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Heavy-ion collisions covering a wide range of collision energies provide a vast amount of observ-
ables characterizing the properties of strongly-interacting matter. In particular collisions towards
the high baryon-density regime of the QCD phase-diagram have become of interest to study the
postulated first order phase transition and to locate a possible critical end point. In this work,
the SMASH-vHLLE-hybrid is presented as a novel hybrid model to theoretically describe such
heavy-ion collisions. In addition, the SMASH hadron resonance gas equation of state is intro-
duced. The accuracy of the latter is shown to be of fundamental importance in order to conserve
energy, baryon number and electric charge throughout the different stages of the hybrid model.
Furthermore, the impact of an inaccurate equation of state on final state observables is discussed.
This work constitutes a first validation of the SMASH-vHLLE-hybrid in terms of conservation
laws and excitation functions. It is expected to be applied to a broader range of observables in the
future.
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1. Introduction

Heavy-ion collisions provide a unique opportunity to experimentally access QCD matter under
extreme conditions, that is high temperatures and/or baryon densities. Particularly the properties of
strongly-interacting matter at finite baryon densities, which are accessible through heavy-ion colli-
sions at low and intermediate energies, have become of interest in recent years to study a postulated
first oder phase transition and critical end point in the QCD phase diagram [1]. Dedicated heavy-
ion programs such as the BESII program at BNL, the NA61/SHINE experiment at CERN, FAIR
at GSI or NICA at JINR have already or will soon provide further experimental data in the des-
ignated region of interest [2]. Theoretically, heavy-ion collisions at high energies are successfully
described by hydrodynamics+transport models, while for those at low energies a pure transport de-
scription constitutes the standard approach [3]. For intermediate collision energies however, there
is no such standard description yet, but dynamically initialized hybrid approaches are a promising
candidate [4]. In this work we introduce a novel hybrid approach consisting of the state-of-the-art
hadronic transport model SMASH [5, 17] and the 3+1D viscous hydrodynamics code vHLLE [6].
The SMASH-vHLLE-hybrid was already successfully applied to study (anti-)proton annihila-
tion and regeneration in heavy-ion collisions [7]. In this study we further introduce the equation
of state of the SMASH hadron resonance gas down to an energy density of e = 0.01 GeV/fm3 and
demonstrate the importance of its accuracy in the context of conservation laws.
This work is structured as follows: In Sec. 2 the SMASH-vHLLE-hybrid is briefly decribed, with
an introduction to the SMASH hadron resonance gas equation of state in Sec. 2.1. Sec. 3 contains
an extensive discussion of quantum number conservation in the SMASH-vHLLE-hybrid as well
as its implications for final state observables. A brief summary and outlook are provided in Sec. 4.

2. Model Description

The SMASH-vHLLE-hybrid [20] is a novel modular hybrid approach consisting of the
hadronic transport approach SMASH [5, 17, 18], the 3+1D viscous hydrodnamics code vHLLE [6],
and the SMASH-hadron-sampler [8] 1. It can be applied to describe heavy-ion collisions
ranging from

√
sNN = 4.3 GeV to

√
sNN = 5.02 TeV.

In the SMASH-vHLLE-hybrid, the initial state is modeled by means of SMASH and extracted on
a hypersurface of constant proper time. This proper time is determined from nuclear overlap, i.e.
the passing time of the two nuclei, but is lower bound by τ0 = 0.5. Gaussian smearing, c.f. Table 1,
is applied to provide smooth initial conditions for the event-by-event hydrodynamic evolution [8].
The latter is performed relying on a chiral model equation of state [9] and utilizing the viscosities
and smearing parameters listed in Table 1. The medium is evolved until reaching a hypersurface
of constant energy density ecrit = 0.5 GeV/fm3, determined with the CORNELIUS subroutine [10].
Particlization of the fluid elements, according to the SMASH hadron resonance gas, is achieved
with the SMASH-hadron-sampler that effectively evaluates the Cooper-Frye formula [11].
The sampled particles are further evolved in SMASH and the final interactions performed. Note
that the thermodynamic properties of the fluid elements on the freezeout surface need to match the
SMASH equation of state, to assure conservation of quantum numbers across the sampling process.

1For this work, SMASH-2.0.2, vHLLE:bce38e0, and SMASH-hadron-sampler-1.0 are used.
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√
sNN [GeV] 4.3 6.4 7.7 8.8 17.3 27.0 39.0 62.4 130.0 200.0

η/s 0.2 0.2 0.2 0.2 0.15 0.12 0.08 0.08 0.08 0.08
R⊥ 1.4 1.4 1.4 1.4 1.4 1.0 1.0 1.0 1.0 1.0
Rη 1.3 1.2 1.2 1.0 0.7 0.4 0.3 0.6 0.8 1.0

Table 1: Shear viscosities (η/s), transverse Gaussian smearing parameters (R⊥), and longitudinal Gaussian
smearing parameters (Rη ) applied in this work for the hydrodynamical evolution of different collision en-
ergies. Note, that Pb + Pb collisions are simulated at

√
sNN = 6.4, 8.8, 17.3 GeV, Au + Au collisions at all

other energies.

