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A guide to these lecture notes

These notes are a brief introduction to fuzzballs, microstate geometries, and their role as
compact objects in gravitational phenomenology for precision black hole observations. They are
based on lectures I gave at the XVII Modave Summer School in Mathematical Physics in September
2021.

These notes are emphatically not meant as an alternative to more comprehensive lecture notes,
such as [1] and [2] for multi-centered bubbled geometries, or [3] for superstrata. Rather, if [1–3]
are the “manual” for these geometries, then these notes should be seen as the “Quick start guide”:
a practical collection of some of the most pertinent material that one needs to understand and start
working with these geometries. (Note that, despite the length of this entire document, the main part
— Section 1 introducing fuzzballs and Section 2 discussing multi-centered geometries — is under
20 pages.)

It is also not necessary to go through these entire notes, or even to go through each section
sequentially; the reader can pick and choose the topics which they are interested in learning about.

These notes are also complementary to my review [4] on “Fuzzballs & Observations”, which
is an overview of fuzzball phenomenology, meant to introduce the relevant concepts and ideas
(both in fuzzballs and in phenomenology) without too many technical details of the geometries.
By contrast, these notes give precisely the minimal technical details necessary to actually start
performing concrete calculations with microstate geometries.

Section 1 introduces the fuzzball paradigm, discussing mechanisms and concepts that lie at
the basis of the existence of microstructure. The multi-centered bubbling geometries are derived
and discussed in Section 2. Superstrata are discussed in Section 3, albeit with quite a bit less
detail. Section 4 discusses applying fuzzballs and horizon-scale microstructure to observations and
gravitational phenomenology.

The appendices collect some additional information. Appendix A is a brief overview of
some concepts in string theory that arise frequently in the discussion of fuzzballs. Appendix B
is a reference containing all the necessary information to construct multi-centered solutions (from
Section 2). AppendixC is a collection of six exercises (including solutions), most onmulti-centered
geometries and some of their more important properties.
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1. The Fuzzball Paradigm

In this Section, we will describe the fuzzball paradigm, its motivation, and some of its aspects
and limitations. The main relevant references (and suggested further reading) are: [5] for Section
1.1; [6, 7] for Section 1.2; [2] (especially Section 6 therein) for Section 1.3; [8] for Section 1.4; and
[4] (especially Section 2.3 therein) for Section 1.5.

1.1 Introduction: The information paradox

A black hole can be formed by the violent collapse of matter, or the merging of dense objects. A
horizon forms and grows, masking the collapsing or merging matter behind it. After its formation,
the resulting black hole will then quickly relax to a stationary state. Various uniqueness theorems
in general relativity tell us that the resulting stationary black hole is only characterized by its mass
and angular momentum (and possibly charge).

If the universe was classical, the story of the black hole’s evolution would end here. However,
quantum mechanically, the black hole has a temperature and emits Hawking radiation. We can
derive the presence and properties of this radiation by considering quantum fields on a (fixed!) black
hole background. Since the radiation is thermal, it is entirely featureless and does not contain any
information: its temperature is solely determined by the properties of the black hole — from black
hole uniqueness, this means just its mass and angular momentum. Hawking radiation is a very small
effect, but if we imagine waiting for a very long time, the black hole should fully evaporate into this
thermal, informationless radiation. We are left with no black hole, and only thermal radiation that
contains no information. See Fig. 1 for a depiction of the black hole evolution.

Figure 1: The naive black hole evolution picture which leads to the information paradox. (a) Matter
collapses. (b) A horizon is formed (the dotted line) and the new black hole relaxes to a stationary state; the
singularity at the center has also already formed. (c) Once in its (classically) stationary state, the black hole
only changes by radiating thermal Hawking particles (in red) from its horizon region. (d) After a long time,
the black hole has entirely evaporated, and we are left with only the informationless Hawking radiation.

Where did the information from inside the black hole go? In quantummechanics, time evolution
should be unitary: if we know the final state, we should (at least in principle) be able to reconstruct
the initial state. Here, the final state is just thermal radiation; it does not distinguish between the
many different initial states fromwhich the black hole could have formed. Hawking radiation seems
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to suggest information loss, whereas unitarity in quantum mechanics preserves information. This
is the information paradox for black hole horizons.

Clearly, something must be wrong with the above picture in order for unitarity to be preserved
and information loss to be prevented. A first logical guess would be that Hawking’s calculation
can receive small corrections in a full quantum gravity calculation, where also the black hole
background geometry changes as it radiates. Unfortunately, performing such a calculation is not
quite in our reach. However, we do have Mathur’s theorem, which tells us that small corrections to
Hawking radiation are not enough to prevent information loss. No matter what the full quantum
gravity calculation would be, it must either result in information loss, or show that there are large
corrections to physics at the horizon scale of the black hole.1

Specifically, followingMathur [5, 9], there are roughly three options that are possible to resolve
the information paradox:

• The existence of remnants: After a long time of radiating, the black hole becomes Planck
sized. At this point, it is too small to be reliably described by a geometry in general relativity
— quantum fluctuations on this geometry would be as large as the object itself. Perhaps
Hawking’s radiation breaks down entirely there, and the left-over “remnant” black hole stops
radiating. This remnant could then carry all the information that was originally contained in
the black hole. In this picture, the resolution to the information paradox is that information
is trapped in the remnant, but not lost.

While logically possible, this remnant scenario is not very attractive: it would require that a
Planck sized object is able to carry an arbitrarily large amount of information (since the initial
black hole was arbitrarily large). There are also arguments from AdS/CFT that indicate this
scenario is unlikely or even impossible [9].

• Non-local corrections: Mathur’s theorem tells us that small, local corrections to the physics
at the horizon scale are not enough. This does not preclude the possibility of non-local
corrections in quantum gravity — however small — that could alter the near-horizon physics
in such a way that the information paradox is resolved.

String theory, and especially holography, has given us plenty of evidence that quantum
gravity must have inherent non-localities [10]. These often manifest in subtle ways, so that a
semi-classical (local) limit is still possible without contradictions. There are also a number of
proposals for how non-local quantum corrections at the horizons of black holes couldmanifest
themselves. For example, the Papadodimas-Raju paradigm [11–14] is a concrete calculation
in holography for a large, asymptotically AdS black hole. Here, it can be shown in a rigorous
fashion that the degrees of freedom behind the horizon are essentially a non-local reshuffling
of the degrees of freedom outside the horizon. More recently, the “island” proposal [15–19]
is based on similar ideas. There is also Giddings’ proposal of “non-violent non-locality”
[20–25].

1Note that Hawking radiation is all about the horizon-scale physics. The “normal” horizon-scale physics can be
summarized by the assumption that the horizon in general relativity is “not a special place”; it is in a vacuum state from
the point of view of an infalling observer. This is essentially the main ingredient needed to be able to derive that Hawking
radiation is being emitted from the black hole.
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• Large corrections at the horizon scale: If small corrections to horizon-scale physics are not
enough to resolve the information paradox, then there must be large corrections!

The latter option is the heart of the fuzzball proposal: we replace the horizon by something else
entirely— specifically, by quantum, stringy fuzz that exists and manifests itself at the horizon scale
(see Fig. 2). If we look at the fuzzball from far away, we should see something that looks very much
like a black hole; only when we get close enough to the would-be horizon to probe the actual fuzzy
structure that exists there, will we start seeing measurable differences from black hole physics.2

Figure 2: A black hole (left), with a horizon and a singularity at its center. A fuzzball (right), by contrast,
has no singularity and no horizon, but instead consists of quantum, stringy “fuzz” that extends all the way to
the would-be horizon scale.

It is useful to point out that the above options of resolving the information paradox — non-
locality and large corrections such as fuzzballs3 — are usually phrased as exclusive options, where
either one or the other can be correct, but not both. My opinion is that the truthmay bemore subtle; it
is quite possible that the different ideas are not completely mutually exclusive, but rather highlight or
approach different aspects of the same issue. For example, the complete lack of horizon in fuzzballs
could be seen as interpreting the “interior” degrees of freedom of the black hole as a non-local
“reorganizing” of the degrees of freedom on the “exterior” — this starts to sound like non-locality.
In any case, no matter which paradigm has your preference, it is certainly always meaningful to find
out what can be learned, reinterpreted, or understood from alternative approaches to resolving the
information paradox.

1.2 Microstates and ensembles

Let’s put our musings on the information paradox aside for a moment, together with our
expected large corrections at the black hole horizon scale. Instead, let’s turn our focus to black hole
entropy. It is well-known that black holes must have an entropy SBH, and moreover that this entropy
must be proportional to its area:4

SBH =
ABH
4GN

. (1)

2However, note that the idea of “fuzzball complementarity” would imply that only high-energy observers would be
able to “see” the effects of the microstructure and have a different experience from the usual black hole infall [26–30].

3Firewalls [31] are also an example of introducing large corrections at horizon scales.
4If a black hole horizon did not carry entropy, then the irreversibility of entropy increase would be violated when

we throw something with a finite entropy into a black hole. See the introduction of [7] for more discussion; the original
argument is from Bekenstein [32].
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This is a very curious formula. In conventional systems, entropy is an extensive quantity that scales
with the volume of space instead of the area (of the space’s boundary). The situation becomes even
more curious when we consider the microscopical implications. In the microcanonical ensemble at
a given energy, statistical mechanics tells us that thermodynamic entropy Sth arises from counting
the number Nmicro of different microscopic states that are in this ensemble: Sth = kB ln Nmicro. So
if black holes have entropy, then we should be able to interpret a black hole as a thermodynamic
ensemble of microstates. What are these black hole microstates?

(a) gs � 1 (b) gs � 1

Figure 3: The two dual pictures describing the D1-D5-P system at different couplings. At weak coupling
gs � 1, the branes are rigid and the system is captured by an ensemble of CFT states which describes the
string excitations on these branes. (The string endpoints can be both on the D1 brane, both on the D5 brane,
or one on each the D1 and D5 branes.) At strong coupling gs � 1, the system is described by the D1-D5-P
black hole geometry in supergravity.

Holography gives us some insight into this problem, with the famous Strominger-Vafa calcula-
tion [6] — this actually preceded Maldacena’s seminal “discovery” of AdS/CFT holography [33],
but in hindsight is a prime example of the holographic duality. Consider a stack of coincident D1
and D5 branes, which share a common direction along which we also allow a momentum charge P
to run; see Fig. 3. We have N1, N5, NP units of quantized D1, D5, and P charge, respectively. We
can consider this system either at low string coupling, gs � 1, or strong coupling, gs � 1; in either
case, we have a description which captures its physics:

• Strong coupling gs � 1: The system can be described in supergravity by the D1-D5-P black
hole. This is a black hole with entropy SD1-D5-P = 2π

√
N1N5NP.

• Low coupling gs � 1: A description of this system is obtained by considering the possible
excitations of the strings that stretch between the different D1 and D5 branes. This gives
rise to a effective description by a conformal field theory called the D1-D5 CFT. This is a
quantum field theory without gravity. In particular, we are interested in the states in this CFT
that correspond to a given momentum charge NP. Counting these states, we find that there
are ∼ exp (SD1-D5-P) such states.

The holographic “duality” is then the realization that these two descriptions are really just two faces
of the same coin — one valid at weak coupling, and one at strong coupling.5

5To be able to relate the counting in the CFT at low coupling to the (black hole entropy) counting in supergravity at
strong coupling, another crucial ingredient is the supersymmetry of this system. This ensures that the states that we are
counting are protected as we move from low to high coupling [34].
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The Strominger-Vafa counting gives us some insight into what a black hole microstate should
be. The D1-D5-P black hole in supergravity corresponds (using holography) to a thermal ensemble
in the dual CFT. The dual of the black hole is then the whole ensemble of microstates in the CFT.
However, using the holographic correspondence in the opposite direction, we should also be able to
identify a gravitational dual for each individual microstate in the CFT.What are these (gravitational)
black hole microstates?

The answer is simple: each individual gravitational black hole microstate is a fuzzball. (For
simplicity, we can take this as our definition of “fuzzball” [35].) Every one of these fuzzballs should
be entirely horizonless: if a fuzzball itself had a horizon, then it would again have a non-zero entropy
(just like the black hole does) and so would not correspond to a single microstate. Once again, we
are led to the conclusion that fuzzballs must have large deviations at the (would-be) horizon scale
of a black hole — to ensure that fuzzballs are altogether horizonless!

A black hole exists as a well-behaved object in (super)gravity. However, a priori there is
no reason to expect or hope that all fuzzballs would similarly exist as geometric objects. In
general, fuzzballs should and will be quantum, stringy objects that are not well described by a
metric or anything resembling a (semi-)classical geometry. However, some fuzzballs are semi-
classical coherent states — very much like the coherent states of the harmonic oscillator — that are
captured by geometric solutions in supergravity. These geometric fuzzballs must be horizonless and
entirely smooth (i.e. without curvature singularities); such coherent fuzzballs are called microstate
geometries [35]. These geometries represent an exciting window into the microscopics of black
holes, since we are able to write down these geometries explicitly in supergravity and study their
properties.

1.3 How is horizon-scale microstructure possible?

We have now formed an idea of black holes in string theory as thermodynamic ensembles
of horizonless microstates or fuzzballs. As mentioned above, we certainly don’t expect all such
fuzzballs to be nice, geometric objects— but (hopefully) there should be some that can be described
as a classical solution in some supergravity theory, i.e. microstate geometries. These geometries
should look like a black hole from far away, but should not have a horizon and should instead exhibit
some kind of “microstructure” when we get close to the (would-be) horizon scale.

