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1. Introduction

These lecture notes are meant as a first introduction to Goldstone physics. This area of physics
revolves around the Goldstone theorem which, briefly stated, ensures there is at least one massless
mode, called the NG mode1, in the spectrum of the theory when a spontaneous symmetry breaking
(SSB) occurs. SSB is when the theory possesses a symmetry (i.e. the dynamics is invariant under
the action of the symmetry) but the vacuum around which we perform the perturbation analysis/the
quantisation does not have such symmetry. A cartoon visualisation of this concept can be observed
at Figure 1 through the Mexican hat potential. These different notions will be revised more formally
later. However, we can already understand that Goldstone’s theorem provides some information on
the spectrum content at low energy (the IR region). Therefore, combining this information with
tools to build Effective Field Theories (EFT) would provide us an almost complete description of
the IR physics. That could be a definition of what Goldstone physics is : thorough analysis of the
Goldstone theorem and of the related results supplemented by/completed with EFT tools.

Re(φ)
Im(φ)

V (|φ|)

The Mexican hat potential

Figure 1: The dynamics of a physical system is mainly dictated by its potential. We observe that the
represented potential in the above cartoon has a rotation symmetry since all the directions in the complex
plane are equivalent. This means that the theory describing our system possesses this symmetry. However, the
stable state into which we place the system (represented by the yellow sphere) selects one specific direction.
Hence, all the directions are not anymore equivalent, the rotation symmetry is broken by the state of the
system. We say that the symmetry is spontaneously broken.

The notes are structured as follow. We will begin by motivating the subject. Afterwards,
the formalism we will use will be settled. It should be seen as a way to set the conventions

1NG mode stands for Nambu-Goldstone mode. Historically, Nambu is the one who conjectured the link between
symmetry breaking and the mass constraint it implies [1, 2], while it is Goldstone who clarified and proved this conjecture
[3, 4].
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and the definitions rather than an axiomatic goal. Furthermore, it will permit to review the
necessary background knowledge. Then, Goldstone’s theorem will be stated and proved (without
any claim of full mathematical rigour). From a discussion on the NG modes, some of their
properties will emerge: they are massless, they are weakly coupled in the IR and they transform non-
linearly under the spontaneously broken symmetries. These properties will formally be displayed
through the construction of a generic EFT for NG modes. This, by using the coset construction
formalism, which will itself be introduced. Furthermore, the EFT approach will allow us to acquire
additional knowledge compared to the prediction of Goldstone’s theorem, namely, we will obtain
a classification and a counting rule for the NG modes. The range of validity of these results will
as well be detailed. The abstract discussions and developments we made so far will be followed
by a concrete example in condensed matter: ferromagnetism. Finally, a brief state of the art of
Goldstone physics will be provided.

This set of lectures given at the XVII Modave Summer School in Mathematical Physics remains
globally an introduction to Goldstone physics. The interested reader can extend his knowledge in
this field through the references provided along these notes. The four main references that were
used to write these lecture notes are [5–8]. Let us mention that the subject of spontaneous symmetry
breaking is vast and many articles appeared in the past decades. The bibliography of this work is
not meant to be exhaustive, it focuses on the references the author is the most familiar with. We
apologise for any unintentional omissions of relevant papers or reviews.

N.B. : Let us mention that Sections 1 to 4 included were explicitly presented during the 6-hour lec-
ture while Sections 5 and 6 were briefly commented. We however provide additional developments
to the later sections in order to make these notes self-contained.

1.1 Motivations

To motivate the study of Goldstone physics we need first to recap the well-known assets of
symmetries. This, in order to put into perspective the interesting aspects of spontaneous symmetry
breaking.

It is intuitive that to know a symmetry of an object (geometric figures, mathematical equations
etc. left invariant after a given transformation) permits to ease the description and the manipulation
of the considered object. In physics, this idea has been formalised through the Noether theorems
which establish a connection between symmetries and conserved quantities. A noteworthy point
is that these conserved quantities are exactly conserved no matter how complex the dynamics is.
Hence, symmetries offer exact (i.e. non-pertubative) results. Furthermore, symmetries rely on the
mathematical description of physics, it is thus not specific to a given physical scenario2. When a
concept applies to several physical phenomena, we say that this concept is universal. This is the
case of symmetries. Finally, the symmetries permit to constrain the shape of a Lagrangian when
we do model building. The importance of symmetries in physics can be heuristically shown by
noticing that symmetries are one of the current paradigm of modern physics: special relativity has
for cornerstone Lorentz symmetry, general relativity is based on diffeomorphism invariance and the
standard model is constructed on the notion of gauge symmetries.