This equation of state needs thus be determined from the SMASH hadron resonance gas to serve as
supplementary input for the hydrodynamic evolution.

2.1 The SMASH Hadron Resonance Gas Equation of State

The SMASH hadron resonance gas consists of all hadrons listed by the PDG [12] up to a mass
of 2.35 GeV. These degrees of freedom occupy the gas of hadrons at given energy density e, baryon
density nB, charge density nQ, and strangeness density nS according to their quantum numbers. As
a consequence, they define the corresponding thermodynamic quantities temperature T , pressure
p, baryon chemical potential µB, charge chemical potential µQ, and strangeness chemical potential
µS. The equation of state generally contains the mapping (e,nB,nQ,nS)→ (T, p,µB,µS,µQ) en-
capsulating the properties of the underlying gas of particles. For the determination of the SMASH
equation of state state however, we neglect the explicit dependence on the strangeness density nS,
for it can be approximated by nS = 0 fm−3 in the context of heavy-ion collisions. The SMASH
equation of state introduced in this work thus provides the mapping

(e,nB,nQ) → (T, p,µB,µS,µQ), (2.1)

It can be extracted by solving the set of coupled equations

T = T (e,nB,nQ)

µB = µB(e,nB,nQ)

µQ = µQ(e,nB,nQ)

µS = µS(e,nB,nQ),

(2.2)

where e,nB and nQ in turn depend on T,µB,µQ and µS. The solutions of Eqs. (2.2) can in principle
be determined numerically with a root solver. This solver is however highly-sensitive to the choice
of the initial approximation and sometimes fails to converge. Especially for low energy densities
(e < 0.1 GeV/fm3) and combinations of (e,nB) and (e,nQ) close to kinematic thresholds2, it is chal-
lenging to obtain a reliable result. As a consequence, the herein presented equation of state of the
SMASH hadron resonance gas is perfectly accurate for high e as well as low nB and nQ. In the

2The kinematic thresholds for nB and nQ stem from the composition of the gas. In the case of the SMASH hadron
resonance gas, the lightest baryon is the (anti-)proton with mp,p̄ = 0.938 GeV and the lightest charged particle is the pion
with mπ = 0.138 GeV. The physical region is thus restricted to e≥ mp |nB| and e≥ mπ |nQ|.
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Figure 1: Energy density (e), pressure (p) and entropy density (s) from the SMASH hadron resonance gas
equation of state (lines) in comparison to results from (2+1)-flavour lattice QCD by the HotQCD collabora-
tion (bands) [13].

problematic regions however, it constitutes an approximation3. The equation of state is cut below
e = 0.01 GeV/fm3, for lack of reliable solutions.
To validate the resulting SMASH equation of state, the temperature, pressure and entropy density
are compared to results from lattice QCD [13] in Fig. 1. Bands denote results from the HotQCD
collaboration in (2+1)-flavour QCD and lines the SMASH hadron resonance gas. A decent agree-
ment, similar to that presented in Fig. 5 of [13], is obtained in the low temperature regime.

In the following, two different kinds of the SMASH equation of state are used to demonstrate
the effect of small inaccuracies in the equation of state on the conservation of quantum numbers
as well as final state observables. The first equation of state relies solely on the root solver results
for Eqs. (2.2), without further modification, and is thus denoted the unmodified equation of state.
The second version of the equation of state contains the approximation in the problematic regions
mentioned above and is denoted the improved equation of state.

3. Results

In what follows, first results from the SMASH-vHLLE-hybrid are presented in terms of
excitation functions. First however, particular emphasis is laid on the conservation of quantum
numbers E (energy), B (baryon number) and Q (electric charge) throughout all stages of the col-
lision, i.e. all modules embedded in the hybrid. Note that, in contrast to e.g. [14, 15], the herein
presented results correspond to global and on average conservation of E,B, and Q. To emphasize
the importance of a well matching equation of state underlying the creation of the hydrodynamic
freezeout hypersurface, the SMASH-vHLLE-hybrid is applied in two setups utilizing (i) the un-
modified equation of state and (ii) the improved equation of state of the SMASH hadron resonance
gas. Although viscosities play an important role in hybrid models [8], we decided to restrict this
quantum number analysis to an ideal hydrodynamics setup.
In Figure 2, the evolution of the conserved quantities E (left), B (center), and Q (right) in the

3This approximation is obtained from varying grid spacings and initial guesses when solving Eqs. (2.2) in combi-
nation with averages over different interpolations based on those solver results that are reliable.
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Figure 2: Conservation of total energy (left), baryon number (center) and electric charge (right) throughout
all stages of the SMASH-vHLLE-hybrid. The leftmost ends corresponds to the initial state, the rightmost
ends to the final state. The upper row of plots originates from a setup with the unmodified equation of state,
while for the lower row of plots the improved equation of state of the SMASH hadron resonance gas was
used. See Sec. 2.1 for further details about these equations of state.