Any object with mass or energy has a tendency to gravitationally contract. Buchdahl’s theorem
[36] tells us that well-behaved matter, under reasonable assumptions, has to extend to (9/8)rS ,
where rS is its Schwarzschild radius — if we compress the matter any further, it will unavoid-
ably collapse and form a black hole. Microstate geometries should be much more compact, and
have microstructure much closer to the would-be horizon scale. So how is such horizon-scale
microstructure possible, without it wanting to collapse?6

String theory provides remarkable mechanisms that support such horizon-scale microstruc-
ture. We will consider two closely related phenomena to give us some insight into what fuzzball
microstructure is made of.

6This is actually a problem for many exotic compact objects or horizonless black hole mimickers which do not arise
from a top-down construction; they often suffer a trade-off between compactness and stability. See further in Section 4.1.
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1.3.1 Branes dissolved in flux

What is a source?
This question likely evokes an image of a particle or other object that carries a given charge

— for example, an electromagnetically charged particle such as an electron. In this case, the object
itself is a singularity (usually point-like, in the case of a particle) in the theory; a potential or field
will diverge (V ∼ q/r or E ∼ q/r2) at the location of the charge. This divergence or singularity
at the source tells us our theory breaks down at the location of the source and cannot be trusted
arbitrarily close to it. In gravity, the analogue of such source singularities are curvature singularities
such as those at the center of a black hole; these are natural places to expect large quantum and
stringy corrections.

Figure 4: A localized, singular point source (left), and a “source dissolved in flux” (right).

Branes in string theory are extended objects that carry certain string theoretic charges. For
example, a Dp-brane is an electric source for a Ramond-Ramond (RR) (p + 1)-form potential and
thus a (p + 2)-form field strength. Solutions in supergravity that represent simple branes exhibit
singularities both in these RR fluxes and in the spacetime curvature at the location of the branes.

However, branes can also undergo a remarkable phenomenon called a “geometric transition” [2],
where they become entirely “dissolved in flux”; see Fig. 4. In essence, string theory can “resolve”
brane singularities by changing the topology of spacetime to carry non-trivial topological cycles
with electromagnetic fluxes on them. This remarkable phenomenon ensures that the spacetime still
carries the same brane charge (as can be calculated, say, by a Gaussian flux integral at infinity),
but without this charge actually being localized anywhere. The charge is “dissolved” into the very
geometry of the spacetime itself — and as a result, the geometry is entirely smooth and without
singularities.

1.3.2 The supertube transition

A closely related phenomenon is the supertube transition. Consider a string (an “F1-brane”)
which has D0-brane “beads” located on it. (D0-branes are like “particles” with no spatial extent.)
This is a perfectly acceptable, supersymmetric configuration in string theory, and is singular at the
location of the string.

However, another configuration that is allowed and carries the same (F1 and D0) charges is the
supertube [37]: a D2-brane which is shaped like a cylinder and carries electromagnetic fluxes living
on its worldvolume; see Fig. 5. Because the D2 brane is cylindrically shaped, there is actually
no net D2-brane charge at infinity — this configuration only carries D2 “dipole” charge. The
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Figure 5: The supertube transition: on the left, we have a (singular) configuration of an F1-string with
D0-brane “beads” along it. After the “puff up”, we no longer have any localized F1 or D0 sources. Instead,
we have a D2-brane dipole (here, with a circular profile) with electromagnetic fluxes on its worldvolume.
These fluxes ensure the supertube carries the same F1 and D0 charges as in the left picture.

electromagnetic fluxes on the D2 brane ensure that it does carry F1 and D0 charges, but also has the
added benefit of preventing the D2-brane from contracting. If there would be no fluxes, the D2 brane
would simply contract along the circular direction due to its own gravitational weight. However, the
fluxes on the brane’s worldvolume keep it from doing so — the electromagnetic repulsion precisely
counteracts the gravitational attraction. Said differently, the electromagnetic fields on the D2-brane
worldvolume give the D2 brane an intrinsic angular momentum (of the electromagnetic ®E× ®B type),
and the resulting centrifugal force of the spinning D2 brane counteracts the gravitational attraction.

This transition from branes to a supertube carrying brane charge is sometimes colloquially
called a “puff up”. Note that in the puffed up D2 supertube, the F1- and D0-brane charges are no
longer localized: they are entirely “dissolved” in the electromagnetic fluxes on the D2 brane. The
supertube transition is thus precisely an example of branes dissolving in flux in string theory! We
will revisit this supertube puff up transition in a different brane system in Section 3.2.

1.3.3 Horizon-scale microstructure

The supertube transition described above for the F1-D0 system is applicable for many other
combinations of branes. In general, when we put multiple kinds of branes together, they tend to
want to “puff up” and dissolve themselves into some other object (like the supertube), which can
itself also dissolve into geometry.

Such puff-ups and delocalized brane sources dissolved in flux are at the heart of the horizon-
scale microstructure in smooth microstate geometries. These geometries have no singularities as
they only carry branes that are dissolved in fluxes; the geometries are completely smooth. They do
carry (brane) charges, but these are not localized. The brane and charges have “puffed up” to horizon-
sized topological “bubbles”. This bubble structure is entirely stable from collapse and can be made
arbitrarily compact (i.e. can sit as close to the would-be horizon as we like); the electromagnetic
fluxes on the bubbles keep them from collapsing. Voilà: horizon-scale microstructure!

We will discuss such topological bubble structures further in Section 2.6 in the context of the
multi-centered bubbling microstate geometries.

1.4 How do we form fuzzballs (and not black holes)?

Picture a large object undergoing gravitational collapse. In the “standard”, classical picture,
unless stopped by other repulsive forces (such as fusion pressure inside a star), the object will
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continue on collapsing and eventually form a horizon, creating a black hole. When this horizon
initially forms, there are no large curvatures yet anywhere — in particular, there is not yet a
singularity at the center of the object — and so the usual, effective field theory viewpoint tells us
that quantum corrections to this picture can only be small. There does not seem to be any obstacle
against forming a horizon.

By now, we understand that the fuzzball paradigm tells us that this effective field theory
viewpoint may not be entirely valid. To resolve the information paradox, fuzzballs introduce
counter-intuitively large corrections at the horizon scale that make the actual fuzzball entirely
horizonless. But how can we avoid the formation of horizons in the first place, for example in such
a gravitational collapse scenario? This is a dynamical question and requires new insights since we
have so far only discussed fuzzball states without dynamics.

The key ingredient that prevents the actual formation of a horizon is that of a large phase
space of states which opens up when an object becomes horizon-sized [8, 38, 39]. Precisely when
the collapsing matter has almost all “entered” the radius of its would-be horizon, a huge phase
space of possible states becomes available — the number of microstates of the corresponding black
hole ∼ eSBH . Because this number of states is so large, quantum effects can become very large
and invalidate the (effective field theory) classical picture of horizon formation. In particular, the
collapsing object can quantum tunnel into a fuzzball state with a probability that can be estimated
as ∼ e−SBH [8] — an extremely small probability, which is why we typically do not care about
quantum tunneling effects for large objects in classical physics. But because there are ∼ eSBH such
fuzzball microstates available to tunnel into, the total probability to tunnel into any fuzzball state
is ∼ e−SBH × eSBH ∼ O(1)— so the collapsing object will definitely quantum tunnel into fuzzballs,
and will not continue its classical collapse to form a horizon!

It would be nice to calculate such tunneling rates in actual fuzzball states to confirm this
argument quantitatively. Unfortunately, such general quantum dynamical calculations are well
beyond the scope of the current methods, except in very controlled, special setups where some
explicit calculations can be done (and seem to confirm this argument) [40]. However, the heuristic
argument above does at least show the principle of how fuzzballs can be dynamically formed instead
of horizons.

1.5 Limitations of microstate geometries

As mentioned above, microstate geometries are the special, semi-classical coherent fuzzball
states that we can represent and study as geometric solutions in a supergravity theory. While
immensely interesting objects, it is also important to understand the inherent restrictions of such
microstate geometries. I will touch on a few important limitations here; see also e.g. Section 2.3 of
[4] for further discussion and references on these and other limitations.

Finding solutions in supergravity theories is typically a difficult problem, involving solving
multiple coupled non-linear, second order partial differential equations. Demanding that a solution
is supersymmetric often makes life easier, as this only gives first-order equations to solve. As a
consequence, most of the microstate geometries that have been constructed are supersymmetric,
such as the multi-centered bubbling geometries we will discuss below.

It is also sometimes possible to cleverly set up a system of first-order equations, reminiscent
of supersymmetry, but which gives solutions that are not supersymmetric [41]. Such solutions are
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still “extremal”, which means the corresponding black hole has zero temperature. This means the
corresponding black hole has the maximal allowed charge(s) and/or angular momentum.

Realistic black holes are certainly not supersymmetric, and should also be non-extremal, and
probably also completely uncharged. The supersymmetric or non-supersymmetric but extremal
microstate geometries that we have available are then not very realistic as astrophysical objects.
This is an important limitation of most microstate geometries. (Note that very recently, there
has been some exciting progress in constructing certain classes of new non-extremal microstate
geometries [42, 43].)

Dynamics is also a difficult issue. How do fuzzballs or microstate geometries form? How
do they evolve? How do they behave under perturbations? Finding the (stationary) microstate
geometry solution itself is often already a difficult problem; moving away from stationarity to study
dynamics would add a whole new layer of complexity. Only a few such issues have been attacked
so far. For example, the (analogue of) Hawking radiation in certain fuzzballs can be calculated
[44], suggesting that fuzzballs mimic black hole Hawking radiation by a complicated process of
emission from their inherent unstable modes.

Finally, an important caveat ofmicrostate geometries is that of typicality. Microstate geometries
are solutions in supergravity and represent semi-classical coherent microstates of a corresponding
black hole. These microstate geometries only make up a small fraction of the total phase space of
possible microstates of the black hole. If we study microstate geometries and their properties, how
well does this capture properties of generic, typical microstates? It is possible that the atypicality
of microstate geometries means they will sometimes behave in ways that are very different from
most (typical) microstates of the black hole [45]. Luckily, there are some arguments that suggest
that microstate geometries will indeed capture certain features of typical states, such as energy gaps
[46].

It is important to keep these limitations of microstate geometries in mind when studying
them. However, despite their downsides, my viewpoint is that microstate geometries still represent
useful tools that can point the way towards understanding features of black hole microstates, and
in particular horizon-scale microstructure that replaces horizons. Many insights have already
emerged from constructing and analyzing microstate geometries, both theoretical (e.g. in precision
holography) and more practical (e.g. in phenomenology), where microstate geometries are used as
tools and models that point to interesting observables that can show the existence of horizon-scale
microstructure in observations.

2. Multi-centered Bubbling Geometries

We have waved our hands around enough; time to get them dirty with some real calculations.
We will discuss the construction of multi-centered bubbling geometries in this section. We will
construct them in five-dimensional supergravity, although we will show how they can “live” both in
five- or four-dimensional asymptotics — the latter being phenomenologically preferred, of course.
These geometries are supersymmetric, and are microstates of the supersymmetric three-charge,
rotating BMPV black hole in five dimensions, or of the supersymmetric eight-charge, static (non-
rotating) black hole in four dimensions. These microstate geometries are often called Bena-Warner
geometries [2, 47, 48], or Denef-Bates geometries [49–51] in a four-dimensional perspective.
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The main reference for this entire section is [2]. See therein especially Section 3.2 (for the
supersymmetry equations); Section 4.1 about Gibbons-Hawking metrics (for Section 2.2.1 below);
Section 5.1 for solving the supersymmetry equations (for Section 2.2 below); Section 5.3 aboutCTCs
(for Section 2.3 below); Sections 6.2-4 for the smooth, bubbling solutions, the bubble equations,
and five-dimensional asymptotic charges (for Sections 2.3 and 2.4 below); and Sections 1.1 and 2.1
about brane interpretations (for Section 2.5 below). Finally, see [52] (and also Section 8.1 in [2]) for
further discussion on the horizon-scale microstructure of topological bubbles of Section 2.6 below.

Another great reference for the construction of these geometries is the lecture notes [1],
especially Sections 3, 4 and 6.1 therein; additionally, Section 5 is relevant for scaling geometries as
discussed in Exercise 4.

2.1 Setup: action and fields

We will consider a five-dimensional supergravity theory that comes from a simple toroidal
compactification of string theory, although it is possible to generalize to other compactifications.
The fields in the theory are themetric gµν, three gauge fields AI (with I = 1, 2, 3) with corresponding
field strengths F I = dAI , and three constrained scalar fields X I . The three scalar fields satisfy a
single algebraic constraint, so there are really only two scalar field degrees of freedom.

The bosonic field action is given by:

S5D =
∫

d5x
[
√
−g

(
R −

1
2

QIJF I µνFJ
µν −QIJ∂

µX I∂µXJ

)
−

1
24

CIJKε
µνρσλAI

µFJ
νρFK

σλ

]
, (2)

with the definitions:

QIJ ≡
9
2

XI XJ −
1
2

CIJK XK, XI ≡
1
6

CIJK XJ XK . (3)

The action contains kinetic terms for the scalars and gauge fields, where the latter one couples the
scalars to the gauge fields; in addition, there is a Chern-Simons “A∧ F ∧ F” term involving (only)
the gauge fields.

The algebraic constraint that the scalars X I need to satisfy is:
1
6

CIJK X I XJ XK = 1. (4)

The simple toroidal compactification we are considering means that we take:

CIJK = |εIJK |. (5)

This implies that QIJ = (1/2)δIJ (X I )−2 (no sum over I). We can parametrize the scalars by three
unconstrained functions ZI as:

X I =
Z
ZI
, Z ≡ (Z1Z2Z3)

1/3. (6)

2.2 Imposing supersymmetry: the linear system

Instead of solving the equations of motion that come from the Lagrangian (2), we will in-
stead look specifically for supersymmetric solutions. A geometry that satisfies the (much easier)
supersymmetry equations in a theory will also automatically satisfy the equations of motion.7

7This is usually not strictly speaking true, rather, the condition is usually “supersymmetry equations plus Bianchi
identities implies equations of motion”; for the sake of simplicity we will not discuss this subtlety.
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It can be shown that the metric and gauge fields of a general supersymmetric solution to (2)
can be parametrized as:8

ds2
5 = −Z−2(dt + k)2 + Zds2

4, Θ
I = dAI + d

(
Z−1
I (dt + k)

)
, (7)

where we have used the quantities Z, ZI defined in (6). The one-form k is the rotation form and
parametrizes the time-space cross-terms. At this point, the expression forΘI is simply a convenient
definition that isolates the “magnetic” part of the gauge field strength dAI = F I .

