

PoS

Muonic X-ray measurements at PSI with medium and high-Z nuclei

F. Wauters for the *muX* collaboration^{*a*,*}

^aPRISMA+ Cluster of Excellence and Institute of Nuclear Physics, Johannes Gutenberg Universität Mainz, Mainz, Germany

E-mail: fwauters@uni-mainz.de

Muonic atoms are an outstanding tool to study short range muon-nuclear interactions and to probe various nuclear moments. The *muX* experiments deploys a high-purity germanium detector array at the Paul Scherrer Institute in Switzerland to measure the *muonic* X-rays which are emitted during the formation of a muonic atom. In addition, novel gas-targets are deployed enabling a precise measurement of the characteristic X-rays with a target of only a few micrograms. The experiments aims to measure transitions of interest for atomic parity violation, and to determine the charge radius of radioactive isotopes such as ²⁴⁸Cm and ²²⁶Ra.

*** The 22nd International Workshop on Neutrinos from Accelerators (NuFact2021) *** *** 6–11 Sep 2021 *** *** Cagliari, Italy ***

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. The *muX* experiment

A muonic atom is formed when a negative muon comes to rest in a material, where it quickly gets captured by a nearby atom in a high n atomic orbital. When this exotic atom de-excites the energy is initially transferred to Auger electrons. The last few steps down are dominated by radiative (mostly) E1 transitions, i.e. muonic X-rays, with an energy of a few keV for the lightest nuclei up to several MeV for heavy nuclei. The atomic capture and cascade process occurs on a (sub)nanosecond timescale, therefore, to most radiation detectors, the emitted radiation appears as prompt relative to a muon stopping in a target.

The muon atomic and nuclear wave function significantly overlap due to the relatively large mass of the muon. Therefore, this system is an effective tool to study short range muon-nucleon/nucleus interactions and to measure various nuclear moments. Muonic atoms have been used to determine the absolute nuclear charge radii of most stable nuclei by measuring the 2p - 1s transition energy [1], most recently by the CREMA collaboration [2–4] for the lightest nuclei. The *muX* experiment aims to extend this to rare and long-lived radioactive isotopes, starting with ²⁴⁸Cm and ²²⁶Ra [5]. Radium is a prime candidate for Atomic Parity Violation (APV) experiments, using laser spectroscopy on trapped ions [6–8]. For such a measurement, an accurate charge radius will serve as an important input to relate the experimentally accessible parity-non conserving E1 amplitude of the transition of interest to the weak charge of the nucleus. In addition, the *muX* collaboration is performing a feasibility study for a possible APV experiment with muonic X-rays [9], and the apparatus is being used by a series of projects in material science [10] and nuclear physics [11, 12]. A first physics result of the project was a measurement of the quadrupole moments of ¹⁸⁵Re and ¹⁸⁷Re derived from the hyperfine structure of the 5g - 4f muonic X-ray transition [13].

1.1 Experimental apparatus

The *muX* experiment (figure 1) is running at the π E1 secondary muon beamline at the Paul Scherrer Institute (PSI), which provides a DC beam of a few $10^4 \ \mu^-/s$ with typical momenta in the range of 20-40 MeV/c. Thin in-vacuum scintillating detectors record the arrival times of the individual muons before they get stopped in a dedicated target (Sec. 1.2). The target is surrounded by Michel-electron detectors and an array of 10 to 15 high-purity germanium detectors, resulting in a 2 to 3 % full-energy peak efficiency at 1 MeV. A sketch of the detector setup in shown in figure 2. All detector signals above threshold pass through a digital-signal processing stage, physics events are reconstructed offline in software.

1.2 Transfer target

The muon beam arriving at the apparatus has a too large momentum to be stopped in the amount of target material available when working with radioactive elements, e.g. 5 μ g in the case of ²²⁶Ra. The collaboration has developed a novel method, where muons are stopped in a 100 bar H₂ target, with a small admixture of D₂. Through a series of transfer reactions the muon is transported to the target material mounted at the back of the cell as shown in figure 3, hereby exploiting the Ramsauer-Townsend effect which causes H₂ gas to become almost fully transparent for μ d atoms with a few eV of kinetic energy [14–16]. It was shown that a total stopping and transfer efficiency per muon of about 1 percent can be achieved for a 5 μ g gold target. (figure 4).

