procedure [1]. The Cooper-Frye freeze-out procedure has been successfully employed in the de-
scription of high energy heavy-ion collision data for almost 50 years. The procedure ensures that
the event averaged charge and energy-momentum densities are matched between the two descrip-
tions. At sufficiently high collision energies

√
s, the data from many experiments are in reasonable

agreement with this description across a broad kinematic regime.

The Cooper-Frye framework, however, does not describe fluctuations. Such a description is
crucial in the special case of heavy ion collisions that freeze out in the vicinity of a critical point. In
this case fluctuations are both enhanced and of considerable interest, since it is via detecting critical
fluctuations that we hope to discern the presence of a critical point [4, 5]. The deviations of certain
measures of fluctuations from their non-critical baseline measured in Phase I of the Beam Energy
Scan at RHIC, deviations that vary non-monotonically as a function of

√
s, provide intriguing hints

for the possible existence of a critical point in the QCD phase diagram [6, 7]. To convert these hints
into definitive conclusions and thereby potentially discover the location of the critical point, one
needs theoretical modeling that provides guidance as to what to expect in this case. Much work
is being done by a number of groups to develop a description of the hydrodynamics with critical
fluctuations near a critical point [8, 9]. In addition to such a description, we need a freeze-out
procedure to translate not only average hydrodynamic variables but also the critical fluctuations
exhibited by the quark gluon plasma into the mean and fluctuations of hadron multiplicities that are
subsequently observed. This is the goal of this work.

Since the correlation length, ξ , grows near the critical point, the typical relaxation time for
local thermodynamic equilibration increases. This is commonly referred to as critical slowing
down. There is a competition between the local relaxation rate and the hydrodynamic evolution
rate. As the hydrodynamic fields evolve, if relaxation rates are slow, as is the case for fluctuations
near a critical point, these fluctuations can no longer be described by their equilibrium values slaved
to hydrodynamic fields. There has been a considerable amount of work performed within both the
stochastic and deterministic approaches to describe the evolution of fluctuations near the critical
point [8, 9]. In the deterministic approach, the correlation functions that describe the fluctuations, in
essence, their moments, are considered as additional degrees of freedom with evolution equations
of their own. In this work, we introduce a prescription to convert these fluctuations, so described,
into correlations of observed particles. The results shown here are based on work in progress [2].
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2. Extended Cooper-Frye freeze-out near a critical point

To describe the critical fluctuations on the kinetic side, after freeze-out, the particle distribution
function has to be modified from an ideal gas of hadrons to one in which the correlations anticipated
near the QCD critical point are manifest. While there could be many ways of doing this, in our
work we choose to incorporate the critical fluctuations via the interaction of the particle fields with
a critical σ field that controls the masses of hadrons. The model that we describe here has been
discussed in equilibrium settings and also in non-equilibrium settings in the past [10, 11]. In this
work, we first match the correlations of the σ field to hydrodynamic fluctuations. The masses
of particles at freeze-out then depend on the background field σ . We denote gA as the coupling
between the σ field and the field corresponding to the particle species A. Small deviations of σ

from its equilibrium value change the mass of particle A, to leading order as

δmA = gAσ (2.1)

and the modified distribution function is

fA = 〈 fA〉+gA
∂ 〈 fA〉
∂mA

σ . (2.2)

In Eq. (2.2), 〈 fA〉 is the particle distribution function for an ideal gas. We ignore quantum statistics
and viscous corrections and use the Boltzmann distribution function 〈 fA〉= exp

{
− p·u

T + µA
T

}
. We

define σ so that 〈σ〉 ≡ 0. Hence, the mean multiplicity of particle species A denoted by 〈NA〉 is left
unchanged from the Cooper-Frye prescription [1]:

〈NA〉 = dA

∫
dSµ

∫
DpA pµ 〈 fA(x, p)〉 . (2.3)

where dA is the (iso)spin degeneracy of the particle A. In Eq. (2.3), dSµ is a differential element on
the freeze-out hypersurface pointing along the normal and DpA is given by

DpA = 2
d4 p
(2π)3 δ

(
p2−m2

A
)

θ(p0) . (2.4)

The two-point correlation function 〈σ(x+)σ(x−)〉 is proportional to the two-point correlation
function of the slowest mode, namely fluctuations of entropy per baryon, denoted by ŝ≡ s/n:

〈σ(x1)σ(x2)〉 = Z(x) 〈δ ŝ(x1)δ ŝ(x2)〉 . (2.5)

Here, Z is a function of thermodynamic fields which depends on the QCD equation of state near
the critical point. In this work, we focus on matching the leading singular contribution to the two-
point correlation function between the hydrodynamic and kinetic descriptions. With Eq. (2.5), the
critical contribution to the variance of the multiplicity of particles of species A is then given by〈

δN2
A
〉

σ
= g2

A

∫
dSµ,+

∫
dSν ,−Z(x)Jµ

A (x+)Jν
A(x−) 〈δ ŝ(x+)δ ŝ(x−)〉 , (2.6)

where

Jα
A (x±) ≡

dAmA

T (x±)

∫
DpA

∂ 〈 fA(x, p)〉
∂mA

pα . (2.7)

The total variance of the multiplicity of A particles is the Poisson value plus the critical part, namely〈
δN2

A

〉
= 〈NA〉+

〈
δN2

A

〉
σ

.
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3. Demonstration in an azimuthally symmetric boost invariant Hydro+ simulation

The Hydro+ framework combining hydrodynamics with a deterministic description of out-
of-equilibrium critical fluctuations was introduced in Ref. [12]. We shall use the prescription in-
troduced in the previous Section to freeze out a Hydro+ simulation discussed in Ref. [3]. The
correlation function of ŝ≡ s/n can be expressed in terms of its Wigner transform:

φQQQ(x) =
∫

∆x
〈δ ŝ(x+)δ ŝ(x−)〉 eiQ·∆x . (3.1)

Here x = (x++ x−)/2 and ∆x = x+− x− and the integral is performed over an equal-time hyper-
surface in the local rest frame at x. The relaxation of this quantity to its local equilibrium value φ̄QQQ

is governed by the equation [12]:

u(x) ·∂φQQQ(x) =−Γ(QQQ)
(
φQQQ(x)− φ̄QQQ(x)

)
, (3.2)

where φ̄Q can be adequately approximated by the Ornstein-Zernike ansatz as in Ref. [3]:

φ̄QQQ ≈
cMξ 2

1+(Qξ )2 . (3.3)

The leading behavior of the Q-dependent relaxation rate Γ near a critical point with Model H
relaxation dynamics is given by:

Γ(QQQ) =
2D0ξ0

ξ 3 K(Qξ ) , (3.4)

where K(x) = 3
4

[
1+ x2 +(x3− x−1)arctanx

]
. Because φQQQ describes fluctuations of the diffusive

mode ŝ, the rate vanishes at QQQ = 0, i.e., Γ≈ 2DQ2 where D = D0ξ0/ξ is the diffusion coefficient,
also vanishing at the critical point.

We evolve the φQQQ’s according to Eq. (3.2) in an azimuthally symmetric and boost invariant
background using the code described in Ref. [3]. As the trajectory on the phase diagram describing
the history of a given fluid cell passes by the critical point, the equilibrium correlation length ξ

increases to a maximum value ξmax before falling back to its value at freezeout. We shall use
variable ξmax to describe the effect of varying the

√
s of the collision on how close the trajectory

passes to the critical point. We use the parametrization for the correlation length ξ as a function of
the decreasing temperature T along the trajectory from Ref. [3]:(

ξ

ξ0

)−4

= tanh2
(

T −Tc

∆T

)[
1−
(

ξmax

ξ0

)−4
]
+

(
ξmax

ξ0

)−4

. (3.5)

In Eq. (3.5), Tc is the (crossover) temperature at the point along the system’s trajectory that is closest
to the critical point and ∆T sets the size of the critical region. ξ0 is the non-critical correlation length
away from the critical point. We set the parameters in Eq. (3.5) to ξ0 = 0.5fm, Tc = 0.16GeV, and
∆T = 0.2Tc.