Supersymmetry further demands that the four-dimensional “base space” ds4 is hyper-Kähler,
a stringent mathematical demand. The functions ZI , the one-form k, and the two-forms ΘI are also
restricted to “live” on this base space — so, in particular, they cannot depend on the time t. The
supersymmetry equations can then be expressed in terms of the quantities ΘI, ZI, k as:9

Θ
I = ∗4Θ

I, (8)

∇2ZI =
1
2

CIJK ∗4 (Θ
J ∧ ΘK ), (9)

dk + ∗4dk = ZIΘ
I, (10)

where the Hodge stars ∗4 are on the four-dimensional base space ds2
4. Remarkably, this is actually

a step-wise linear system of equations; if we solve them in this order, each equation is only a linear
equation in the unknown functions — and so can be solved in full generality. Specifically, the path
to finding solutions has four steps:

1. Find a four-dimensional hyper-Kähler base space (ds4). This is actually the hardest step,
since the equations to restrict to hyper-Kähler are non-linear. We will restrict ourselves to a
class of hyper-Kähler spaces called Gibbons-Hawking spaces. (Integration “constant”: V)

2. Solve (8) for ΘI . (Integration “constants”: K I )

3. Solve (9) for ZI . (Integration “constants”: LI )

4. Solve (10) for k. (Integration “constant”: M)

The last three steps involve integrating linear differential equations. At each of these steps, there
will be a choice of “integration constants” — more precisely, arbitrary harmonic functions —
which we will call V,K I, LI, M . These eight harmonic functions will then completely determine
the supersymmetric solution, and choosing them is equivalent with choosing a particular multi-
centered geometry. Let us now discuss these four steps in more detail.

8This is actually only the most general metric for the “timelike” class of supersymmetric metrics; there is also the
“null” class [53].

9In particular, solutions to these supersymmetry equations will preserve 4 supercharges. In the five-dimensional
supergravity (2), which has eight supercharges, they are 1/2 BPS [54]; in an uplift to the full ten-dimensional string
theory (which has 32 supercharges), they are 1/8 BPS solutions.
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2.2.1 Finding a hyper-Kähler base space: Gibbons-Hawking metrics

We will choose the four-dimensional hyper-Kähler base space ds2
4 to be of the Gibbons-

Hawking class. These metrics are not the most general hyper-Kähler space (which is not known
in full generality), but they are the unique set of hyper-Kähler metrics with a tri-holomorphic U(1)
isometry.

We can write a Gibbons-Hawking metrics as a U(1) fibration over a flat R3 base:

ds2
4 = V−1(dψ + A)2 + Vds2

3, (11)

where the flat R3 is simply:

ds2
3 = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (12)

where V is a harmonic function on this R3, so that:

∇2V = 0, (13)

and the one-form A is related to V by:

®∇ × ®A = ®∇V, (14)

where again all quantities are considered as “living” on the (flat) R3. The fourth coordinate ψ is
periodic, ψ ∼ ψ + 4π.

Since V is a harmonic function on R3, we can write it as:10

V = v0 +

n∑
i=1

vi

ri
, (15)

where v0, vi are constants, and we have introduced n singularities or “centers” for V , located (in R3)
at positions ®ri; the distances ri are then given by the usual R3 distance function:

ri ≡ |®r − ®ri |. (16)

Of course, the expression (15) is reminiscent of other instances where we have harmonic functions
on R3, for example when V represents an electrostatic potential of n point charges.

2.2.2 Solving for ΘI

Once we have specified our four-dimensional base space ds2
4, we can turn to equation (8) which

determines the two-forms ΘI . From the definition (7) of ΘI , it is clear that these forms must be
closed, dΘI = 0. Then, (8) tells us thatΘI must be harmonic, self-dual forms on ds2

4. Cohomology
on Gibbons-Hawking spaces ensures us we can then express these forms as a linear combination
of a basis Ωa

+ (with a = 1, 2, 3) of harmonic self-dual forms on ds2
4 (see Section 4.2 in [2] for an

explicit choice of Ωa
+) as:

Θ
I =

3∑
a=1

∂a(V−1K I )Ωa
+, (17)

where K I are arbitrary harmonic functions on the (flat) R3. The choice of K I then completely
determines the two-forms ΘI .

10Other types of (non-pointlike) sources are also possible in harmonic functions, but are not generically possible in
our bubbling solutions (although some exceptions exist [55]).
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2.2.3 Solving for ZI

Once the ΘI are determined, (9) are linear equations determining the ZI , solved by:

ZI =
1
2

CIJK
KJKK

V
+ LI, (18)

where the LI are arbitrary harmonic functions on R3.

2.2.4 Solving for k

Finally, once ΘI, ZI are completely fixed, (10) is a linear equation for the one-form k, which is
solved by:

k = µ(dψ + A) + ω, (19)

µ ≡
1
6

CIJK
K IKJKK

V2 +
1

2V
K I LI + M, (20)

®∇ × ®ω ≡ V ®∇M − M ®∇V +
1
2

(
K I ®∇LI − LI

®∇K I
)
, (21)

where M is again a new, arbitrary harmonic function on R3. The one-form ω is determined by (21);
note that the integration constants that come from solving this equation are not physically relevant
— they can be absorbed in a shift of the t coordinate.

2.2.5 Summary: eight harmonic functions

After following these steps, we nowhave a complete supersymmetric solution that is determined
by eight harmonic functions on the flatR3, which we can collectively denote as an eight-dimensional
“vector” H ≡ (V,K I, LI, M); with ∇2H = 0. These harmonic functions have the form:

H = h0 +

n∑
i=1

Γi

ri
, (22)

The constant terms h0 are called the asymptotic “moduli” of the solution, explicitly:

h0 ≡ (v0, k0
I , l

0
I ,m

0) = (v0, k0
1, k0

2, k0
3, l

0
1, l

0
2, l

0
3,m

0). (23)

There are n locations inR3 where the harmonic functions have singularities— these are the “centers”
of the solution. There is no limit on the number n of centers that is allowed in the solution —
although finding a regular solution with many centers will be hard due to the bubble equations (see
below).11 The location in R3 of the i-th center is ®ri and ri = |®r − ®ri | is the (flat) R3 distance to it.
The “charge” vector ΓI of the i-th center is:

Γ
i ≡ (vi, k iI, l

i
I,m

i) =
(
vi, k i1, k i2, k i3, l

i
1, l

i
2, l

i
3,m

i
)
. (24)

The harmonic functions H, and so also the entire solution, are completely determined by the
constants h0 together with the locations ®ri and charge vectors Γi of the n centers.

11Also, in the full quantum theory, the fluxes (charges) will need to be quantized, so this will further restrict the
allowed solutions. We have also not discussed the gauge transformations that relate physically equivalent configurations;
see Section 5.2 of [2] for more information.
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2.3 Regularity: the bubble equations

Wehave constructed supersymmetric solutions that depend on eight arbitrarily chosen harmonic
functions. However, not all such supersymmetric solutions are physical, and wemust impose further
constraints to ensure they are regular and well-behaved. One important constraint is the absence of
closed timelike curves or CTCs. This implies the conditions [2]:

Q ≡ Z1Z2Z3V − µ2V2 ≥ 0, V ZI ≥ 0, (25)

need to be satisfied everywhere (and for each I).
Near a center, a necessary (but not sufficient) condition for CTCs to be absent is that dψ does

not become timelike; this leads to the bubble equations (of which there is one for each center i):∑
j,i

〈Γi, Γ j〉

ri j
= 〈h0, Γi〉, (26)

where we have defined the intercenter distance ri j ≡ |®ri − ®rj | and we define the symplectic product
of two charge vectors as:

〈Γi, Γ j〉 ≡

(
miv j −

1
2

∑
I

k iI l
j
I

)
− (i ↔ j). (27)

The bubble equations give complicated non-linear relations that the intercenter distances and the
center charges need to satisfy. This makes it difficult to find solutions when the number of centers
is large. Note that the symplectic product (27) naturally pairs electromagnetically dual charges with
each other.

If we want a smooth, horizonless solution—meaning one without any horizons or gravitational
singularities — each center’s charges must further satisfy:

liI = −
1
2

CIJK

k iJ k iK
vi

, mi =
1
12

CIJK

k iI k iJ k iK
(vi)2

, (28)

so that all of the LI and M charges are determined by the V,K I charges.
Other regular, physical solutions exist where the centers do not satisfy (28). For example,

regular supersymmetric multi-centered solutions with black holes exist, where the black hole
centers do not satisfy (28). Also, it is possible to relax (28) to obtain solutions which have no
horizon but include certain “allowed” singularities — these are certain singularities of which we
know their nature in string theory, such as brane singularities.

2.4 Moduli, asymptotics, and charges

The constants in the harmonic functions, h0 ≡ (v0, k0
I , l

0
I ,m

0), are the moduli of the solution.
One of these (typicallym0) is determined by the sumof the bubble equations (26), i.e. 〈h,

∑
i Γ

i〉 = 0.
The choice of the (rest of the) moduli determines what the asymptotic spacetime looks like, and
in particular if the solution “lives” in four or five dimensions. We will discuss the most common
choices below for five- and four-dimensional flat asymptotics. We will not discuss details of other
possible choices for moduli that would also give these asymptotics, nor moduli that lead to other
possible asymptotics (such as AdS2 × S3).12

12It is not possible to choose the asymptotics to be five-dimensional AdS — we would need to be working in a
gauged supergravity theory to have such asymptotics. Note that no multi-centered solutions with AdS asymptotics are
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2.4.1 Five-dimensional asymptotics R4,1

To obtain a five-dimensional solution, we can choose:

v0 = k0
I = 0, l0

I = 1,
∑
i

vi = 1. (29)

In this five-dimensional spacetime, the geometry carries three electric charges (one for each gauge
field F I ) as well as two angular momenta JL, JR. For solutions that are smooth and horizonless and
so satisfy (28), the electric charges are given by:

QI = −2CIJK

∑
i

k̃ iJ k̃ iK
vi

, k̃ iI ≡ k iI − v
i
∑
j

k j
I, (30)

and one of the angular momenta is given by:

JR =
4
3

CIJK

∑
i

k̃ iI k̃ iJ k̃ iK
(vi)2

. (31)

The expression for JL is more complicated (see eqs. (152)-(154) in [2]). As mentioned, such
five-dimensional horizonless, smooth microstate geometries are microstates of the BMPV black
hole with the same electric charges QI ; note that the BMPV black hole has JL = 0.13

2.4.2 Four-dimensional asymptotics R3,1 × S1

In order to have four-dimensional asymptotics, we must ensure that the ψ circle becomes of
constant size at infinity (instead of growing with r). One possible choice is:

v0 = 1, k0
I = 0, l0

I = 1, (32)

Another possible choice that we will see is:

v0 = l0
I = 0, k0

I = 1, m0 = −
1
2
. (33)

In general, the condition for having an asymptotically four-dimensional solution is

lim
r→∞
Q = 1, (34)

where Q is defined in (25) and is called the quartic invariant. Note that in all cases, the sum of the
bubble equations (26) must still be satisfied, i.e. 〈h,

∑
i Γ

i〉 = 0.
It is possible to dimensionally reduce these asymptotically R3,1 × S1 solutions over the ψ circle

to obtain a solution in a four-dimensional (STU) supergravity theory. We will not discuss the details
of this four-dimensional reduced solution (see e.g. appendix A of [58]), except to note that the
four-dimensional metric is given by:

ds2
(4D) = −Q

−1/2(dt + ω)2 + Q1/2ds2
3 . (35)

known; heuristically, it is much harder to construct such solutions since the AdS gravitational potential provides an extra
contracting force on any extended object. Even so, multi-centered configurations in AdS may still exist [56].

13Whether microstate geometries with JL , 0 can be considered “microstates” of the BMPV black hole depends on
the particular ensemble in which we consider the black hole, i.e. whether we keep JL fixed in the ensemble or not. See
e.g. [57].
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Note that a smooth center in five dimensions satisfying (28) will give a (naked) singularity when
dimensionally reduced to four dimensions. This is because such a smooth center is precisely a
location where the ψ circle pinches off (i.e. becomes zero size) and so is an ill-behaved point under
the dimensional reduction.

2.5 String theory brane interpretations

So far, we have discussed multi-centered solutions as solutions of a five-dimensional super-
gravity theory. This supergravity theory can be obtained from string theory by a toroidal reduction.
More precisely, we can uplift a five-dimensional solution to an 11-dimensional solution ofM-theory
on T2 × T2 × T2 with metric:

ds2
11 = ds2

5 +

(
Z2Z3

Z2
1

)1/3

(dT1)
2 +

(
Z1Z3

Z2
2

)1/3

(dT2)
2 +

(
Z1Z2

Z2
3

)1/3

(dT3)
2, (36)

where (dTI )
2 ≡ dx2

I + dy2
I is the flat metric on the I-th two-torus.