2An example is that we use energy conservation in any area of physics.
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Paradoxically, physics is richer when symmetries are spontaneously broken. At first, we could
think that we lose universality but this is not the case since many physical phenomena take place
around a pre-existing background which breaks spontaneously the fundamental symmetries. For
example, the crystal structure in solid state physics is usually taken as granted and it breaks Poincaré
group (spatial translations and rotations as well as the boosts). Another example could be the
quark condensate, at low energy the quarks are not free and form bound states. This condensation
breaks the chiral symmetry. An additional possible false idea we could have when SSB occurs
is that we lose the exactness of the results related to symmetries. This can be denied thanks to
Goldstone’s theorem where the massless aspect of the NG modes is exact. Furthermore, we can
mention that even in the case of an explicit symmetry breaking, if we are able to write down
the source generating the breaking, the Ward-Takahashi identities can be generalised and still be
exact (see for example [9, 10]). This can be relevant for pseudo NG modes, cf. Subsection 6.2.
Finally, the spontaneously broken symmetries still constrain the shape of the Lagrangian. However,
it is less easy to see because these symmetries are now “hidden”. We will see that the formal
explanation is that they are non-linearly realised instead of being linearly realised3 which makes
the invariance of the Lagrangian less obvious. Gathering all these observations, we can (with a bit
of exaggeration) say that spontaneous symmetry breaking gives us the IR matter content of a given
physical phenomenon through Goldstone’s theorem and it constrains the shape of the associated
EFT. In other words, it completely settles the effective field theory. Therefore, while symmetries are
giving partial information on the dynamics through the conserved quantities, spontaneous symmetry
breaking provide all the dynamics at low energy. It is in this sense that physics is richer in the case
of SSB. Of course, that is hasty said, it should not be taken literally but more as a guideline which
motivates the study of Goldstone physics.

Since the last assertion is the main motivation of Goldstone physics, it could be interesting to
have an additional viewpoint on it – in order to double check the consistency of this remark. It
can be done through the concept of RG flow. In the UV (high energy) each physical phenomenon
is described by one theory. When we follow the RG flow toward the IR, the irrelevant operators
become progressively suppressed. We thus remain with a handful numbers of theories – the
number of parameters is now limited – which are constrained by the symmetries. Indeed, the RG
flow modifies the theories consistently with the symmetries (if there are no anomalies). Hence, in the
IR, one theory is describing several physical phenomena. The effective field theories are therefore
universal and symmetrically constrained. The different physical phenomena are discriminated by
the different interpretation we give to the parameters (the mass, the compression modulus etc.) and
by the numerical values of these parameters4. Furthermore, when we go to low energy, the system
tends to condense (e.g. liquid-solid phase transition at low temperature, quark condensate at low
energy, Bose-Einstein condensation at low temperature). The condensate will spontaneously break
some symmetries. We can thus apply Goldstone’s theorem to have information on the IR spectrum

3In physics, in general, the usual symmetries (𝑈 (1), 𝑆𝑂 (3), 𝑆𝑈 (𝑁) . . .) are realised through matrices acting on fields
which makes their action intrinsically linear.

4An EFT is the most general theory we can write which is invariant under a given symmetry group and that is
written as an expansion in energy (usually a power series in derivatives). The experimental precision (or just the desired
precision) tells us where to truncate this series. From the UV theory or from experiments we are thus able to determine
the remaining parameters and our EFT becomes predictive at low energy.
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content. This leads to the rough idea that IR physics is universally described by Goldstone physics.
As mentioned earlier, it should be understood more as an argument motivating the subject rather
than a strong statement.

Till now, we used abstract ideas to justify the universality of spontaneous symmetry breaking
and Goldstone physics. We will close this section by stating some concrete examples where such
concepts are found (it is not an exhaustive list).

• High energy physics: light mesons physics [7], composite Higgs model [11], Higgs mecha-
nism [12].

• Statistical physics: phase transitions (ferromagnetism [7], . . .), transport phenomena (super-
fluidity [13], . . .), condensed matter (crystal structure, . . .) [14].

• Astrophysics: stellar superfluids (e.g. in neutron stars) [13]

Of course, these domains are interconnected and it is one of the reasons why spontaneous symmetry
breaking occurs in many areas of physics. For example, spontaneous symmetry breaking intervenes
in the study of neutron stars because the latter have the right thermodynamic conditions to sustain a
superfluid phase. Some of the superfluid phase transitions correspond to a Bose-Einstein conden-
sation which can be described by the spontaneous symmetry breaking of a 𝑈 (1) symmetry [13].
Thus, with the single example of superfluid, SSB intervenes in phase transition physics, in transport
phenomena study and in astrophysics.