SMASH-vHLLE-hybrid are presented for heavy-ion collisions ranging from
√

sNN = 4.3 GeV
to
√

sNN = 200.0 GeV. The upper row corresponds to results obtained with the unmodified equation
of state and the lower row to those obtained with the improved equation of state. The subplots in
Fig. 2 display the total quantum number (E, B or Q) in each stage of the hybrid model, normalized
to its respective initial value. It can be observed that in the initial stage all quantum numbers are
perfectly conserved, while small violations of conservation laws become apparent in the hydro-
dynamic stage. They are however found to be of the order of < 6 % in all cases and are known
to stem from (i) the transition to Milne coordinates, resulting in the time-integration accuracy of
the associated source terms in each timestep to be finite, as well as from (ii) finite grid effects in
the creation of the particlization surface, since the grid size of the underlying equation of state is
also finite. In the next stage, the sampling process, the effects of a mismatching hadronic equation
of state become apparent. While for the unmodified equation of state severe violations of energy,
baryon number and charge conservation of up to 15% are observerd, those quantum numbers are
approximately conserved with the improved equation of state. Note that quantum number viola-
tions in case of the unmodified equation of state get more severe for lower collision energies. This
is related to the fact that the unmodified equation of state is especially troublesome at low energy
densities. The lower the collision energy, the larger the fraction of cells falling into the problem-
atic region, such that their relative contribution to the total quantum numbers E,B and Q is higher.
In the afterburner stage all quantum numbers are again perfectly conserved, as quantum number
conservation is enforced in SMASH . Summarizing the findings in Fig. 2, a well matching hadronic
equation of state at the particlization interface is of fundamental importance to fulfil conservation
laws. Relying on the improved equation of state, the latter are violated by no more than 7% in
the SMASH-vHLLE-hybrid across a large range of collision energies, which is considered an
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Figure 3: Midrapidity yield (left) and mean pT (right) excitation function of π−, p and K−, as obtained
within the SMASH-vHLLE-hybrid utilizing the unmodified equation of state (solid lines) and the im-
proved equation of state (dashed lines). The experimental data is collected from [16].

important validation of the model.
To further demonstrate the impact of a mismatching equation of state on final state observables,
the midrapidity yield and mean pT excitation functions of π−, p and K−, up to

√
sNN = 20 GeV,

are presented in Fig. 3. Note that, in contrast to the previous study, the shear viscosities listed in
Table 1 are applied in the hydrodynamic evolution. It can be observed that the midrapidity yields
are noticeably increased once relying on the improved equation of state, while the mean transverse
momenta are insensitive. The increase of the former can be quantified to up to 8% at low colli-
sion energies, but decreases as collision energies rise. This is in line with above observations of
a matching equation of state being of greater importance for collisions at lower energies. It shall
further be noted that the resulting excitation functions for midrapidity yields as well as mean trans-
verse momenta are in good agreement with experimental data, thus further validating the presented
approach.

4. Conclusions

In this work, a novel hybrid model, the SMASH-vHLLE-hybrid, was introduced. It is suit-
able to describe heavy-ion collisions ranging from

√
sNN = 4.3 GeV to

√
sNN = 5.02 TeV. Therewith,

we pointed out the fundamental importance of a well matching equation of state in the particliza-
tion process to ensure quantum number conservation. We demonstrated that energy, baryon num-
ber, and electric charge conservation are violated by no more than 7% in an ideal hydrodynamics
setup of the SMASH-vHLLE-hybrid, which is related to finite grid effects in the hydrodynamic
stage upon transition to Milne coordinates and creation of the particlization surface. In addition,
multiplicity and mean pT excitation functions were presented for π−, p, and K−, where only the
former was sensitive to the choice of the equation of state, but both were in decent agreement with
experimental data.
These results provide a first validation of the novel SMASH-vHLLE-hybrid at low and interme-
diate collision energies. In continuation, it can be applied to a broader range of energies and observ-
ables to subsequently be confronted with experimental data. Furthermore, the SMASH-vHLLE-
hybrid can be extended by more dynamical initial conditions, as for example realized in [4], to
better capture the underlying dynamics of low-energy collisions.
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