In this M-theory solution, the five-dimensional electric charges in LI (and thus QI ) are in-
terpreted as stacks of M2-branes wrapping the tori TI . The magnetic duals of M2 branes are M5
branes, and correspondingly the K I charges with I = 1, 2, 3 (which are the magnetic dual of the LI

charges) come from M5 branes wrapping T2 × T3,T1 × T3, or T1 × T2. Note that these M5-branes
wrap four compact directions on the tori and extend along a closed curve in the five-dimensional
non-compact space— so this gives rise to a dipole (M5) magnetic charge in five dimensions. This
is entirely analogous to the D2-brane dipole we discussed in the context of the supertube transition
in Section 1.3.2. Finally, the V charges are KK monopole “charges” (along ψ) and M charges are
momentum charges along the ψ direction.

If we dimensionally reduce the 11-dimensional metric (36) over the ψ circle, we obtain a
solution in type IIA supergravity and string theory. In this frame, the V,K I, LI , and M charges
are D6-branes, D4-branes, D2-branes, and D0-branes, respectively. A smooth solution satisfying
(28) can be interpreted as D6-branes wrapping all three tori (T1 × T2 × T3), with magnetic fluxes
on each of the tori that induces the D4-charges — very much like the magnetic flux on D2-branes
in Section 1.3.2 induces D0-brane charges on it. Then, the D2- and D0-brane charges are induced
by “F ∧ F” and “F ∧ F ∧ F” Chern-Simons terms involving the (same) magnetic fluxes on the
D6-brane worldvolume.

There are many dualities in string theory that allows us to change “frames”, enabling us also
to easily interpret our five-dimensional solutions as different kinds of brane solutions. Another
notable frame is one where the three electric charges in five-dimensions become D1, D5, and P
(momentum) brane charges.

2.6 Bubbles as horizon-scale microstructure

From the Gibbons-Hawking metric (11), it is apparent that the singularities of V are where the
ψ circle “pinches off” and becomes zero size. These singularities of V are precisely the “centers”
of the solution. If we take an arbitrary path in R3 from one center to another, then this path
together with the ψ circle defines a topological S2 sphere; see Fig. 6. (Any path between the same
two centers will define topologically equivalent objects, so the precise path taken is irrelevant.)
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Such topological S2 structures are precisely what we call the bubbles in this geometry. Since this
reasoning applies to any pair of centers, the total topology of the five-dimensional spacetime will
involve some finite product of S2’s [52].

Figure 6: Adepiction of the smooth, bubbledmicrostructure. At each center (blue point), theψ circle shrinks
to zero size; between each pair of centers, there is a topological S2 bubble consisting of the path between
the centers (dotted line) and the ψ circle (in red). Each bubble is kept from collapsing due to magnetic flux
threading it.

An S2 bubble would want to collapse in gravity if not prevented by some mechanism. Here,
that mechanism is the magnetic flux that threads this bubble. The magnetic flux ΠI

i j through the
bubble between the i-th and j-th centers is [2]:

Π
I
i j =

k I
j

vj
−

k I
i

vi
. (37)

As mentioned above, the K I charges and thus the magnetic fluxes can be interpreted as M2-branes
wrapping different tori in anM-theory frame. TheseM2-branes are not localized— they are “branes
dissolved in flux” (see Section 1.3.1) — and a result, the five-dimensional metric is not singular.

Themulti-centered bubbling geometries are an amazing confluence of the concepts we have dis-
cussed above. These geometries are completely smooth and horizonless, but consist of topological
“bubble” structures that are held stable from collapse by magnetic fluxes, which in turn come from
string theoretic branes “dissolving” or transitioning into non-singular geometric configurations.
These geometries consist of smooth, stable microstructure!

Finally, although we did not explicitly discuss this yet, we can also make this microstructure
horizon-scale. It turns out that we can make this microstructure as compact as we want: in the
class of so-called scaling solutions, we can essentially have the geometry’s bubbles sit arbitrarily
far down a redshift throat (i.e. “being close to the horizon”); see Fig. 7. We will touch on some
more details of such solutions in Exercise 4 below.

3. Superstrata

This section will introduce the superstrata family of microstate geometries. We will not cover
them at the level of detail as Section 2 covered the multi-centered bubbling solutions; rather we will
limit the discussion to an emphasis on the conceptual picture of superstrata, and a brief exhibition
of (only) the metric in Section 3.4.
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(a) Black hole (b) Scaling multi-centered bubbling geometry

Figure 7: A cartoon of the infinitely deep black hole redshift throat (left), and the finite redshift throats of
a series of scaling multi-centered bubbling microstate geometries (right). The black hole redshift throat is
infinite since gtt → 0 as we approach the horizon; the depth of the microstate geometry’s redshift throat
is always finite (gtt < 0 everywhere). As we approach the scaling limit, the microstate geometry’s throat
becomes arbitrarily deep (|gtt | � 1). Note that the bubbles at the “end” of the throat remain a finite, constant
proper size as the geometry approaches the scaling limit.

The main lecture note available to learn more about superstrata is [3]. The first paper exhibiting
superstrata is [59] and is also very readable. The discussion of Section 3.2 is heavily inspired by
[7]. The multi-mode superstrata discussed in Section 3.4 were first found in [60]; see especially
Appendix A therein for a handy summary of the metric and other fields of most of the known
(multi-mode) superstrata geometries.

3.1 Bubbles with fluctuating flux profiles

Themulti-centered bubbling geometries of Section 2 represent an impressive technical achieve-
ment and give us a large family of microstate geometries. From a five-dimensional perspective,
these are microstates of the five-dimensional BMPV black hole. This black hole has three charges;
when these charges are equal, its entropy scales as14 SBMPV ∼ Q3/2. However, we can use counting
arguments to estimate that the multi-centered microstate geometries can only account for (at most)
a fraction of the entropy: S(bubbles) ∼ Q5/4 [61]. (Recall that the number of statesN is related to the
entropy asN ∼ eS .) The bubbling geometries can only account for an exponentially small fraction
of the microstates of the BMPV black hole.

Luckily, we can do better — with superstrata. One way to picture a superstratum is as a
geometry with a single bubble (and thus two centers); this bubble must be kept from collapsing
by magnetic flux threading it. In the multi-centered solutions we discussed above, this flux was a
constant over the entire bubble. In a superstratum, this flux is allowed to vary over the bubble; see
Fig. 8. There are many choices of “flux profile” that are possible on the bubble; each one of these
profiles gives rise to a different geometry and so a different (micro)state.

To include these non-trivial magnetic flux profiles, yet another (compact spatial) dimension
is necessary — superstrata live in six dimensions. It turns out that allowing the flux on a single
bubble to vary in this way gives rise to exponentially more possible states then allowing for multiple
bubbles with a rigid flux profile (as in the multi-centered geometries) [62, 63] — so even single

14Of course, we are interested in the more generic case when the charges are not equal; it is simply easier to consider
equal charges when we are giving rough arguments on how a quantity “scales” with the charges.
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Figure 8: A single bubble with varying flux profile (left), and a configuration of three bubbles where each
bubble has rigid, unvarying flux (right). (Centers are indicated as blue points.)

bubble superstrata will give us access to many more microstates of the BMPV black hole than the
multi-centered geometries did.

3.2 Supertube puffing up revisited: strings with momentum

Let’s now revisit the supertube transition. We discussed this in Section 1.3.2 from the perspec-
tive of F1 and D0 brane charges “puffing up” into a D2 (dipole) brane with electromagnetic fluxes
living on it. Here, we will instead consider a different system: an (F1) string with (P) momentum
running along it. The two systems are related by string dualities, but it is still useful to consider this
different perspective.

Consider an F1 string that wraps some compact S1 direction. From the perspective of the other,
non-compact directions, this string is simply a point particle; see Fig. 9. (For simplicity, we are
ignoring any other compact directions besides the S1 that might be present.) Now, we let the string
also carry a momentum (P) along this same S1 direction.

This may not seem like an exciting thought exercise, until we remember a basic fact in string
theory: strings cannot carry longitudinal excitations! In other words, the F1 string cannot carry P
charge along the direction that it is pointing.

There is only oneway that this paradox can be resolved: the string’s profilemust change. Instead
of being a point particle in the non-compact directions, it must “puff up” into some (contractible)
profile in the non-compact space; see Fig. 9. By doing so, it can assure that the direction of
momentum charge along the S1 direction is always perpendicular to the actual string’s direction
— so that the string is only carrying transverse excitations, as it should. Note that the resulting
configuration still only carries F1 charge along the S1 and P charge along the S1. We have not
introduced any additional F1 charge in the system as the string’s profile is along a closed, contractible
cycle in the non-compact space — this only introduces a (new) dipole charge. This is analogous
to a current loop in electromagnetism: such a configuration has a magnetic dipole charge, but of
course no magnetic monopole charge.

We discussed F1 and D0 charges puffing up to create an additional D2 dipole charge in Section
1.3.2; here, we see that F1 and P charge puffs up to give an additional F1 dipole charge. These are
just a few examples of a general phenomenon: (monopole) charges of a black hole want to “puff
up” in the black hole’s microstate geometries and create additional dipole charges which are not
present in the original black hole geometry. In the multi-centered bubbled geometries, these dipole
charges were precisely the k I

i ’s of the centers.
The F1-P system we discussed here can be dualized using string theory dualities (S, T , and

U-dualities, these are called) to the D1-D5 system. In particular, we can consider type IIB string
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(a) Naive singular geometry (b) Puffed-up supertube geometry

Figure 9: In the naive picture, the string wraps a compact S1 direction but is simply a point particle in the
non-compact space. However, to carry momentum P along the S1 direction, the string must “puff up” into a
closed curve in the non-compact space (while remaining wrapped along the S1).

theory in ten dimensions, compactified on a four-torusT4 together with an additional compact circle
S1. The non-compact spacetime is five-dimensional, like for the BMPV black hole. The D1- and
D5-branes both wrap the S1 circle, and the D5 branes also wrap the T4. The “puffing up” of these
D1 and D5 brane charges creates a dipole charge of a geometric Kaluza-Klein monopole (KK). The
resulting dipole profile of this KK charge is arbitrary; for any such closed profile, we can construct
a geometry (smooth and with no CTCs!) — these are the famous Lunin-Mathur (supertube)
geometries [64, 65]. These are completely regular, smooth microstate geometries for the D1-D5
system. By using semi-classical quantization techniques in supergravity, one can quantize these
microstate geometries and count them [66]. This counting gives a perfect match with the number
of ground states in the dual D1-D5 CFT. In other words, for each of these ground (micro)states, we
know precisely what the corresponding supergravity geometry is!

3.3 Three-charge “puffing up”: the superstrata

Although a remarkable achievement, unfortunately the D1-D5 ground states do not correspond
to a black hole in supergravity, but rather to a singular D1-D5 geometry where the “horizon”
has zero size. So we can not quite say that the Lunin-Mathur geometries provide “black hole”
microstates, but it certainly feels like we are getting close. To construct a system that corresponds
to a non-singular black hole of finite size, we can add momentum P along the S1 that the D1 and
D5 branes share. This three-charge D1-D5-P system is precisely the one studied by Strominger and
Vafa, where they were able to count the microstates in the D1-D5 CFT and found agreement with
the entropy of this black hole; we discussed this in Section 1.2.

D1- and D5-branes can “puff up” to create KK dipole charges, as mentioned; this dipole
charge can have an arbitrary profile. But when we introduce a third charge, additional “puffing
up” transitions will take place [67] — essentially, any two pairs of charges can create new dipole
charges by a similar transition. In the end, instead of a one-dimensional profile that we associate
to the supertube transition, we expect that a system of three charges will “puff up” to create a
two-dimensional profile or surface — the superstratum.

For the D1-D5 Lunin-Mathur supertube, the one-dimensional (dipole) profile in five spacetime
dimensions can be parametrized by four arbitrary functions of one variable f j(v), where j = 1, · · · , 4
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runs over the spatial non-compact dimensions. All of the f j(v) are periodic as f j(v + L) ∼ f j(v)

(where L is the parameter length of the string), so that the profile defines a closed loop in the
non-compact space. We can expand these real functions in Fourier coefficients c j

n over the basis of
periodic functions over v:

f j(v) =
∑
n>0

(
c j
ne2πinv/L + (c j

n)
∗e−2πinv/L

)
. (38)

The geometry for any such profile functions f j(v) is known [64, 65].
For the D1-D5-P superstrata, we instead expect that the most general superstrata can be

parametrized by two arbitrary holomorphic functions G1,G2 of three complex variables ξ, χ, η.15
These functions can be expanded in Fourier coefficients as:

G1(ξ, χ, η) =
∑
k,m,n

bk,m,nξn χk−mηm, G2(ξ, χ, η) =
∑
k,m,n

ck,m,nξn χk−mηm. (39)

The arbitrary single-mode geometry, where only one of the bk,m,n or ck,m,n coefficients are non-
zero, is explicitly known [59, 69]. In principle, the procedure is known how to “superpose” such
single-mode geometries in order to find two- and multi-mode geometries [68], but in practice the
resulting (differential) equations that need to be solved can be prohibitively complicated. Only a
few multi-mode geometries have been explicitly constructed [60], for example the superposition of
(1, 0, n) modes (i.e. with an arbitrary number of different n’s).

It is interesting to note that for all superstrata, the holographic dual state (in the D1-D5 CFT) is
explicitly known [3, 70]. This has allowed for many advances and insights into precision holography
of these states. By contrast, the CFT dual or interpretation of a multi-centered geometry of more
than two centers is generally unknown.

3.4 The solutions

We will not discuss the derivation of the superstrata geometries here; for details, see e.g. [3],
especially Sections 3 and 4.3 therein. We will only briefly discuss the actual solutions, and then
only the metric. We will follow the notation of [60]; see also Appendix A therein for more details
on the other fields in the solution.

As discussed above, superstrata are most naturally constructed in six-dimensional supergravity;
it is usually not possible to dimensionally reduce them to five dimensions as they have a non-trivial
“profile” along this sixth dimension. When embedded into flat space [71], they do have the correct
five-dimensional flat asymptotics, so R4,1 × S1. We will only discuss the slightly easier case of
AdS3 × S3 asymptotics. The relevant six-dimensional supergravity theory contains, besides the
metric, also a scalar and two three-form gauge field strengths.