1.2 Goals of the lecture

As we have seen from the motivations, Goldstone physics is a vast subject which cannot be
covered in detail in a 6-hour series lecture. We should thus settle the aim of the lecture (and so, of
these lecture notes). The canonical goal is of course to get the gist of what Goldstone physics is. It
is also interesting to acquire some technical knowledge that can be re-used in other domains. To do
so, we decided to focus on the coset construction which is a building tool for effective fields theories.
To understand the subtleties and the technical difficulties of a given subject, it is a good practice
to do some concrete proofs of already established results. Therefore, we will prove (with some
shortcuts) two main results of Goldstone physics: the Goldstone theorem and one of the existing
counting rules for the NG modes (Goldstone’s theorem predicts the existence of NG modes but does
not say how many of them there are). Finally, the main purpose of this lecture is that a non-expert
of the field can acquire enough background knowledge to not be confused if she/he comes across
spontaneous symmetry breaking related topics during her/his own literature reading (and provide
her/him enough references such that she/he knows where to look if a deeper knowledge is needed).
Indeed, it is not unlikely that it happens due to the universal aspect of SSB.

2. Setting the formalism

Before starting to discuss and computing physical quantities related to spontaneous symmetry
breaking we will do some recap on the necessary prerequisites as well as establishing the framework
we are going to work with. This is the purpose of this section. Let us mention that we do claim a
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scientific approach (i.e. justify every step and keep an appropriate rigour level) however, we do not
claim a full mathematical rigour and we do not pretend to have an axiomatic approach of physics.
This section should be understood as a way to refresh memory on standard notions (no claim of
originality) and to establish the vocabulary as well as the definitions.

We are going to work with physical quantum field theories (QFT) defined on Minkowski
spacetime of dimension 𝑑 ě 2. Using fields as degrees of freedom is consistent with the infra red
limit because this limit is equivalent to probe for phenomena occurring at large distances and so,
there is not much loss of generality by considering the continuous limit (e.g. in crystal structure)
[7]. Furthermore, we need at least one spatial direction in addition to the time direction to be able
to define a notion of momentum and of energy (necessary for the concept of mass/gap). The term
“physical” is deliberately vague5 but it should include at least:

• a notion of locality: following the theorems or the results we will consider, there will be
specific restrictions on locality. For example, while building effective field theories, we will
only consider interactions between fields evaluated at the same spacetime position. On the
contrary, Goldstone’s theorem is robust with respect to locality. It is valid up to interactions
with a finite range in space.

• stability: we want our vacuum as well as the fluctuations around it to be stable, i.e. to remain
finite through time.

• Consistency with a possible Poincaré-relativistic UV completion: Goldstone physics encom-
passes phenomenological descriptions of macroscopic systems. These phenomenological
theories could be non-relativistic, however, we know that at the fundamental level, physics is
relativistic. Therefore, any non-relativistic theory in the IR should, at higher energy, comes
from the spontaneous symmetry breaking of Poincaré symmetry (as it is suggested in [22]
for example). We will not check explicitly this last requirement concerning a possible rela-
tivistic completion, but we should keep in mind this physical constraint. Notice that in this
course, when we mention relativity it is with respect to Poincaré symmetry (Poincaré/Lorentz
relativity).

It is important to notice that the considered QFTs are not necessary Lorentz invariant. Since
this course is essentially addressed to high energy physics Ph.D. students (where relativistic QFTs
are the norm), we can take some time to justify why we can be interested in non-relativistic
theories. We have that macroscopic systems correspond usually to some fluctuations around a
given condensate (e.g. solid state physics). The centre of mass of this condensate corresponds
therefore to a preferential frame which is opposed to the paradigm of relativity: fundamentally,
the laws of physics are the same in any (inertial) frame. Furthermore, the thermodynamic state

5The idea of physical theories is intrinsically vague since this notion evolves with our understanding of nature. A
naive example is that at a moment of History we thought that time was absolute but with special relativity, we learned
that it was not correct. So, what a physical theory is evolves through science History. A more relevant example for us is
that in the early seventies Coleman stated that for a relativistic field theory in two spacetime dimensions, no spontaneous
symmetry breaking can occur [15]. This theorem can be evaded if we consider strictly large N theories [16–18]. These
theories could be thought as purely exotic and non-physical. However, thanks to the holographic duality postulated in
the nineties [19–21], it appears that they could be linked to consistent physical gravitational theories.

7
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of the system is given through a static computation with the probability weight 𝑒´𝛽𝐻 where 𝐻
is the Hamiltonian. The interplay between the Hamiltonian and the Lorentz group is non-trivial,
thus, thermodynamic states tend to break Lorentz invariance. Finally, the macroscopic systems are
important for this lecture because Goldstone’s theorem does apply to them as well.

Even if we just mentioned the importance of statistical field theory, we are going to work with
QFTs at zero temperature and at zero chemical potential. Of course, switching on temperature and
a chemical potential is part of the research area of Goldstone physics but, from the (subjective)
point of view of the author, it does not (pedagogically speaking) belong to an introduction. Let us
mention that a comment about the finite density case will be made in Section 6.

