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1. thermal self-energy and S-matrix

Starting with the known expression [1–6] of the thermal self-energy of a particle (A):

Σ𝑇 (𝐸𝐴) =
∫

𝑑3𝑘𝐵

(2𝜋)3
1

2𝐸𝐵

𝑛th(𝐸𝐵) 𝑇 (𝐴𝐵 → 𝐴𝐵). (1)

where 𝐸𝐵, 𝑛th(𝐸𝐵) are the energy and the thermal distribution of particle species (B) in the medium,
and 𝑇 (𝐴𝐵 → 𝐴𝐵) is related to the (forward) scattering amplitude 𝑓 by [6]

𝑇 (𝐴𝐵 → 𝐴𝐵) = −8𝜋
√
𝑠 𝑓 . (2)

Eq. (1) has a clear kinetic theory interpretation: The thermal shift of the particle A, in a medium
of particles B, is connected to a scattering amplitude 𝑇 (𝐴𝐵 → 𝐴𝐵), folded with a corresponding
thermal distribution of B. The important point here is that the scattering amplitudes are “vacuum”
amplitudes, and if the experimental data are employed, the result becomes model independent, as
far as the leading order effect is concerned.

One can consider various improvements of this leading order result, e.g., by including further
diagrams and / or dressing 𝑇 (𝐴𝐵 → 𝐴𝐵) with particles in the medium, resulting in a "temperature
dependent scattering amplitude". However this usually means implicitly imposing some speculation
on the 𝑁 > 2-body scattering amplitudes, which are not necessarily consistent with those inferred
from analyzing scattering experiments. The problem is already present in the perturbative theory:
some high order diagrams may not be generated by iterating a restricted set of low order ones [7].
Further complications come from coupled channel dynamics. See Refs. [8–10] for some attempts
in implementing coupled-channel S-matrix to understanding a thermal system, e.g. the hyperon
yields from heavy ion collisions.

In this proceeding, I will focus on a particular simple case of the lowest order result (1): a
structureless, momentum and energy independent, and real-valued 𝑓 . This means that the interaction
leads to a mass shift Δ𝑚𝐴 for particle A:

Δ𝑚𝐴 =
1

2𝐸𝐴

ReΣ𝑇 (𝑝)

≈ 𝑁𝐵
th × −4𝜋 𝑓

2𝑚red
.

(3)

This is a familiar result of Fermi formula for pseudopotential. In Eq. (3) 𝑁𝐵
th is the integrated thermal

weight of B, and the last line makes a further non-relativistic approximation in the Center-of-Mass
(CoM) frame, with 𝑚red the reduced mass.

What would be the change in thermal pressure due to such an interaction? One can consider
the difference in pressure of a free gas of A with and without the shift, i.e.

Δ𝑃 ≈ 𝑇

∫
𝑑3𝑝𝐴

(2𝜋)3 𝑒
−𝛽 (𝑚𝐴+

𝑝2
𝐴

2𝑚𝐴
) (−𝛽Δ𝑚𝐴)

= −Δ𝑚𝐴𝑁
𝐴
th

= 𝑁𝐴
th 𝑁

𝐵
th × 4𝜋 𝑓

2𝑚red
.

(4)
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Eq. (4) makes it clear that it is a 2nd order virial expansion of the pressure. I now show that the
same result can be obtained within an S-matrix formulation of statistical mechanics [11, 12].

2. S-matrix formulation

In the S-matrix approach, an effective spectral function relevant for describing an interacting
system is defined as

𝐵(𝐸) = 2
𝜕

𝜕𝐸
Q(𝐸), (5)

where Q(𝐸) is the scattering phase shift. The change in thermal pressure due to interaction is given
by [7, 13]

Δ𝑃 ≈ 𝑇

∫
𝑑3𝑃

(2𝜋)3
𝑑𝐸 ′

(2𝜋) 𝑒
−𝛽 (𝑚tot+ 𝑃2

2𝑚tot
+𝐸′)

𝐵(𝐸 ′). (6)

For a structureless scattering one gets [7]

2Q(𝐸) ≈ 2 𝑞(𝐸) 𝑓 ≈ −𝜙𝑇NR (7)

where 𝑞(𝐸) =
√

2𝑚red𝐸 is the relative momentum in the CoM frame, 𝜙 is the (non-relativistic)
phase space

𝜙(𝐸) =
∫

𝑑3𝑞

(2𝜋)3 2𝜋𝛿(𝐸 − 𝑞2

2𝑚red
)

=
𝑚red𝑞(𝐸)

𝜋
.

(8)

This correctly identifies the non-relativistic T-matrix, 𝑇NR, as

𝑇NR ≈ − 4𝜋 𝑓
2𝑚red

. (9)

The thermal pressure in Eq. (6) reads

Δ𝑃 ≈
∫

𝑑3𝑃

(2𝜋)3
𝑑𝐸 ′

(2𝜋) 𝑒
−𝛽 (𝑚tot+ 𝑃2

2𝑚tot
+𝐸′)2Q(𝐸 ′)

=

∫
𝑑3𝑃

(2𝜋)3
𝑑3𝑞

(2𝜋)3 𝑒
−𝛽 (𝑚tot+ 𝑃2

2𝑚tot
+ 𝑞2

2𝑚red
) (−𝑇NR)

≈ 𝑁𝐴
th 𝑁

𝐵
th × (−𝑇NR).

(10)

This agrees with Eq. (4). In fact, the change in mass in Eq. (3) is simply given by

Δ𝑚 ≈
∫

𝑑3𝑘𝐵

(2𝜋)3 𝑛th(𝐸𝐵) 𝑇NR, (11)

which can also be obtained from a non-relativistic reduction of Eq. (1).
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3. going further

The results discussed here can of course be trivially derived from the lowest order perturbation
theory. The important point is that Eq. (6) is based on a density expansion and is not controlled by
the order in couplings. Also the application is not restricted to non-resonant scattering. The resonant
contribution can also be included via the phase shift. In addition, with a suitable generalization of
Q in Eq. (5), even a coupled-channel [7, 9, 10] system can be treated by the S-matrix approach.

It is also important to realize how in-medium effects are described by "vacuum" scatterings.
In fact, it is not correct to claim that in-medium properties can not be described by vacuum
processes. After all, it is the same Hamiltonian that we are interested in studying [14], and
the S-matrix formulation of statistical mechanics simply expresses the partition function in terms
of S-matrix elements. Conceptually separating the two issues: dynamics and thermo-statistical
information, could potentially be useful to understanding in-medium effects from (vacuum) 𝑁 > 2-
body processes [7]. For example, Eq. (1) may be applied to obtain an in-medium modified mass
of Δ from a quasi-elastic scattering of Δ’s and pions. The latter needs to be obtained from a
well-constrained coupled-channel model involving the various 𝜋𝜋𝑁 channels. This also underlines
an important method to scrutinize many existing in-medium models based on the known results of
multi-body scatterings. These issues will be explored in the future.
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