Figure 1: The *muX* experiment deployed at the π E1 beam line. For the 2019 experimental run, the MiniBall array with eight cluster detectors complemented by a 70 % coaxial detector and a low-energy planar detector were deployed. The target is mounted directly on the end of the beam line, surrounded by muon and electron detectors.

Figure 2: The muX setup, with 1) the μ^- beam passes through 2) a veto and 3) a 200 μ m thick μ -detector detector. The cell with 4) a 600 μ m CF window supported by a Ti grid holds 5) 100 bar of hydrogen gas. The 6) target is mounted in the back. 7) Electron detectors. 8) Standard and 9) MiniBall cluster HPGe detectors.

2. Radioactive target measurements

In 2019, the full MiniBall high-purity germanium array [17] was deployed at PSI (see figure 1) for a series of muonic X-ray measurements. After a transfer efficiency optimization with a gold target, a first campaign with radiative targets was conducted. For this method, it is essential to produce uniform targets where the atoms are deposited on or near the surface. Several ²⁴⁸Cm and ²²⁶Ra targets were produced combining a custom electro-deposition technique with a novel drop-on-demand method where micro-drops of activity in solution are deposited on glassy carbon disks, the low-Z backing material of the target [18]. This first batch of targets turned out to be sub-optimal, nevertheless, a clear muonic X-ray spectrum was obtained from a 15 μ g curium target. Figure 5 shows the 2p - 1s muonic X-ray spectrum of ²⁴⁸Cm after background subtraction. The ground state of this nucleus has spin 0, the atomic levels of muonic Cm however also mix with the lowest excited nuclear states, which leads to a complicated dynamic hyperfine structure in the spectra [19] which can only be fully understood by state of the art QED calculations [20]. When extracting the nuclear charge radius from the data, theoretical uncertainties on in the transition energy caused by e.g. the two-photon exchange nuclear polarization [21–23] will dominate the experimental uncertainties.

3. Atomic parity violation with muonic X-rays

Muonic atoms are a long-standing candidate to measure APV through the M1-E1 mixing in the 2s - 1s radiative transition [24, 25]. For Z \approx 30 nuclei, this parity non-conserving transition has a

Figure 3: 1) Muons stopping in our target form a μp Figure 4: Gold muonic X-ray energy versus time atom. 2) In O(100) ns, the muon transfers to deuterium, spectrum for a 5 μ g target. X-rays from direct muon gaining 45 eV in kinetic energy. 3) At an energy of stops appear at time 0 ns, the Gold X-rays appear a few eV the μ d-H₂ scattering cross section becomes over 100 ns, the typical timescale of the transfer negligibly small, and the μ d atom travels freely until it processes. The back ground mainly consists of decay hits our target, where 4) the muon transfers to a high-Z electrons, and neutrons emitted after nuclear muon atom.

capture.

Figure 5: The hyperfine structure of the 2p - 1s transitions in the background-subtracted muonic X-ray spectrum ²⁴⁸Cm. The fitting model is based on a data-driven line-shape combined with detailed QED calculations with the nuclear charge-radius and a global energy offset as free parameters.

Figure 6: The 2s - 1s full energy peak of muonic Kr at 2.22 MeV on the Compton background of (n > 2)p - 1s transitions. The background from radiation from muon decay and nuclear capture processes is subtracted.

relative large branching ratio of $O(10^{-4})$ in the cascade. A precision APV measurement is however challenging because of a considerable background from scattered (n > 2)p - 1s X-rays, Michel electrons, and neutrons and γ -radiation emitted after muon capture. The muX collaboration aims to isolate the 2s - 1s transition and significantly improve the signal-to-background to determine the reach of a possible APV experiment.

A clear single-photon 2s - 1s peak was observed for the first time utilizing a gaseous Kr-H₂ target. After the formation of μ H, the muon transfers to a nearby Kr atom at a low orbital quantum number l [26]. Starting the cascade at a low initial l enhances the 2s population by a factor ~ 3 . The 2s - 1s transition in the muonic X-ray spectrum of Kr obtained during a 1 week measurement is shown in figure 6, where a signal-to-background ratio of about 1/10 was achieved. It is currently under investigation how to improve the signal quality by using photon-photon correlations in the cascade.