The six-dimensional metric is given by:

ds2
6 = −

2
√
P
(dv + β)

[
du + ω +

F

2
(dv + β)

]
+
√
Pds2

4, (40)

15It is not obvious how to arrive at this counting. Essentially, these three complex variables can be seen as running
over the three U(1) isometries of AdS3 × S3 [60, 68]. Also, note that |ξ |2 + |χ |2 + |η |2 = 1.
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where ds2
4 is a flat four-dimensional R4 base, written in “spherical bipolar coordinates” as:

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θdϕ2

1 + r2 cos2 θdϕ2
2, Σ = r2 + a2 cos2 θ. (41)

The one-form β is:

β =
Rya2
√

2Σ
(sin2 θdϕ1 − cos2 θdϕ2). (42)

3.4.1 The two-charge round supertube

A configuration that only carries D1 and D5-brane charges (so no P charge) is the round
supertube, for which:

P =
Q1Q5

Σ2 , F = 0, ω = ω0 ≡
a2Ry
√

2Σ
(sin2 θdϕ1 + cos2 θdϕ2). (43)

Regularity of the metric fixes a as:
Q1Q5 = R2

ya2. (44)

The D1 (resp. D5) charge of the solution is Q1 (resp. Q5), and the five-dimensional angular
momenta are:

JL = JR =
Ry

2
a2. (45)

This two-charge geometry is a special case of the Lunin-Mathur D1-D5 supertube— in particular, it
corresponds to the simple case of a circular profile for the supertube in the non-compact directions.
(Incidentally, this particular simple circular geometry can be dimensionally reduced to a two-
centered bubbling geometry in five-dimensional supergravity [72].) This round supertube geometry
is the “basis” upon which the superstrata’s “momentum wave profiles” are constructed.16

3.4.2 Complex variables and warp factor

It is convenient to use the following complex variables:

ξ =
r

√
r2 + a2

ei
√

2v
Ry , χ =

a
√

r2 + a2
sin θeiϕ1, η =

a
√

r2 + a2
cos θei

( √
2v

Ry
−ϕ2

)
, (46)

which satisfy |ξ |2 + |χ |2 + |η |2 = 1. Spatial infinity r → ∞ corresponds to χ = η = 0 and |ξ | = 1.
As discussed above, the most general superstrata is expected to depend on two arbitrary functions
of these three variables:

G1(ξ, χ, η) =
∑
k,m,n

bk,m,nξn χk−mηm, G2(ξ, χ, η) =
∑
k,m,n

ck,m,nξn χk−mηm, (47)

with Fourier coefficients bk,m,n, ck,m,n, and where G1 are the “original” superstrata modes and G2

are called the “supercharged” superstrata. The warp factor is given by:

P =
1
Σ2

(
Q1Q5 −

R2
y

2
|G1 |

2

)
. (48)

16This begs the question: what about superstrata that are constructed on a different “basis”, i.e. taking a different
starting profile from the round supertube? Constructing superstrata in this way is largely an open question.
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3.4.3 (1, 0, n) multi-mode superstrata

As a concrete example, let’s give all of the functions for the (1, 0, n) multi-mode superstrata
geometries.

The metric for the general multi-mode (1, 0, n) superstrata is:

G1(ξ, χ, η) = χF(ξ), (49)

where F(ξ) is an arbitrary holomorphic function:

F(ξ) =
∑
n>0

bnξn, (50)

and the warp factor is:

P =
Q1Q5

Σ2 −
a2R2

y

2(r2 + a2)Σ2 |F |
2 sin2 θ. (51)

We can denote the asymptotic (spatial infinity) limit of F as:

F∞(v) = lim
|ξ |→1

F(ξ) = lim
r→∞

F(ξ) = F
(
ei
√

2v
Ry

)
, (52)

and then we can express the rest of the metric functions as:

F =
1
a2 (|F |

2 − |F∞ |2), (53)

ω =

(
1 −

1
2a2 (|F∞ |

2 − c)
)
ω0 +

Ry
√

2Σ
(|F∞ |2 − |F |2) sin2 θdϕ1, (54)

The constants a, c must satisfy the regularity conditions:

c = 2

(
Q1Q5

R2
y

− a2

)
=

1
√

2πRy

∫ √
2πRy

0
dv′ |F∞(v′)|2 =

∞∑
n=1
|bn |2. (55)

With the above expressions, the geometry is completely regular for any holomorphic function F
(with F(0) = 0); in addition, P > 0 everywhere and there are no CTCs anywhere [60]. The solution
has D1, D5, JL, JR charges just as the round supertube above, and in addition has also a momentum
charge of:

QP =
1

4
√

2πRy

∫ √
2πRy

0
dv

(
ξ∞F ′∞F∞ + ξ∞F∞F

′

∞

)
=

1
2

∞∑
n=1

n|bn |2. (56)

Note that the “single-mode” superstrata that are typically studied in the literature are those where
all bn coefficients vanish except for one n > 0.

Even though the general superstrata live in six dimensions, it was found in [73] that the (1, 0, n)
superstrata family (and a few others) can be consistently dimensionally reduced along the compact
S3 to obtain three-dimensional asymptotically AdS3 solutions.

26



P
o
S
(
M
o
d
a
v
e
2
0
2
1
)
0
0
3

Modave Lectures on Horizon-Size Microstructure, Fuzzballs and Observations Daniel R. Mayerson

4. Microstructure in Observations

We have now discussed the two most established families of microstate geometries — multi-
centered bubbling solutions and superstrata. Rather than discussing more microstate geometries in
the remainder of these lectures, we will instead briefly discuss a rather new and exciting application
of these geometries: using them as a top-down model of horizon-scale microstructure to understand
possible quantum gravity effects in observations.

First, wewill introduce the concept of fuzzball phenomenology and argue for its necessitywithin
gravitational phenomenology of precision black hole observations. Then, in the last two sections,
we will briefly touch on the two main classes of precision black hole observations: gravitational
waves from black hole mergers, and (electromagnetic) black hole imaging. For each of these topics,
we will also briefly touch on a few relevant observables which could distinguish compact objects
such as fuzzballs from black holes.

This will be a lightning overview of the topic; for further details, see [4] (and [55] for fuzzball
imaging of Section 4.3). Some interesting (non-fuzzball-centric) reviews on gravitational phe-
nomenology are [74], and for ECOs in particular [75].

We will also not discuss details of the actual experiments involved. These are (for gravitational
waves) in particular the current aLIGO and aVIRGO detectors [76], the future space-based LISA
mission [77], and second-generation ground-based experiments such as the Einstein Telescope and
the Cosmic Explorer [78]; and (for black hole imaging) the Event Horizon Telescope (EHT) [79]
and possible future improvements in the next generation EHT (ngEHT) [80] or space-based Very
Long Baseline Interferometry (VLBI) [81, 82].

4.1 From observations to fuzzball phenomenology

The advent of precision black hole observations has opened an unprecedented new window to
the universe. Some 400 years ago, the first use of optical telescopes in astronomy opened our eyes
to the universe and its electromagnetic signatures. This led to many insights into the nature of the
universe and its occupants — stars, black holes, white dwarves, and so on. It is no exaggeration
to compare the recent detection of the first gravitational waves to this advent of optical telescopes;
we now have access to a whole new observational window on the universe by an entirely different
force of nature. Centuries from now, we will probably still be figuring out the implications of the
new physics we are able to observe!

Gravitational wave observations, as well as the recent developments in black hole imaging,
probe the strongest gravity regime we have ever been able to observe — the near-horizon region
of black holes. This is an exciting opportunity to see quantum gravity effects at work. Can we
see effects of quantum gravity in these precision black hole observations? If so, what phenomena
should we look for to decisively distinguish quantum gravity effects (from general relativity)? These
are the basic questions of gravitational phenomenology.

We discussed arguments that suggest black hole physics can drastically change at the horizon
scale in Section 1. Motivated by these arguments, a slightly more concrete question to ask in
phenomenology is: What happens in observations if we replace a (Kerr) black hole by a horizonless,
compact object?
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Such a compact object need not be a fuzzball, but should be approximately the same “size”
as the black hole — this means it “mimics” the black hole far away from the horizon scale, and
only deviates from the black hole geometry approximately at the horizon scale. Such objects are
typically referred to as exotic compact objects or ECOs [75, 83–85]. Their “compactness” can be
parametrized by a dimensionless parameter ε :

r0 = rh(1 + ε), (57)

where rh is the horizon radius of the corresponding black hole (that the ECO replaces), and r0 is the
scale at which the ECO geometry starts deviating significantly from the black hole geometry; see
Fig. 10. We expect the object to be ultra-compact, so ε � 1, if the object is to mimic a black hole
very well. The “exotic” in ECO emphasizes that this is quite hard to achieve and requires some kind
of “exotic” mechanism: Buchdahl’s theorem tells us that under reasonable assumptions in general
relativity, ε ≥ 1/8.

Figure 10: A depiction of a horizonless, exotic compact object (ECO), with the would-be horizon scale rh
and the ECO scale r0 (in red) indicated. The ECO’s (smooth) structure extends to r0.

There are many different ECOs that are used in gravitational phenomenology. Many are
constructed in a bottom-up, effective field theory mindset — they parametrize or create deviations
from general relativity by adding new terms to the action or new objects in the theory. For example,
(Solodhukin-type) wormholes [75, 86, 87] are horizonless objects that are constructed by altering
a (Schwarzschild or Kerr) black hole geometry by hand; essentially, right before the horizon is
reached, a second copy of the asymptotically flat geometry is glued to the original one, creating a
wormhole between the two flat geometries — see Fig. 11. This gluing procedure in the metric is
done “by hand”, so the resulting geometry is not a solution to any known theory with matter. These
geometries can be used to study aspects of horizonless objects that do not require any dynamics of
the object itself, since those dynamics are — by construction — unknown.

Another example of ECOs are boson stars [75, 88, 89]. There are many flavors of such objects,
but the most basic example is constructed by adding a minimally coupled scalar field with some
potential to the Einstein gravity Lagrangian:

L = R −
1
2
(∂φ)2 − V(φ). (58)
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Figure 11: A Solodhukin wormhole, constructed by taking two copies of a black hole geometry, excising
their horizon regions (in red) and identifying surfaces outside the horizon (in blue).

Boson stars are self-gravitating, compact horizonless solutions in such a theory. These solutions
do typically suffer from a trade off between stability and compactness: if the object becomes too
compact, it will want to collapse on itself into a black hole.

Instead of constructing ECO models bottom-up, a complementary approach is to consider top-
down models — objects which come from a theory of quantum gravity, and so are by construction
guaranteed to be consistent, stable objects. Fuzzballs, and in particular microstate geometries, are
precisely such objects. They are horizonless objects that can be made arbitrarily compact (recall
the scaling solutions mentioned in Section 2.6 and Exercise 4) without imploding on themselves.

Microstate geometries have many limitations, as we discussed in Section 1.5. Most notably, we
do not have any such geometries that can correspond to realistic (Kerr) black holes! Accordingly,
the philosophy to keep in mind is not that we are looking for direct, specific candidates to replace a
given astrophysical black hole. Rather, we study our available microstate geometries as models of
universal mechanisms of horizon-scale microstructure in string theory. Fuzzballs and microstate
geometries provide us with concrete, horizonless objects with microstructure that is supported by
consistent quantum gravity mechanisms — specifically, topological bubbles with flux that live in
the additional compact dimensions of string theory. Fuzzball phenomenology is then the study of
top-down fuzzball geometries as string theory models of quantum gravity effects at the horizon
scale for current and future precision black hole observations.

4.2 Gravitational waves

Black holes can be captured in each other’s orbit. In such a system, they emit gravitational
waves as they orbit around each other; these waves carry off energy from the system, so that the
black holes spiral closer and closer to each other until they plunge into each other in a violent
merger. The merged black hole then emits some final gravitational radiation as it relaxes to a new,
steady state.

We can divide this process into three distinct phases, see Fig. 12. First, we have the inspiral
phase, where the black holes are still relatively far apart from each other. There are a range of
perturbative general relativity techniques that can model this phase of the process, for example by
using a so-called post-Newtonian expansion where the general relativistic corrections to Newtonian
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gravitational physics are taken into account order by order (typically in a parameter ∼ 1/c2). This
phase can also last very long. For example, in extrememass ratio inspirals (EMRIs), a supermassive
black hole captures a smaller object; the smaller object can orbit ∼ 105 times or more before around
the supermassive black hole before it plunges in the horizon [90].

Figure 12: The three phases of the merger of a binary system, and a graph of the strength of the gravitational
wave emitted in the process. The three phases are (a) inspiral; (b) merger; (c) ringdown.
(This is Fig. 1 of Fig. [91], which is adapted from Fig. 2 of [92], licensed under CC BY 3.0.)

When the horizons start coming close enough to start overlapping, and form a new, conglom-
erate horizon, we enter the merger phase. This phase is very short (compared to the inspiral)
and involves strong gravitational fields — typically, computationally expensive numerical general
relativity simulations are needed to model this phase.

Once the final object has formed, the final black hole enters the ringdown phase where it relaxes
to a steady state. Perturbative techniques (e.g. adding perturbations on a single, stationary black
hole background) are again well suited to model this phase.

The gravitational waves emitted during all three phases of this whole process are sensitive to
the details of the black holes involved. In particular, quantum gravity horizon-scale physics may
give deviating wave signatures to the classical general relativistic expectation.

We will briefly discuss a few interesting observables [74] in the inspiral and ringdown phase
below, always keeping the application to fuzzballs in mind. It is harder to model possible quantum
gravity effects — especially coming from horizon-scale microstructure — in the merger phase, due
to its strong gravity nature. Of course, the strong gravity of this phase is also precisely why we
might expect such quantum effects to be most pronounced in this phase. There are a few hints of
possible quantum effects in the merger phase, see e.g. [93].