The φQ’s at various points along the trajectory of a fluid cell near the center of the fireball
(radial position r = 0.7fm at initial proper time τI = 1.1fm) are shown in Fig. 1 for two relax-
ation rates (3.4) characterized by differing values of the parameter D0 which specifies the diffusion

3
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Figure 1: Normalized φQQQ’s as a function of Q ≡ |Q| in a fluid cell near the center of the fireball
are shown in the first and second plots from the left for D0 values of 0.25fm and 1fm respec-
tively. The thick and dashed black curves in the these plots are the normalized φQQQ and φ̄QQQ at the
corresponding proper time τ values, where φ̄QQQ denotes the value that φQQQ would have if it were in
equilibrium. The normalization factor φ̄QQQ ≡ φ̄QQQ(T (τI)). The temperatures at different times are
T (9.2 fm) = 0.14 GeV and T (11.4 fm) = 0.16 GeV. The third and fourth plots from the left show
the normalized φQQQ and φ̄QQQ as functions of the temperature (i.e., of time) for Q = 0.4fm−1.
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Figure 2: Position-space correlator of s/n fluctuations φ̃ : Here, we plot ∆x2φ̃ , as a function of the
spatial separation ∆x between the points. We plot results on two different isothermal freeze-out
hypersurfaces (T = 0.14 and 0.156 GeV) for two values of D0’s at two radial coordinates. The
dashed black curve is the equilibrium correlator at freeze-out. The dashed brown curve is the
equilibrium correlator far from the critical point, i.e., when ξ = ξ0. The dotted black curve is the
equilibrium correlator at T = Tc.

constant. The curves in Fig. 1 do not evolve at QQQ = 0 because the conservation of baryon number
dictates the diffusive nature of the ŝ mode, which is a function of n, and its fluctuations φQQQ. Upon
increasing the D0 value from 0.25 fm to 1 fm, we see an enhancement in fluctuations as they relax
faster to their large equilibrium values near the critical point. In this work, we considered two
isothermal freeze-out scenarios namely Tf = 0.14GeV and Tf = 0.156GeV. The inverse Wigner
transform, i.e., the coordinate space correlation function φ̃(∆x,x)≡ 〈δ ŝ(x+)δ ŝ(x−)〉, is plotted for
D0 equal to 0.25 fm and 1 fm on each of these freezeout surfaces in Fig. 2.

We denote the ratio of the variance defined in Eq. (2.6) to the mean multiplicity defined in
Eq. (2.3) by ωA:

ωA ≡
〈
δN2

A

〉
σ

〈NA〉
. (3.6)

The excess of the critical fluctuations over the non-critical baseline ωnc
A can be quantified via the

4
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Figure 3: Normalized fluctuation measure ω̃A (defined in Eq. (3.7)) as a function of ξmax which
is the maximum equilibrium correlation length reached during the hydrodynamic evolution. As
D0→ ∞, the ω̃A’s approach their equilibrium values .

ratio

ω̃A ≡
ωA

ωnc
A

, (3.7)

where ωnc
A is our estimate for the value of ωA when the correlation length is not enhanced due to

proximity to a critical point, namely when it is equal to the non-critical value ξ0. ω̃A for protons
obtained within the Hydro+ framework for the simulation from Ref. [3] is shown in Fig. 3.

4. Discussions and Outlook

In this work, we have introduced an extended Cooper-Frye procedure to freeze out critical
fluctuations. We have also implemented it in freezing out a simplified Hydro+ simulation in an
azimuthally symmetric and boost invariant background. We observe that due to critical slowing
down, the out-of-equilibrium fluctuations did not grow as large near the critical point as they would
have if they were able to stay in equilibrium. Helpfully, though, and again due to critical slowing
down, we find the fluctuations to be less sensitive to how much lower the freeze-out temperature is
than the temperature of the critical point itself than would be the case in equilibrium. This can be
seen by comparing the first three panels from the left in Fig. (3) to the right-most panel.

The estimates that we have made in this exploratory study have relied upon many simplifi-
cations. They can be made more quantitative by employing more realistic scenarios with more
appropriate initial state dynamics, a more realistic equation of state, effects of baryon stopping,
and a hadronic afterburner. The coupling constant gA, which sets the magnitude of the fluctuations,
is not well known. However, one could constrain it by comparing the equation of state of QCD to
the equation of state of a hadron resonance gas model. We have also ignored the sub-leading singu-
larities near the critical point and the background terms in the evolution equation for the two-point
correlation function. Relaxing these assumptions would be another way to improve the estimates
we have presented here. The procedure also remains to be applied to obtain correlations of particles
other than protons and pions in the hadron resonance gas model.

All that said, we see it as of paramount importance to extend the application of this pro-
cedure to higher-order non-Gauusian cumulants, as they serve as stronger signals of the critical
point [13, 11]. While this will be the next immediate step to do, we also hope that the procedure
we have developed and presented here can already be implemented within the full paradigm for the
numerical simulation of beam energy scan at RHIC [9].
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