With the observed yield, a μ APV experiment with a sensitivity of 10^{-3} - 10^{-4} to a parity-odd observable can be envisioned at a high-intensity muon beamline [27], meaning a O(1) Standard Model test [28, 29]. A larger parity-violating amplitude of 10^{-2} - 10^{-3} is expected for low-Z nuclei [24], in principle allowing for a more sensitive experiment. However, due to competing Auger transitions and small energy differences between the different X-ray transitions, isolating the 2s - 1s transition becomes a challenge and requires novel target and detector developments [27, 30].

4. Future measurement program

The *muX* collaboration is improving the target production e.g. by shallow implantation of the 226 Ra activity in glassy carbon target at a depth of a few tens of nanometers, still in the range of the diffusing μ d atoms. In addition, the program will be extended to other radioactive elements, aiming to measure the third of three isotopes of odd Z-elements needed to calibrate the vast amount of isotope shift data available from laser spectroscopy on radioactive elements [31]. The first series of experimental campaigns in 2017-2019 have also prompted renewed efforts at PSI among which a project which will measure partial ordinary muon capture rates on nuclei of interest for neutrinoless double β – *decay* searches [11, 32], and a new facility for elemental analysis [10] is being installed at the π E1 beam area in close collaboration with *muX*.

This work was supported by the Paul Scherrer Institute through the Career Return Program, by the Swiss National Science Foundation through the Marie Heim-Vögtlin grant No. 164515 and the project grant No. 200021165569, by the Cluster of Excellence "Precision Physics, Fundamental Interactions, and Structure of Matter" (PRISMA EXC 1098 and PRISMA+ EXC2118/1) funded by the German Research Foundation (DFG) within the German Excellence Strategy (ProjectID 39083149), and by the DFG under Project WA 4157/1. We wish to thank all collaborating institutions providing essential instrumentation such as high-purity germanium detectors¹.

References

- G. Fricke, C. Bernhardt, K. Heilig, L. Schaller, L. Schellenberg, E. Shera et al., Nuclear ground state charge radii from electromagnetic interactions, Atomic Data and Nuclear Data Tables 60 (1995) 177.
- [2] R. Pohl et al., Laser Spectroscopy of Muonic Atoms and Ions, JPS Conf. Proc. 18 (2017) 011021 [1609.03440].
- [3] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, J. M. R. Cardoso et al., Proton Structure from the Measurement of 2S – 2P Transition Frequencies of Muonic Hydrogen, Science 339 (2013) 417.
- [4] J. J. Krauth et al., *Measuring the* α *-particle charge radius with muonic helium-4 ions, Nature* **589** (2021) 527.

¹⁷ compact coaxial detectors from the French/UK loan pool we used during the 2017-2018 campaigns https://gepool.in2p3.fr/