For the computation perspective, we are going to use the mostly minus metric

(+,´,´, . . .) ,

and the natural units 𝑐 = 1 = ℏ, where 𝑐 and ℏ are, respectively, the speed of light and the Planck
constant.

2.1 What do we mean by symmetry ?

At classical level

In field theory, a symmetry is a transformation applied on the fields which leaves the equations
of motion (EOM) unchanged. An equivalent formulation is that under such transformation, a
solution of the EOM remains a solution. Mathematically, a transformation on the fields is defined
as {

𝑥𝜇 Ñ 𝑥1𝜇 = 𝑥1𝜇 (𝑥) ,
𝜙𝑖 (𝑥) Ñ 𝜙1𝑖 (𝑥1) = 𝐹𝑖 [𝑥, 𝜙(𝑥)] ,

(2.1)

where 𝜙 is a generic field and the index 𝑖 refers to its possible multi-component nature, 𝐹𝑖 is a
function, finally, the prime index represents the transformed object.

In this work we will do a small misnomer by defining “a symmetry” as a transformation applied
on the fields which leaves the action of the field theory unchanged:

𝑆[𝜙1] = 𝑆[𝜙] . (2.2)

This small misappropriation of the term symmetry is consistent in the sense that a symmetry of
the action implies a symmetry of the EOM. Furthermore, we do not lose much generality because
most of the important symmetries (and the mostly used ones) in physics are the ones which could
be seen at the level of the action.

If we consider several transformations of the type (2.1), we can combine them through the law
of function composition and get another symmetry by “chain reaction”. It is therefore possible to
define an internal associative product. The identical transformation is trivially a symmetry. Finally,
physical interesting transformations are predominantly invertible6 (e.g. rotations, phase-shifts,
translations . . . ). Hence, the symmetries of a theory form a group. It is common to denote this
set of transformations as a realisation of the usual groups: Z2, 𝑈 (1), 𝑆𝑂 (3), 𝑆𝑈 (𝑁) . . . . We

6A symmetry transformation could be somehow interpreted as a change of frame. Physically, nothing prevents us to
go back to the original frame.
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will of course come back to it later, but Goldstone’s theorem only applies when such groups are
continuous. We will from now on focus on continuous groups. If we consider a continuous set of
transformations (2.1) parametrised by 𝛼𝑎, we can write an infinitesimal expression{

𝑥𝜇 Ñ 𝑥1𝜇 = 𝑥𝜇 + 𝛼𝑎 𝜉
𝜇
𝑎 (𝑥) ,

𝜙𝑖 (𝑥) Ñ 𝜙1𝑖 (𝑥) = 𝜙𝑖 (𝑥) + 𝛼𝑎 𝛿𝑎𝜙
𝑖 (𝑥) .

(2.3)

These transformations correspond to the realisation of the continuous connected part to the identity
(𝛼 = 0) of the symmetry group. Therefore, 𝛼𝑎 parametrises the Lie algebra of the continuous group
and we can define the representation of the generators 𝐺𝑎 by the infinitesimal action on the fields

𝛼𝑎𝐺𝑎𝜙
𝑖 (𝑥) ” 𝛿𝛼𝜙

𝑖 (𝑥) ” 𝜙1𝑖 (𝑥) ´ 𝜙𝑖 (𝑥) . (2.4)

Let us mention that we will slowly start to stop to do the distinction between the generators and the
realisation of the generators. The context should make it clear which case is considered.

We recall that through Noether first theorem, it exists a one-to-one relation between the set
of symmetry generators 𝐺𝑎 and the set of conserved currents 𝑗 𝜇𝑎 (𝑥) with B𝜇 𝑗

𝜇
𝑎 = 0 on-shell. The

conserved current associated to 𝐺𝑎 is constructed as follow [5, 23]

𝑗 𝜈𝑎 =
BL

B (B𝜈𝜙𝑖)
𝛿𝑎𝜙

𝑖 ´ 𝐾𝜈
𝑎 , (2.5)

where L(𝜙, B𝜙) is the Lagrangian of the symmetric theory. This Lagrangian can transform up to a
global derivative under the transformation

𝛿𝑎𝜙
𝑖 ” 𝐺𝑎𝜙

𝑖 , (2.6)

such that we express the global derivative through 𝐾𝜈
𝑎 :

𝛿𝑎L = B𝜇𝐾
𝜇
𝑎 . (2.7)

From 𝑗
𝜇
𝑎 , a conserved quantity can be built

𝑄𝑎 ”

∫
𝑑𝑑´1𝑥 𝑗0𝑎 (𝑥) . (2.8)