4.2.1 Inspiral observables

As the two black holes orbit each other, they each source a gravitational field that pulls and
pushes on the other object. The objects’ structure — especially of or at the horizon scale — is
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important to determine the gravitational field that they source and to calculate the tidal forces that
they exert on each other.

The gravitationalmultipoles of an object essentially encode its internal gravitational structure;
in other words, the multipoles describe the “bumps” of an object; see Fig. 13. Gravitational
multipoles are analogous to electromagnetic ones, which can be obtained by a multipole expansion
of the electrostatic potential:

VEM =
Q
r
+

D
r2 cos θ + O(1/r3). (59)

The leading order term, the monopole, gives the total charge Q in the system. At the next order, we
can read off the dipole charge D, and so on. For an object in general relativity, one must choose
appropriate coordinates which allow reading off two sets of multipoles from the metric:

gtt ∼
∑
n

Mn

rn+1 , gtφ ∼
∑
n

Sn
rn+1 . (60)

(Note that this is only schematic, and assumes axisymmetry; the generalization to non-axisymmetric
spacetimes is straightforward [94, 95].) The Mn coefficients are called the mass multipoles and the
Sn are the current multipoles (or angular momentum multipoles). The first non-zero multipoles are
M0 = M , which is the total mass of the object, and S1 = J, the angular momentum of the object.

(a) Purely spherical object (b) M2 deformation, which pre-
serves equatorial symmetry

(c) M3 deformation, which breaks
equatorial symmetry

Figure 13: A spherical object and two deformations: one that preserves equatorial symmetry and one that
does not. The equator is indicated as the gray plane. All three objects are axisymmetric.

The Kerr black hole in general relativity is entirely determined by its mass M and angular
momentum J = Ma; its multipole structure can be expressed in terms of M and a:

M2n = M(−a2)n, S2n+1 = Ma(−a2)n, M2n+1 = S2n = 0, (61)

for all n ≥ 0. Since general relativity is unforgiving in demanding black hole uniqueness, measuring
any deviation from this multipole structure would be a clear signal of quantum gravity effects in
black hole physics. For example, once the mass M and spin J are measured, any deviation from the
Kerr quadrupole value M2 = −J2/M would be a smoking gun of deviations from general relativity.
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It is expected that the future space-based gravitational wave observer LISA will be able to measure
any deviations of the dimensionless ratio M2/M3 from the Kerr value to within one part in 104 [96].

Another striking feature of the Kerr multipoles (61) is that the odd parity multipoles M2n+1

and S2n all vanish. This is because the Kerr black hole enjoys an equatorial symmetry: this is
reflection symmetry over its equatorial plane (z ↔ −z or θ ↔ π − θ in usual Cartesian or spherical
coordinates); see also Fig. 13. This symmetry is “accidental” in that there is no underlying principle
in general relativity that ensures its presence. This is in contrast to axisymmetry (i.e. rotational
symmetry around the axis of rotation of the black hole), which can be shown to be a consequence
of stationarity for Kerr [97]. Indeed, many string theory black holes that generalize Kerr break this
equatorial symmetry. Measuring a non-zero odd parity multipole S2n or M2n+1 would then also be
a smoking gun that points towards physics beyond general relativity! EMRIs as seen by LISA are
also expected to be able to measure such signals rather precisely; it is estimated that a non-zero
value for e.g. S2/M3 & 10−2 would be detectable in such processes [98].

An ECO will typically have different multipoles than the black hole it “replaces”. The multi-
poles of supersymmetric multi-centered microstate geometries were discussed in [94, 95, 99, 100];
see also [101] for a discussion of the multipole moments of the so-called almost-BPS microstate ge-
ometries. Generically, the scaling parameters for these geometries, which determines (in a heuristic
sense) “how far from the horizon” the microstructure is located, also sets the scale of how much the
microstate geometry’s multipoles differ from its corresponding black hole values. The closer to the
horizon that the microstructure sits, the smaller the deviations of the multipole moments from the
black hole values.

The multipole moments of an object can changewhen a second object is gravitationally pulling
on it. Howmuch an object’s multipoles change is its tidal deformability, which can be parametrized
by so-called tidal Love numbers (TLNs) [102–104]. It was recently established that Kerr black
holes have vanishing TLNs (a rather non-trivial statement [105, 106]!), but in general ECOs do
not have vanishing TLNs [103]. These TLNs leave their imprint on the observed gravitational
wave of an inspiralling binary system, so can also be observational smoking guns of horizon-scale
microstructure. It is hard to calculate TLNs as it involves solving full linear perturbations (at zero
frequency) of a solution in a given gravity theory. Calculating the TLNs of any microstate geometry
is still an open problem.

4.2.2 Ringdown observables

The ringdown phase can be modelled as a perturbation on top of an otherwise stationary black
hole background. The perturbation relaxes exponentially fast as most of the excitation either escapes
to spatial infinity or falls into the horizon. This initial relaxation — called the initial ringdown or
prompt ringdown — is determined by the quasinormal modes (QNMs) of the black hole [107].
These QNMs are very sensitive to the object’s details and ECOs have very different QNMs from
black holes [75]. A precision measurement of the QNMs in the initial ringdown could then be a
good probe of the horizon structure. QNMs of multi-centered bubbling microstate geometries were
explored in [108].

After the initial ringdown, the perturbation in a black hole spacetime has completely disap-
peared — either escaped to infinity or absorbed by the horizon. The black hole has achieved a
stationary state, and there is no further gravitational waves being emitted. By contrast, any horizon-
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less object will not absorb the perturbation wave, but rather can trap a part of it “inside” its structure
for long periods of time and emit it back out in quasi-periodic, long lives echoes [84]; see Fig. 14.

-200 0 200 400 600 800 1000
t/M

-0.2

0.0

0.2

0.4
h(t)

Figure 14: The (initial) ringdown at t ∼ 0 in a gravitational wave signal h(t), followed by quasi-periodic and
slowly attenuating echoes in the late ringdown signal. The period of the echoes is twice the cavity length,
which is taken to be L = 100M .
(Figure created from data using the analytic template for echoes in non-spinning ECOs [109–111]; in
particular, the template with L = d = 100M,R = 0.75, grav. polar ` = 2 is used.)

We canmodel the effects of the horizon-scale structure by a second “bump” in the potential that
the wave perturbation feels — see Fig. 15. In a black hole spacetime, there would be no extra bump
and the perturbation is absorbed by the horizon, meaning any wave continues traveling towards
the left on Fig. 15. In an ECO spacetime, the perturbation is trapped between the two potential
bumps, and a small part of the wave “leaks” out every time the wave hits the rightmost bump —
this periodic leaking signal is precisely the echo. The time between echoes is twice the distance
L (in an appropriate tortoise coordinate) between these two bumps, and scales as L ∼ log ε when
ε denotes the “compactness” of the ECO as in (57). In other words, ε can be exponentially small
(and the ECO correspondingly ultra-compact) without this echo time-scale becoming exponentially
large! Even very compact microstructure can give measurable echoes in the ringdown phase.

Echoes of multi-centered bubbling microstate geometries were also discussed in [108]. Note
that it is not (yet) entirely clear how the behaviour of the echoes will behave when the microstate
geometry approaches the scaling limit. To have a clean (i.e. distinguishable) echo, the potential well
and bump structure in Fig. 15 must also be relatively “clean”— the bumps and wells must be clearly
distinctive. A more realistic potential coming from a near-scaling microstate geometry will almost
certainly be more chaotic, making the echo structure similarly chaotic and less distinguishable from
background noise in the resulting observational signal. Further analysis of echoes in the scaling
limit of microstate geometries is needed to understand this better.

4.3 Black hole imaging

Another recent observational advancement is black hole imaging by the Event Horizon Tele-
scope (EHT) — an impressive collaboration of multiple telescopes throughout the world, creating
a virtual Earth-sized telescope [79]. This allowes observations at a small enough wavelength to
image the near-horizon region of the supermassive black hole at the center of the M87 galaxy (see
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x/M

-1

-0.99

-0.98

-0.97

V(x)

BH

ECO

Figure 15: The effective potential that a scalar wave sees in a (Schwarschild) black hole background (solid
black line), and in a particular exotic compact, horizonless object or ECO (dotted red line). (In particular,
this is the potential for a Solodukhin wormhole with λ = 10−10 [87, 112].) The coordinate x is an appropriate
tortoise coordinate such that limr→∞ V(x(r)) = −1. The potential that the scalar feels in the ECO background
mimics that of the black hole background up until the horizon-scale structure at x ∼ −100M . This structure
leads to an effective cavity size of L ∼ 186M .

Fig. 16), and is expected to also be able to provide similar imaging of the black hole at the center
of our galaxy.

Of course, a black hole— being black— does not emit any light itself; rather, the near-horizon
environment of the black hole consists of a complicated plasma of accelerated, charged particles
that emit light. This light is then affected by the black hole’s geometry, bending around the black
hole before escaping and finally arriving at the observing telescope. As such, this light probes and
encodes the details of the near-horizon geometry of the black hole.

However, a big problem in disentangling the geometric details from the observed photons is the
uncertainty in the physics of emission; many details of the plasma surrounding the black hole are still
unknown. The images we currently have do not distinguish well between different models — even
very different ones [113]. This plasma uncertainty masks the details of the geometry, making it hard
to extract precision geometrical data [114]. Nevertheless, certain constraints on deviations from
classical general relativity have already been calculated [115]. In the future, additional VLBI (Very
Long Baseline Interferometry) such as improvements or additions to the current EHT telescopes,
or space-based telescopes, would be able to observe the black holes at different wavelengths and
“see through” the obscuring plasma effects, ameliorating this issue [81, 82].

In a black hole image, there is always a black central region called the black hole shadow (see
Fig. 16) — this is due to the black hole horizon absorbing any light that travels too close to it. A
horizonless object would not absorb any light, so a priori we may think that such an object must
look transparent. This seems problematic if we also want a horizonless object to mimic a black
hole, at least to some extent.

This issue was clarified for horizonless fuzzballs in [55]. There, images of multi-centered
microstate geometries were discussed, and the mechanisms were elucidated how such a horizonless
microstate geometry can still mimic the “blackness” of a black hole shadow. Light travelling close
to the horizon scale will explore the microstructure sitting there. Such light will be trapped on very
long lived, chaotic orbits, so it takes a long time for it to escape the microstructure. In addition,
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Figure 16: The black hole image as obtained by the EHT (left), together with a simulated image from a
GRMHD simulation (middle), and the same simulated image after blurring to mimic the EHT telescope
(right). The black hole shadow is the dark central region; the photon rings are clearly visible in the middle
picture as the bright ring.
(This is Fig. 1 from [113], licensed under CC BY 3.0.)

as it explores the microstructure, it encounters regions of large tidal forces.17 These large tidal
forces imply that the light ray will cease to be well described by a non-interacting geodesic on
this background; rather, the light ray will backreact on the geometry and perturb the microstate
geometry. At the location of this perturbation, new photons can be emitted; however, since the
regions of large tidal forces are also regions of large redshift, the resulting photons that escape to
the outside of the microstructure will necessarily be heavily redshifted to undetectable energies. In
this way, the microstructure will effectively be rendered black, because no un-redshifted photons
will be able to escape from this region.

Finally, we can mention the possibility of imaging observables which can themselves “bypass”
the obscuring effects of the photon emission details. Photon rings are an exciting candidate of such
an observable [118]. The n-th photon ring is formed by photons which have travelled n half-orbits
around the black hole geometry before escaping the black hole environment. It can be shown that
the photons in the n-th and the (n + 2)-th photon rings must have been emitted from points that
are extremely close to each other — so even if the precise emission details are not known, the
relative properties of these rings probe “the same emission” and so filter out the unknown details
of this emission. It has been argued that the shape of the n = 2 photon ring can be very precisely
measured with a proposed near-future space-based VLBI mission [82] and that this would represent
a precision test of the general relativistic black hole geometry. The relative intensities of successive
photon rings are also very sensitive probes to the geometry details, although it is unclear how
well these would be measurable with (near) future experiments. In any case, understanding how
microstate geometry photon rings can deviate from their black hole counterparts is still an exciting
open question.

17See also the recent developments on stringy tidal forces [116, 117].
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A. String Theory in One Minute

This appendix is to give the unfamiliar reader a quick glance or overview — a “glossary” as it
were — of some important string theory terms and concepts used throughout these notes.

There are many references on string theory and D-branes. Limiting myself to one freely
available lecture note each, a nice introduction to string theory is David Tong’s lecture notes [119];
a comprehensive reference about D-branes is Clifford Johnson’s book [120].

Strings; string and supergravity theories The fundamental object in string theory is the string
— also called an F1-string or F1-brane. There are closed strings (that form closed loops) and open
strings.

There are two maximally symmetric string theories (i.e. with 32 supercharges): type IIA and
type IIB. They are related by dualities, which relate states in one of the theories to states in the other.
The low-energy limit of type IIA/B string theory is type IIA/B supergravity in ten dimensions; this is
typically the supergravity starting point for constructing solutions (such as microstate geometries).
By performing dimensional reductions over compact directions, we can obtain lower-dimensional
supergravity theories from these ten-dimensional type IIA/B supergravity theories.

There is also an eleven-dimensional theory called M-theory. This can be seen as a kind of
“strong coupling” limit of type IIA string theory. We only really have access to the low-energy
limit of M-theory, which gives us the (unique) eleven-dimensional supergravity theory. It is also
sometimes convenient to construct solutions in M-theory instead of type IIA/B (for example, see
Section 2.5).