- [5] A. Knecht, A. Skawran and S. M. Vogiatzi, *Study of nuclear properties with muonic atoms*, *Eur. Phys. J. Plus* **135** (2020) 777 [2004.03314].
- [6] M. Nuñez Portela et al., Towards a precise measurement of atomic parity violation in a single Ra⁺ ion, Hyperfine Interact. 214 (2013) 157.
- [7] M. Fan, C. Holliman, A. Wang and A. Jayich, *Laser Cooling of Radium Ions*, *Phys. Rev. Lett.* 122 (2019) 223001 [1901.09882].
- [8] L. W. Wansbeek, B. K. Sahoo, R. G. E. Timmermans, K. Jungmann, B. P. Das and D. Mukherjee, *Atomic parity nonconservation in ra*⁺, *Phys. Rev. A* 78 (2008) 050501.
- [9] FREDERIK WAUTERS, MUX collaboration, F. Wauters and A. Knecht, *The muX project*, *SciPost Phys. Proc.* 5 (2021) 022 [2108.10765].
- [10] "Muon induced x-ray emission (mixe) project." https://www.psi.ch/en/smus/muon-induced-x-ray-emission-mixe-project.
- [11] D. Zinatulina, V. Brudanin, V. Egorov, C. Petitjean, M. Shirchenko, J. Suhonen et al., Ordinary muon capture studies for the matrix elements in ββ decay, Phys. Rev. C 99 (2019) 024327.
- [12] T. E. Cocolios, Absolute charge radii of radioactive isotopes measured by muonic x-ray spectroscopy at PSI, tech. rep., CERN, Geneva, May, 2020.
- [13] A. Antognini, N. Berger, T. E. Cocolios, R. Dressler, R. Eichler, A. Eggenberger et al., Measurement of the quadrupole moment of ¹⁸⁵Re and ¹⁸⁷Re from the hyperfine structure of muonic x rays, Phys. Rev. C 101 (2020) 054313.
- [14] TRIUMF MUONIC HYDROGEN COLLABORATION collaboration, F. Mulhauser, A. Adamczak, G. A. Beer, V. M. Bystritsky, M. Filipowicz, M. C. Fujiwara et al., *Ramsauer-townsend effect in muonic atom scattering*, *Phys. Rev. A* 73 (2006) 034501.
- [15] A. Adamczak and J. Gronowski, *Diffusion radius of muonic hydrogen atoms in H-D gas*, *Eur. Phys. J. D* 41 (2007) 493 [physics/0609146].
- [16] A. Adamczak, Differential cross sections for muonic atom scattering from hydrogenic molecules, Phys. Rev. A 74 (2006) 042718 [physics/0608243].
- [17] N. Warr et al., The Miniball spectrometer, Eur. Phys. J. A 49 (2013) 40.
- [18] R. Haas, S. Lohse, C. Düllmann, K. Eberhardt, C. Mokry and J. Runke, Development and characterization of a drop-on-demand inkjet printing system for nuclear target fabrication, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 874 (2017) 43.
- [19] D. Hitlin, S. Bernow, S. Devons, I. Duerdoth, J. W. Kast, E. R. Macagno et al., *Muonic atoms. i. dynamic hyperfine structure in the spectra of deformed nuclei*, *Phys. Rev. C* 1 (1970) 1184.

- [20] N. Michel and N. S. Oreshkina, *Higher-order corrections to the dynamic hyperfine structure of muonic atoms*, *Phys. Rev. A* 99 (2019) 042501 [1809.06623].
- [21] P. Bergem, G. Piller, A. Rueetschi, L. Schaller, L. Schellenberg and H. Schneuwly, *Nuclear polarization and charge moments of Pb-208 from muonic x rays*, *Phys. Rev. C* 37 (1988) 2821.
- [22] A. Haga, Y. Horikawa and Y. Tanaka, Nuclear polarization in muonic Pb-208, Phys. Rev. A 66 (2002) 034501.
- [23] I. A. Valuev, G. Colò, X. Roca-Maza, C. H. Keitel and N. S. Oreshkina, Evidence against nuclear polarization as source of fine-structure anomalies in muonic atoms, 2201.09638.
- [24] J. H. Missimer and L. M. Simons, The Neutral Weak Current of the Muon, Phys. Rept. 118 (1985) 179.
- [25] G. Feinberg and M. Chen, The $2S_{(1/2)} \rightarrow IS_{(1/2)} + 1$ Photon Decay of Muonic Atoms and Parity Violating Neutral Current Interactions, Phys. Rev. D 10 (1974) 190.
- [26] A. Skawran, Development of a new method to perform muonic atom spectroscopy with microgram targets, Ph.D. thesis, Zurich, ETH, 2021. 10.3929/ethz-b-000489410.
- [27] M. Aiba et al., Science Case for the new High-Intensity Muon Beams HIMB at PSI, 2111.05788.
- [28] B. Batell, D. McKeen and M. Pospelov, *New parity-violating muonic forces and the proton charge radius, Phys. Rev. Lett.* **107** (2011) 011803.
- [29] D. McKeen and M. Pospelov, *Testing Parity with Atomic Radiative Capture of* μ^- , *Phys.Rev.Lett.* **108** (2012) 263401.
- [30] K. Kirch, D. Abbott, B. Bach, P. DeCecco, P. Hauser, D. Horváth et al., *Metastability of the muonic boron 2S state*, *Phys. Rev. Lett.* 78 (1997) 4363.
- [31] B. Cheal, T. Cocolios and S. Fritzsche, *Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations*, *Phys. Rev. A* **86** (2012).
- [32] L. Jokiniemi and J. Suhonen, Comparative analysis of muon-capture and 0vββ-decay matrix elements, Phys. Rev. C 102 (2020) 024303.