At quantum level

Quantum mechanics is described by a complex Hilbert space H = {|𝜓〉} and by a Hamiltonian.
Conceptually, a symmetry transformation |𝜓〉 Ñ

��𝜓1
〉

can be seen as a change of frame. Changing
the frame should not alter the relative results of an experiment. Therefore, a necessary condition
that a symmetry transformation should satisfy is

〈𝜓 | �̂� |𝜓〉 =
〈
𝜓1

�� �̂�1
��𝜓1

〉
, (2.9)

where 𝐴 is an observable and the prime represents its transformation. Wigner theorem states that for
(2.9) to be fulfilled, a symmetry transformation acting on H should be either unitary and linear or
antiunitary and antilinear [24]. As it will become clear later, in Goldstone physics we are interested

9
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in the part of the symmetry group which is continuously connected to the identity. Said otherwise,
we are interested in the symmetry transformations which can be parametrised by the Lie algebra.
Identity is a unitary operator and the switch between unitary and antiunitary is discontinuous, thus,
we have that our considered transformations are unitary. Hence, the symmetry transformations we
are interested in, realising a given symmetry group, can be written as

|𝜓〉 Ñ 𝑒𝑖𝛼
𝑎�̂�𝑎 |𝜓〉 , (2.10)

where the realisation of the generators is Hermitian

�̂�
:
𝑎 = �̂�𝑎 . (2.11)

From (2.9) and (2.10), we have
�̂� Ñ 𝑒𝑖𝛼

𝑎�̂�𝑎 �̂� 𝑒´𝑖𝛼𝑎�̂�𝑎 . (2.12)
To define what a symmetry is, we will use a pragmatic approach. From the classical discussion

we know that a symmetry is associated to a conserved quantity. Therefore, we are going to say
that a continuous group of transformations |𝜓〉 Ñ

��𝜓1
〉

realising on H one of the usual continuous
groups (𝑆𝑈 (2), 𝑂 (𝑁) etc.) is a symmetry group if the generators �̂�𝑎 satisfy:

𝑑�̂�𝑎

𝑑𝑡
” B𝑡�̂�𝑎 + [�̂�𝑎, 𝐻] = 0 . (2.13)

A final comment is that, from the canonical quantisation, the operatorisation of the conserved
charges of a field theory corresponds to the realisation of the generators at quantum level

[𝑖�̂�𝑎, 𝜙
𝑖] = 𝛿𝑎𝜙𝑖 ” 𝐺𝑎𝜙

𝑖 , (2.14)

if [𝛿𝑎𝜙𝑖 , 𝜙 𝑗] = 0 [5].
For the section 2.2 and beyond, we will not denote with a circumflex accent anymore the

quantum operators.

A bit more of details

The phase space of a quantum theory corresponds to the projective space of H [24]. To say it
more simply, a state of the system is a ray R of H (this because global phases are not observable).
Let us consider a continuous set {𝑇} of transformations 𝑇 : R Ñ R1 which has a group structure
(through function composition) that realises one of the usual continuous groups (𝑆𝑈 (2),𝑂 (𝑁) etc.).
From a transformation𝑇 of our given set, we may define a transformation𝑈 (𝑇) acting on the Hilbert
space,𝑈 (𝑇) : |𝜓〉 Ñ

��𝜓1
〉
.The product law induced on {𝑈 (𝑇)} is defined up to a global phase (cf.

the projective nature of the phase space vs. the vector space H ). Therefore, the representation of a
given symmetry group on the phase space corresponds to a projective representation on the Hilbert
space. It can be shown that a central charge might appear in the realisation of the Lie algebra on
H

[�̂�𝑎, �̂�𝑏] „ 𝑓 𝑐
𝑎𝑏 �̂�𝑐 + 𝑐𝑎𝑏 , (2.15)

where 𝑓 𝑐
𝑎𝑏

are the structure constants [24]. Let us mention that to pursue with the manipulation
of usual representations on H , a possible trick is to consider a central extension of the symmetry
group we want to realise on H .

10
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2.2 Different classifications of the symmetries

Goldstone physics depends heavily on symmetries, we can then naturally be convinced that
some of the results we will state in the following sections rely on the nature of the considered
symmetries. One way to characterise the symmetries is through the mathematical properties of the
symmetry group. As we will see, the symmetry group being compact or not will play a major role.
We then qualify the symmetries to be compact or non-compact. Other possible criteria on which
to classify the symmetries could be the way the symmetries act on the fields and on spacetime. We
list here the main important classifications:

• Local symmetries are such that the parameters 𝛼𝑎 in (2.3) are functions of spacetime. Oth-
erwise, we speak of global symmetries.