D-branes There are also many other extended objects in string theory called D-branes. Open
strings must end on a D-brane. A Dp-brane extends along p spatial dimensions — for example, a
D1-brane is sometimes also called a “D-string”. A D0-brane is then analogous to a point particle,
having no spatial extent.

If we are are in type IIA string theory, then we have even-p D-branes: D0, D2, D4, D6, D8.
Type IIB has odd-p D-branes: D1, D3, D5, D7, D9. (There are also D(-1)-branes; let’s not go
there.) The dualities between IIA and IIB theories map the different types of Dp-branes into each
other. M-theory has M2-branes and M5-branes—when we dimensionally reduce M-theory to type
IIA, these M-branes become D-branes and the F1-string. (Both type IIA and IIB string theories
also have NS5-branes, which are the magnetic dual of F1-strings.)
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Gauge field strengths A point particle is a source for a one-form potential with a two-form field
strength — for example, an electron in electromagnetism. In the same way, an object extending in
p spatial dimensions is a source for a (p + 1)-form potential field with a (p + 2)-form field strength.
Concretely, Dp-brane sources a (p + 2)-form Ramond-Ramond field strength F(p+2). An F1-string
sources the Neveu-Schwarz three-form field strength H(3).

Kaluza-Klein compactifications To “compactify” or equivalently “dimensionally reduce” (or
Kaluza-Klein reduce) along a dimension or direction means we essentially try to get rid of all
dependence on this direction in our theory. For example, consider a metric in a (d + 1)-dimensional
theory:

ds2
(d+1) = Xds2

d + Y (dy + A)2, (62)

where y is a compact S1 circular direction; X,Y are scalar factors that do not depend on y, and A
is a one-form that also does not depend on y. We can then “dimensionally reduce” this family of
metrics to a d-dimensional theory, where the metric will be ds2

d
, and A will give rise to an extra

one-form gauge field in this lower-dimensional theory. (Note that a scalar also features in this story,
and X and Y in (62) are related.) A canonical reference on compactifications is [121].

Supersymmetry and supersymmetric solutions Supersymmetry (or SUSY) is often colloqui-
ally described as the symmetry where each boson has a superpartner fermion (and vice versa).
Concretely, a supersymmetric theory has an action which is invariant under an infinitesimal super-
symmetry transformation, which is a transformation parametrized by a spinor.

A supergravity theory is a gravity theory that is supersymmetric; the graviton (metric) has
one or more superpartner(s), the gravitino field. Roughly, the number of superpartner gravitinos is
the number of supersymmetries in the theory. There is a limit to the number of supersymmetries
that a theory can have — 32 — and a theory that has this maximal amount is called maximally
supersymmetric. Type IIA/B andM-theory are all maximally supersymmetric supergravity theories.

We typically only consider bosonic solutions in supergravity, which means we turn all of the
fermionic fields completely off (set them to zero). Such a solution in a supergravity theory is called
a supersymmetric solution if the solution is invariant under some supersymmetric transformations
of the supergravity theory. Note the subtle difference between a supersymmetric theory and a
supersymmetric solution: for the supergravity theory to be supersymmetric, the theory must be
invariant under a set of supersymmetric transformations for an arbitrary spinor parameter; for a
solution in the theory to be supersymmetric, the solution must only be invariant under the same
supersymmetry transformations for (at least) one particular spinor parameter. This particular spinor
parameter is called a Killing spinor of the solution. The amount of linearly independent Killing
spinors that a given solution admits is the amount of supersymmetry that a solution preserves.

Finding supersymmetric solutions is then equivalent to finding bosonic solutions for which the
supersymmetry variations vanish. It can be shown that usually (i.e. when the so-called “Bianchi
identities” are satisfied) a solution to the supersymmetry equations automatically also solves the
equations of motion. The supersymmetry equations are typically first-order differential equations
in the fields of the theory, so are typically easier to solve than the theory’s (second-order) equations
of motion.
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B. Quick Reference for Multi-centered Geometries

General setup The five-dimensional supergravity action is:

S5 =

∫
d5x

[
√
−g

(
R −

1
2

QIJF I · FJ −QIJ∂X I · ∂XJ

)
−

1
24
εµνρσλAI

µFJ
νρFK

σλ

]
, (63)

with:
1
6

CIJK X I XJ XK = 1, QIJ =
9
2

XI XJ −
1
2

CIJK XK, XI =
1
6

CIJK XJ XK . (64)

We always take CIJK = |εIJK | so that:

X I =
Z
ZI
, Z = (Z1Z2Z3)

1/3, QIJ =
1
2
δIJ (X I )−2. (65)

The metric and gauge fields are determined by:

ds2
5 = −Z−2(dt + k)2 + Zds2

4, Θ
I = dAI + d

(
Z−1
I (dt + k)

)
. (66)

Gibbons-Hawking multi-centered solutions The four-dimensional base is of the Gibbons-
Hawking form:

ds2
4 = V−1(dψ + A)2 + Vds2

3,
®∇ × ®A = ®∇V . (67)

with ds2
3 = dr2 + r2dθ2 + r2 sin2 θdφ2 as flat R3. Further, the two-forms are:

Θ
I =

3∑
a=1

∂a(V−1K I )Ωa
+, (68)

and all other functions are given by:

ZI =
1
2

CIJK
KJKK

V
+ LI, (69)

µ =
1
6

CIJK
K IKJKK

V2 +
1
2

K I LI

V
+ M, (70)

k = µ(dψ + A) + ω, (71)

®∇ × ®ω = V ®∇M − M ®∇V +
1
2

(
K I ®∇LI − LI

®∇K I
)
. (72)

The solution is completely determined by the eight functionsH ≡ (V,K I, LI, M)which are harmonic
on R3 (∇2H = 0); these functions are then completely determined by their singularity structure or
“centers”:

H = h0 +
∑
i

hi

ri
, (73)

where ri = |®r − ®ri | is the (flat) R3 distance to the i-th center. The charge vector of a center is defined
as:

Γ
i ≡ (vi, k iI, l

i
I,m

i) =
(
vi, k i1, k i2, k i3, l

i
1, l

i
2, l

i
3,m

i
)
. (74)

The constant terms in the harmonic functions are the (asymptotic) moduli:

h0 ≡ (v0, k0
I , l

0
I ,m

0). (75)
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Regularity Demanding no CTCs requires (to be satisfied everywhere):

Q ≡ Z1Z2Z3V − µ2V2 ≥ 0, V ZI ≥ 0. (76)

Near a center, a necessary condition for no CTCs is to satisfy the bubble equations (there is one for
each center i): ∑

j,i

〈Γi, Γ j〉

ri j
= 〈h0, Γi〉, (77)

where we have defined the intercenter distance ri j = |®ri − ®rj | and the symplectic product:

〈Γi, Γ j〉 ≡

(
miv j −

1
2

∑
I

k iI l
j
I

)
− (i ↔ j). (78)

If we want a smooth, horizonless solution, then all centers must satisfy:

liI = −
1
2

CIJK

k iJ k iK
vi

, mi =
1
12

CIJK

k iI k iJ k iK
(vi)2

. (79)

Asymptotics and charges The moduli h0 determine the asymptotics of the solution. The most
typical asymptotic five-dimensional (R4,1) moduli are:

v0 = k0
I = 0, l0

I = 1,
∑
i

vi = 1, (80)

and m0 is then determined by the sum of the bubble equations, 〈h,
∑

i Γ
i〉 = 0. With these

asymptotics, there are three electric charges and two angular momenta; for solutions that are
completely smooth these are given by:

QI = −2CIJK

∑
i

k̃ iJ k̃ iK
vi

, k̃ iI = k iI − v
i
∑
j

k j
I, (81)

JR =
4
3

CIJK

∑
i

k̃ iI k̃ iJ k̃ iK
(vi)2

, (82)

and the expression for JL is more complicated expression (see eqs. (152)-(154) in [2]).
For four-dimensional asymptotics (R3,1 × S1), we need the ψ circle to become of constant size

at infinity. One possible choice of moduli is:

v0 = 1, k0
I = 0, l0

I = 1, (83)

and m0 is determined by the sum of the bubble equations. Another possible choice is:

v0 = l0
I = 0, k0

I = 1, m0 = −
1
2
, (84)

(as long as the sum of the bubble equations is satisfied). The general condition for having an
asymptotically four-dimensional solution is limr→∞ Q = 1 (with Q defined in (25)). Note that the
four-dimensional metric is given by:

ds2
(4D) = −Q

−1/2(dt + ω)2 + Q1/2ds2
3 . (85)
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C. Exercises and Solutions

Below are a few exercises onmulti-centered geometries, and one on superstrata. These exercises
can be useful for a bubbling novice to get a good feeling for this geometries. Especially Exercise 4
on scaling geometries is important — see e.g. Section 2.6.

You may find assistance fromMathematica can be quite useful in some parts of these exercises.
The solutions are given below in Section C.1.

Exercise 1: One-center black hole in 4D. Consider a solution with a single center at r = 0 with
charges:

Γ
1 = (0, q1, q2, q3, 0, 0, 0, q0) , (86)

with moduli:

h =
(
0, 1, 1, 1, 0, 0, 0,−

1
2

)
. (87)

(a) Write down the 8 harmonic functions H = (V,K I, LI, M) completely. Discuss ω, ZI, µ, k.
Is Q well-defined?

(b) Show that this is a black hole in four dimensions (with metric (85)) by showing that r = 0
(at a given time t) is a surface with a given finite area. (What is this area?) Are there
conditions on q0, qI to make this black hole physical?

Exercise 2: Smooth centers. Consider a smooth center at r = 0 with arbitrary v1, k1
I charges (and

l1
I ,m

1 charges determined by the smoothness conditions). (There may also be other centers away
from the origin in the system.)

(a) Consider the r → 0 behaviour of ZI and µ and show that the smoothness conditions indeed
imply that these functions do not diverge at the center.

(b) Now, taking into account that there may be other centers away from the origin, show that
satisfying the bubble equation for this center at r = 0 is equivalent to demanding that
µ→ 0 at the center.

(c) Take v1 = 1. Use the coordinate transformation r = ρ2/4 to show that the metric at the
center at r = 0 looks simply like the origin of (flat) R4,1.

Exercise 3: Two centers. Consider two centers with arbitrary charges Γ1 = (v1, k1
I , l

1
I ,m

1) and
Γ2 = (v2, k2

I , l
2
I ,m

2). The two centers are located on the z-axis at z = ±l/2. Determine l from the
bubble equations and give any other conditions that the charges and moduli need to satisfy in order
for the solution to be regular. Consider the case of arbitrary moduli h = (v0, k0

I , l
0
I ,m

0) as well as
the specific moduli h(1) = (1, 0, 0, 0, 1, 1, 1,m0) and h(2) = (0, 1, 1, 1, 0, 0, 0,−1/2).
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Exercise 4: Scaling solution. Consider a three-center solution with harmonic functions:18

V =
1
r1
−

1
r2
, K I = 1 + P

(
1
r1
+

1
r2

)
,

LI = −P2
(

1
r1
−

1
r2

)
, M = −

1
2
+

P3

2

(
1
r1
+

1
r2

)
+
−q0
r3
,

(88)

where center 1, 2 are located at x = y = 0 and z = ±l/2, and center 3 is located at y = z = 0 and
x = R. The bubble equations determine l, R in terms of a single parameter λ as:

l = 8P3λ, R = 2λ

√
q2

0
(1 − (1 − 3P2)λ)2

− 4P6. (89)

This parameter λ has an upper bound determined by the triangle inequalities19 (or equivalently
here, demanding that R > 0). The lower bound is simply zero. We will consider the λ → 0 limit,
called the scaling limit of the solution. In this limit, all three centers converge on the origin, ri → r .

(a) Confirm that centers 1, 2 are smooth centers.20

(b) Expand the harmonic functions to zeroth order in λ. Compare to the harmonic functions
of the single center black hole of Exercise 1 to conclude that the scaling limit approaches
the black hole geometry.

(c) Show that the proper distance between centers 1 and 2 tends to a finite value as λ→ 0.

(d) Solve the bubble equations yourself with the charges given in (88) to find the intercenter
distances l12, l13, l23 in terms of the charges and to confirm the expressions for l, R given
above.

Exercise 5: Black hole deconstruction. Consider the setup from the previous exercise, but instead
of the third center, consider an arbitrary amount of centers of the same species as the third center
(i.e. only having an M charge), so that the total (M) charge of all these new centers together is q0.
Show, using the new bubble equations, that one possible configuration for these new centers is that
they all sit at arbitrary positions on a ring in the z = 0 plane with radius R given by (89).

Exercise 6: Three-dimensional metric limits of superstrata. Take a general multi-mode (1, 0, n)
superstrata geometry. We can rewrite the metric as:

ds2
6 = dŝ2

K
+ dŝ2

S3, (90)

where:

dŝ2
S3 = gθθdθ2 + g11(dϕ1 + A(1)t dt)2 + g22(dϕ2 + A(2)t dt + A(2)y dy)2, (91)

dŝ2
K
= ĝttdt2 + ĝyy(dy + Â(y)t dt)2 + ĝrrdr2. (92)

We will find dŝ2
K
and study some of its limits.

18This solution in inspired by the one used in [55].
19The bubble equations can be seen as determining the intercenter distances in terms of the center charges. These

intercenter distances together must satisfy the triangle inequalities in order for the three centers to lie in a triangle, since
otherwise there can be no solution with the given intercenter distances.

20Center 3 is clearly not a smooth center, only having a charge in the M channel. In the 10D IIA frame where the
smooth centers are fluxed D6 branes, center 3 is a (stack of) D0 brane(s).
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(a) Find all of themetric components gθθ, g11, g22 and the off-diagonal components A(1)t , A(2)t , A(2)y .
Then find ĝtt, ĝyy, ĝrr and Â(y)t .