• Spacetime symmetries are symmetries which act non-trivially on spacetime. Consequently,
a non-spacetime symmetry will have 𝑥1𝜇 = 𝑥𝜇 in (2.1). The typical examples of spacetime
symmetries are translations, rotations, boosts etc.

• Internal symmetries are the ones where the generators commute with the Poincaré algebra.
It could be thought as being the non-spacetime symmetries. 𝑈 (1), 𝑆𝑂 (2), 𝑆𝑈 (𝑁) . . . are
typical internal symmetries.

• Uniform symmetries are the ones where 𝐹𝑖 in (2.1) does not depend explicitly on 𝑥𝜇. An
equivalent definition is when the realisation of the generators does not depend on spacetime
coordinates. For example, the generators of translations and rotations acting on a scalar field
are respectively

𝑃𝑖 = ´B𝑖 , 𝐿𝑖 𝑗 = 𝑥𝑖B 𝑗 ´ 𝑥 𝑗B𝑖 . (2.16)

We notice that translations are uniform symmetries while rotations are not. Let us mention
that translations are the only spacetime symmetries which are uniform.

• Compact symmetries are the ones which realise compact groups.

2.3 Spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) is the phenomenon in which a stable state of the system
transforms non-trivially under certain symmetries of the theory. These symmetries are then said to
be spontaneously broken and the state is called the broken state [5].

In classical field theory, the state of the system is characterised by one of the solutions of the
EOM of the fields. We will call this particular solution the background, it can also be referred to as
the vacuum. It is a stable solution if it remains finite along its evolution through spacetime and if,
small perturbations around it remain small along their dynamical evolution. It is customary to look
for such stable background among the solutions which minimise the energy, at least corresponding
to a local minimum. This could be intuitively understood from point-like classical mechanics where
the conservative forces act in the opposite direction to the gradient of the potential. Hence, being
originally at a minimum of the potential, we have that the forces tend to bring back the system to
its original state. Furthermore, by minimising the kinetic energy, we ensure that the system has not

11
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enough inertia to pass a potential hill. Otherwise, the system could go from one potential minimum
to another one.

At the quantum level, for a given symmetry, the vacuum state |0〉 of the system breaks sponta-
neously this symmetry if

𝑒𝑖𝛼𝑄 |0〉 ≠ |0〉 up to a global phase. (2.17)

However, this naive definition of SSB might not be well settled because the non-trivial action of
the broken generator 𝑄 on our vacuum might lead to an ill defined state, i.e. a state with an infinite
norm [25, 26]. Indeed, if |0〉 is homogeneous (i.e. an eigenstate of 𝑃𝜇) and 𝑄 is uniform – in
addition to be Hermitian – then

| |𝑄 |0〉 | |2 = 〈0|𝑄:𝑄 |0〉 = 〈0|𝑄𝑄 |0〉 ,

=

∫
𝑑𝑑´1𝑥 〈0| 𝑗0(𝑥)𝑄 |0〉 ,

= 〈0| 𝑗0(0)𝑄 |0〉
∫

𝑑𝑑´1𝑥 ,

(2.18)

(2.19)

(2.20)

which, in infinite volume, could tend to infinity if 𝑄 |0〉 ≠ 0. Notice that the symmetry being
uniform, we have been able to express 𝑗0(𝑥) as a translation in spacetime of 𝑗0(0),

𝑗0(𝑥) = 𝑒𝑖𝑥𝜇𝑃𝜇 𝑗0(0)𝑒´𝑖𝑥𝜇𝑃𝜇 . (2.21)

By still using the uniform aspect of the symmetry, we have that [𝑄, 𝑃𝜇] = 0 because 𝑄 is either
internal or a spacetime translation generator (we look to the case without central charges). Then,
considering our vacuum as being homogeneous (we are not currently looking to the breaking of
spacetime symmetries) and choosing it as the zero-energy (we are not considering gravity, only
the relative energy among states is physical), we have 𝑃𝜇 |0〉 = 0. Combining these observations
allowed us to go from (2.19) to (2.20).

A more formal definition of spontaneous symmetry breaking is then used to evade this possible
inconsistency. We will say that a state |𝜓〉 breaks the symmetry generated by 𝑄 if there exists any
field Φ, called the interpolaing field, such that [8]:

〈𝜓 | [𝑄,Φ(𝑥)] |𝜓〉 ≠ 0 . (2.22)

If no such operator Φ exists, the state is symmetric. An argument to use a local field Φ to define
SSB is that we are working in infinite volume or more generally in the thermodynamic limit (cf.
the coming section about singular limits). It is thus more convenient to be able to probe locally if
the SSB occured rather than to perform a global analysis on the full ket state [27].

Exercise 1. Show that (2.17) and (2.22) are conceptually equivalent.

The notion of stability remains the same as in the classical theory: a small perturbation (e.g.
local measurements [5]) of the state should not radically alter the state.