(b) Now that you found dŝ2
K
, consider it at infinity, r →∞. Show that, after a radial coordinate

redefinition and a gauge transformation, it reduces to AdS3 in its canonical form at leading
order:

ds2
AdS3

= R2
[

dρ2

ρ2 + ρ
2dy′2 − ρ2dt ′2

]
+O(ρ0). (93)

(c) Now let’s consider the metric dŝ2
K
near the “cap” r = 0. It is convenient to use the radial

coordinate redefinition ρ = r/a. Expand the metric to O(ρ2) to conclude that there is no
conical singularity and that the metric limits precisely to flat Minkowski space at r = ρ = 0.

C.1 Exercise solutions

I will choose to refer to the equations in the quick reference of appendix B.

Solution to Exercise 1: One-center black hole in 4D.

(a) Clearly, V = LI = 0. Further:

K I = 1 +
qI
r
, M = −

1
2
+

q0
r
. (94)

From (72), it is clear that ω = 0. (Remember, the integration constant from integrating
(72) is unimportant and can be absorbed in a redefinition of the coordinate t.) It is also
clear from (69), (70), (71) that the ZI, µ, k quantities are ill-defined since V = 0. However,
Q of (76) is finite. The easiest way to see this is to take V = ε , compute Q in (76), and then
take ε → 0. This gives us:

Q = Z1Z2Z3V − µ2V2 = −2
(
1 +

q1
r

) (
1 +

q2
r

) (
1 +

q3
r

) (
−

1
2
+

q0
r

)
. (95)

(b) At r ∼ 0 and at constant t, we have:

ds2 ∼
(√

2
√
−q0q1q2q3

)
(dθ2 + sin2 θdφ2). (96)

So at r = 0, the two-sphere parametrized by (θ, φ)— the horizon of the black hole — has a
finite area. The radius squared of this two-sphere is

√
2√−q0q1q2q3, so its area is simply

ABH = 4
√

2π√−q0q1q2q3. This area should be positive, so we must have:

q0q1q2q3 < 0. (97)

Typically, one takes q0 < 0 and q1,2,3 > 0.

Solution to Exercise 2: Smooth centers. Clearly, we have:

H = h0 +
Γ1

r
, (98)

where h0 is not specified, and the only relation that the Γ1 = (v1, k1
I , l

1
I ,m

1) must satisfy is (79), so:

l1
1 = −

k1
2 k1

3
v1 , l1

2 = −
k1

1 k1
3

v1 , l1
3 = −

k1
1 k1

2
v1 , m1 =

1
2

k1
1 k1

2 k1
3

(v1)2
. (99)
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(a) At r → 0, we can ignore the moduli h0 in (98). The first term in the expression (69) for Z1

will behave as:

K2K3

V
=

k1
2 k1

3
r2

(
v1

r

)−1

+ O(r0) =
k1

2 k2
3

v1 r−1 + O(r0), (100)

and the second term simply as:

L1 = l1
1r−1 + O(r0). (101)

The diverging ∼ r−1 part of Z1 will then vanish if and only if:

l1
1 +

k1
2 k2

3
v1 = 0, (102)

which of course is precisely the smoothness condition (99). The analysis for Z2, Z3 is
analogous. For µ, staring at (70) should hopefully also make it clear that the only possible
divergence goes as ∼ r−1. Now, there are three such diverging terms; however, the K I LI/V
term combines with the K IKJKK/V2 term due to the previous smoothness condition (102).
When the dust settles, the condition for the O(r−1) term in µ to vanish is simply (99).

(b) As we derived above, the smoothness conditions (99) tell us that µ ∼ O(r0) as r → 0.
Let’s now calculate this O(r0) piece. First, we note that we can expand all the harmonic
functions as:

H =
Γ1

r
+

(
h0 +

∑
i>1

Γi

r1i

)
+ O(r), (103)

where the sum is over all other centers, and r1i is the distance between the first center (at
r = 0) and the i-th center. The expansion (103) allows us to pick out the O(r0) terms in
(70). Note first that:

V−2 =
r2

(v1)2
−

2
(v1)3

(
v0 +

∑
i>1

vi

r1i

)
r3 + O(r4). (104)

Then, we have:

K1K2K3

V2 = −2
k1

1 k1
2 k1

3
(v1)3

(
v0 +

∑
i>1

vi

r1i

)
+

[
k1

2 k1
3

(v1)2

(
k0

1 +
∑
i>1

k i1
r1i

)
+ (cyclic in K1,K2,K3)

]
.

(105)
We can use the smoothness conditions (99) to rewrite this as:

K1K2K3

V2 = −4
m1

v1

(
v0 +

∑
i>1

vi

r1i

)
−

(∑
I

)
l1
I

v1

(
k0
I +

∑
i>1

k iI
r1i

)
. (106)

Similarly, we can find that:

1
2

LIK I

V
= +3

m1

v1

(
v0 +

∑
i>1

vi

r1i

)
+

1
2

(∑
I

)
k1
I

v1

(
l0
I +

∑
i>1

liI
r1i

)
+

1
2

(∑
I

)
l1
I

v1

(
k0
I +

∑
i>1

k iI
r1i

)
.

(107)
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Combining these expressions with M , and multiplying by v1, we find:

v1µ = −m1

(
v0 +

∑
i>1

vi

r1i

)
+ v1

(
m0 +

∑
i>1

mi

r1i

)
(108)

+
1
2

(∑
I

) [
k1
I

(
l0
I +

∑
i>1

liI
r1i

)
− l1

I

(
k0
I +

∑
i>1

k iI
r1i

)]
+ O(r). (109)

Demanding that µ vanishes as r → 0 is then equivalent to demanding:∑
i>1

m1vi − v1mi + 1
2
∑

I (l1
I k iI − k1

I liI )
r1i

= m0v1 − v0m1 +
1
2

∑
I

(l0
I k1

I − k0
I l1
I ), (110)

which is precisely the bubble equation (77) for center 1:∑
i>1

〈Γ1, Γi〉

r1i
= 〈h0, Γ1〉. (111)

(c) (This is described in Section 4.1 of [2].) From the above considerations, we now that as
r → 0, the ZI ’s go to a constant, ZI → Zc

I , and µ → 0. Further, although it is not
immediately obvious from (72), the bubble equations also ensure that ω ∼ 0 as r → 0
(proving this is a good extra exercise!). Then, for the Gibbons-Hawking base (67), when
V ∼ 1/r (near the center), we have A ∼ cos θdφ. So, this means the metric (66) will look
like:

ds2
5 = −Z−2

c dt2 + Zc

(
r(dψ + cos θdφ)2 + r−1 [

dr2 + r2dθ2 + r2 sin2 θdφ2] ) . (112)

Finally, the suggested coordinate transformation r = ρ2/4 gives us:

ds2
5 = −Z−2

c dt2 + Zc

(
dρ2 +

ρ2

4
[
dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2

] )
. (113)

The constant Zc can be absorbed in a redefinition of the time coordinate t to give an overall
factor for the entire metric. This metric is now simply the metric of five-dimensional flat
space (the angular part is precisely that of an S3 with radius ρ, using Hopf fibration
coordinates). Near ρ ∼ 0 (i.e. r ∼ 0), the metric is singular, but this is a simple coordinate
singularity due to ρ = 0 being an origin of R4,1. A coordinate singularity due to an
origin is of course not a physical singularity, so we can conclude that r → 0 is a smooth,
non-singular point of the geometry.

Solution to Exercise 3: Two centers. The bubble equations (77) for two centers can be written
together as:

〈Γ1, Γ2〉

r12
= 〈h0, Γ1〉 = −〈h0, Γ2〉. (114)

The last inequality is from the second bubble equation. The moduli must then satisfy:

〈h0, Γ1 + Γ2〉 = 0. (115)
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The intercenter distance r12 = l is determined by the bubble equation(s) as:

l =
〈Γ1, Γ2〉

〈h0, Γ1〉
. (116)

Finally, both centers must satisfy the smoothness conditions (79) if the solution is to be smooth. For
the specific moduli h(1) = (1, 0, 0, 0, 1, 1, 1,m0), we can use (115) to determine m0:

m0 =
1∑

i=1,2 v
i

(∑
i=1,2

mi −
1
2

∑
I

∑
i=1,2

k iI

)
. (117)

For the moduli h(2) = (0, 1, 1, 1, 0, 0, 0,−1/2), we must instead restrict the charges due to (115):∑
i=1,2

(
vi +

∑
I

liI

)
= 0. (118)

Solution to Exercise 4: Scaling solution. I will choose to work with the five-dimensional metric
(66); an alternative would be to work with the four-dimensional metric (85), since these solutions
are asymptotically four-dimensional (R3,1 × S1).

(a) This is a simple matter of confirming (79) for the center charge vectors:

Γ
1 =

(
1, P, P, P,−P2,−P2,−P2,

P3

2

)
, Γ

2 =

(
−1, P, P, P, P2, P2, P2,

P3

2

)
. (119)

(b) Anything proportional to r−1
1 − r−1

2 will tend to zero (to O(λ0)) while r−1
1 + r−1

2 → 2r−1.
This means that, to O(λ0), the harmonic functions are precisely given by the same form as
the single-center black hole ones (94), with (q0)(BH) = P3 − q0 and (qI )(BH) = 2P.

(c) (This reasoning is also sketched in Section 8.5 of [2].) The proper distance d12 between
the two centers is simply the integral:

d12 =

∫ z=+l/2

z=−l/2
dz
√
gzz, (120)

which we evaluate at x = y = 0 (and ψ constant). Now, gzz = −Z−2k2
z + ZV . We note that

the z direction is perpendicular to dψ; moreover, for our configurationω ∼ dφ and A ∼ dφ
(this is a good extra exercise to show this!) so that ωz = Az = 0. Then, remembering that
k = µ(dψ + A) + ω, we conclude that kz = 0. So we have:

d12 =

∫ +l/2

−l/2
dz (Z1Z2Z3V3)1/6 =

∫ +l/2

−l/2
dz

√
(l + 4P − 2z)(l + 4P + 2z)

l2 − 4z2 . (121)

Now, in the scaling limit, l ∼ λ and |z | ≤ l/2 as λ → 0. This means that the numerator
will be dominated by (4P)2, so:

d12 |(scaling) = lim
l→0

∫ +l/2

−l/2
dz 4P

√
1

l2 − 4z2 = lim
l→0

2πP = 2πP. (122)

So in the scaling limit, the proper distance between centers 1 and 2 tends to 2πP.
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(d) The bubble equations are:

〈Γ1, Γ2〉

r12
+
〈Γ1, Γ3〉

r13
= 〈h0, Γ1〉,

〈Γ1, Γ3〉

r13
+
〈Γ2, Γ3〉

r23
= −〈h0, Γ3〉. (123)

There is also a third bubble equation (for center 2), but since the sumof the bubble equations
is satisfied (check that (118) is satisfied!), this third bubble equation will automatically be
satisfied if these two bubble equations are. These bubble equations simplify to:

4P3

l
−

q0
r13
=

1
2
−

3
2

P2,
q0
r13
−

q0
r23
= 0. (124)

The second equation tells us that the triangle is isosceles, r13 = r23. Then, defining λ by
setting l = 8P3λ, we find:

r13 = r23 =
2q0λ

1 − (1 − 3P2)λ
. (125)

Since we put centers 1 and 2 at z = ±l/2, this implies the third center must be located on
the equatorial plane z = 0. Further, (125) implies that it has to lie on the circle of radius
R2 = r2

13 − (l/2)
2; this gives precisely the R value in (89).

There are no further equations to solve,21 so λ is a free parameter of the solution. However,
not any value of λ is allowed. First of all, intercenter distances should be positive, so λ > 0
(assuming that P > 0). Further, the intercenter distances r13 = r23 and r12 = l only can
define a triangle if the triangle inequalities are satisfied:

r12 + r13 > r23, |r12 − r13 | < r23, (and cyclic in all sides). (126)

(If the triangle inequalities are not satisfied for these distances, it is impossible to construct
a triangle in Cartesian space with the three lengths given.) The only non-trivial triangle
inequalities for this triangle are the two given in (126). It is not obvious to solve these in
full generality. An example region of allowed solutions for fixed P = 2 is:

P = 2, q0 > 16 and 0 < λ <
1

176
(q0 − 16). (127)

In principle, one should also check for a given solution that (76) is satisfied so that there
are no CTCs.

Solution to Exercise 5: Black hole deconstruction. Instead of only one center with Γ3 = (07,−q0),
let’s consider a number of centers with charge vectors Γα = (07,−qα)with

∑
α qα = q0. In this case,

the sum of the bubble equations is still vanishing, and the other bubble equations are an altered
version of (124):

4P3

l
−

∑
α

qα
r1α
=

1
2
−

3
2

P2,
qα
r1α
−

qα
r2α
= 0, (128)

where the second equation is valid for each α. The reason that the bubble equations are so “easily”
modified is essentially because 〈Γα, Γα′〉 = 0 for any α, α′ — all of these extra centers don’t “talk

21Although note that we require q0 > P3 so that (q0)(BH) < 0, see above and Exercise 1.
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to each other” in the bubble equations. Once again, we see that all of the α centers must lie in the
equatorial plane as r1α = r2α. The first bubble equation tells us that:∑

α

qα
r1α
=

q0
r13
, (129)

with r13 as given in the previous exercise. Since
∑
α qα = q0, a simple solution to this equation is

to put r1α = r13 for all α. This means all of the α centers must sit on a ring in the equatorial plane
(z = 0) with radius x2 + y2 = R2 = r2

13 − (l/2)
2. There is no further restriction on their placement;

all of the α centers can be placed on arbitrary places on this ring.
This problem is inspired by the black hole deconstruction paradigm [122].

Solution to Exercise 6: Three-dimensional metric limits of superstrata. This is described in
Sections 4.1 and 4.2 of [60]; see especially eqs. (4.3), (4.4), (4.6), (4.8) therein.
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