In practice, to observe if a SSB occurred or not we define an order parameter 𝑂 (𝑥). The
order parameter should be zero when the symmetry is not broken and should be different from zero
when the symmetry is spontaneously broken. Ideally, it should take different values for different

12
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broken states and broken states close to each other7 should correspond to close values of 𝑂 (𝑥). A
possible order parameter is of course the definition of SSB itself (2.22). In Quantum Field Theory
it is customary to use the fundamental fields with nontrivial transformation properties under the
symmetry as order parameter – 𝜙(𝑥) on-shell at the classical level and 〈𝜙(𝑥)〉 at the quantum level.
We shortly designated this order parameter as the “VEV” (for vacuum expectation value).

Another device than the order parameter which can provide a clue if a SSB occured is the
two-point correlation function. However, we will not use this object in this lecture, hence, we will
not expand on it.

Let us finish with a brief vocabulary comment. When we speak about spontaneous symmetry
breaking, the use of the term “fundamental theory” can be misleading. Usually in physics, the
fundamental theory refers to the fundamental microscopic theory / to the fundamental UV theory.
In SSB physics, the fundamental theory is the theory we have prior the spontaneous symmetry
breaking, it is therefore not necessarily the UV theory. The term “fundamental theory” is thus used
in order to contrast with the perturbation theory obtained from fluctuations around the broken state.
From now on, in these lecture notes, we will refer to the fundamental theory in the sense of SSB
physics.

Exercise 2. Show that when a symmetry group 𝐺 is spontaneously broken to a subset 𝐻, 𝐻 is a
subgroup of 𝐺 [12].

2.4 Singular limits

The way spontaneous symmetry breaking is naively defined might suggests that it is only a
pure academical concept. Indeed, we are looking for a stable solution by minimising the energy,
and see if there is arbitrariness in the choice of the vacuum due to the symmetries (cf. the example
of Figure 1 where there is a set of possible vacua due to the rotational symmetry). But in Nature,
any physical system interacts with the outside world, at least a little. These external interactions
will make such that one particular state of the system is energetically favourable. Thus, there is
no more arbitrariness, no more spontaneity in the choice of the background. The background is
explicitly chosen by the dynamics and so, we have an explicit breaking of the symmetries rather
than a spontaneous one.

The wondering can be deeper at quantum level where the notion of SSB might not even exists.
Indeed, quantum superposition might allow the system to be in a superposition of broken states
which end up as a symmetric state – for example, the system could be in a superposition of all the
classical vacua of Figure 1 (the 𝑈 (1)-circle at the bottom of the Mexican hat), this superposition
all over the 𝑈 (1)-circle does not choose a specific direction anymore and so, rotation symmetry is
re-established. The same argument can hold for thermal physics where the thermal state being an
average of microscopic states, in average the thermal state will be/can be symmetric.

The answer to these questionings is given by the singular limits which, when satisfied, ensure
that quantum superposition will not systematically provide a symmetric vacuum. These limits
guarantee as well that the external perturbations which explicitly breaks the symmetries are small

7From one broken state we can get another one by applying the broken symmetry on it. Since we consider continuous
symmetry group, the notion of “broken states close to each other” is understood in the sense of the continuous action of
the symmetry group.
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enough to be non-observable. So, the explicit breaking is non-physical (because non-observable)
and we can indeed speak about spontaneous symmetry breaking in Nature.

Exercise 3. Read about these singular limits. A starting point could be [5, 12].

The fact that we are working in Minkowski spacetime and so, in an infinite spatial volume,
ensures the singular limits to be satisfied. Hence, in our framework, we evade the above-mentioned
conceptual problems about SSB.

2.5 Mass and gap

Goldstone’s theorem refers to masssless particles. The notion of mass is a central idea of
Goldstone physics. This is the reason why we will briefly remind here this standard notion. Let us
notice that we work on Minkowski spacetime and therefore, we do not do general relativity or QFT
on curved spacetime. Hence, we will not encounter the related difficulties to define energy and
momentum as well as their conservation. The mass we are going to discuss is the QFT textbook
definition.

In classical field theory, the square of the mass is given by the coefficient of the quadratic
no-derivative term in the action (𝑚2

0 𝜙𝜙). In this work we are just concerned if this term is present
or not, which will tell us if the associated field is massive or not. For a quantum particle, we use the
relativistic definition which is, its mass is its energy in the zero-limit of the (𝑑´1)-momentum. The
classical and quantum definitions are consistent. Indeed, the particle states of a QFT correspond
to the asymptotic states of the theory, i.e. the spectrum we get while quantising the free theory.
From standard QFT textbooks, quantising a free theory tells us that the energy corresponds to
the dispersion relation, which in the free case is of the form 𝜔𝑙 = 𝑣 𝑝𝑛 + 𝑚2

0, where 𝑙 and 𝑛 are
respectively the number of time-derivative and the number of space-derivative (of the dominant
terms), and 𝑣 is a constant. Sending the momentum 𝑝 to zero, we see a correspondence between
the classical mass and the quantum mass. In particular, when 𝑙 = 2 (it could be the relativistic case
𝑙 = 𝑛 = 2), we recover the standard idea that the square of the mass is 𝑚2

0.
However, even if the two definitions are consistent, due to the renormalisation, the quantum

mass might be different from the classical mass. The classical mass is a bare parameter which might
need to be redefined through renormalisation conditions. Goldstone’s theorem is valid at classical
level as well as at quantum level. This suggests that the masses (which are zero) of the Goldstone
modes are symmetry protected during the quantisation (modulo that no anomalies occur and that
the SSB is not altered by the quantisation). A specific computation at one loop for the linear sigma
model is done in [23] to illustrate this assertion.

Finally, to define the mass we need the energy and the momentum to be defined. Hence, we
need continuous spacetime translation symmetries for our theory. For the explicit computations and
proofs we will perform, we will assume to have such symmetries. However, it is not uncommon that
physical systems do not have continuous spacetime translation symmetries. For example, crystal
lattices do have “only” discrete spatial translations. Another example could be open macroscopic
systems which do not have time translation symmetry since the external world can at any time
modify the value of the conserved quantities (cf. the chemical potentials). For these kinds of
examples, it is possible to generalise the notion of mass, we then speak about gaps. Even though we
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will compute assuming spacetime translations invariance, we will mention if the same final results
can be obtained by relaxing this hypothesis.

3. Goldstone’s theorem

Goldstone’s theorem has been mainly established in the sixties and has been refined over the
following decades. It is Nambu who first conjectured the existence of a relation between symmetries
and masses [1, 2]8. Goldstone improved the conjecture of Nambu by specifying the notion of
spontaneous symmetry breaking and by stressing the importance that the broken symmetry should
be continuous [3]. Goldstone, Salam and Weinberg provided two general poofs of the conjecture
in [4]. Following this publication, several other papers came out in order to clarify under which
hypotheses Goldstone’s theorem is valid [28–35]9. Some alternative (formal/axiomatic) proofs and
corollaries have also been provided, e.g. [40–43]. These research efforts led to the current statement
of Goldstone’s theorem.

Theorem 1 (Goldstone’s theorem). Let us consider a physical (field) theory at the quantum level,
respectively at the classical level, with a global continuous symmetry group 𝐺 such that it is
spontaneously broken to a subgroup 𝐻 different from 𝐺 (𝐻  𝐺) and that the notion of gap is well
defined. Then, the spectrum of the theory will contain at least one gapless particle, respectively at
least one gapless mode.

Let us notice how generic 𝐺 can be: it can be uniform or non-uniform, involving spacetime
symmetries or not, being compact or not etc. Furthermore, the theorem is relatively loose concerning
the notion of mass (therefore we speak about gaps). The theorem is thus valid for theories defined
on crystal lattice, for open systems etc. Finally, the locality requirement of the theory is hidden
in the “physical” aspect. More explicitly, the interactions should at most have a finite range or an
exponential spatial decay (otherwise, the validity of the theorem should be checked case by case)
[6, 32, 33, 35]. In conclusion, Goldstone’s theorem is very general!

There are two proofs of Goldstone’s theorem, one which is using the quantum effective action
formalism and one which is established in the Dirac notation of quantum mechanics. The gist of the
first one can be understood based on the intuitive picture we will provide later. The second proof
is more strict on the hypothesis than what is mentioned for Theorem 1 but it permits to display
straightforwardly the spectral content. It is the proof based on the spectral decomposition of Dirac
bra-ket that we will present.

Exercise 4. Read about the quantum effective action proof of Goldstone’s theorem from the original
papers [4, 35] or from the textbooks [12, 23, 44] (Rubakov book remains at the classical level).

8Let us mention that the second cited paper is in collaboration with Jona-Lasinio. The first cited paper is written by
Nambu alone and is older than the second cited one. Furthermore, Nambu being the common thread between the two
papers, he is considered as the principal investigator of the conjecture.

9Since we are in the historical genesis of Goldstone’s theorem, it should be mentioned that, sometimes in the literature,
NG modes are labelled as pions. This because historically, NG modes were studied in the framework of particle physics
and light mesons analysis (e.g. [2, 36, 37]). For example, [38, 39] which are cornerstone papers in the building of
effective theory for NG modes call the latter pions.
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3.1 Spectral decomposition proof

As already mentioned, to perform the spectral decomposition proof we have to revise some
hypotheses of Theorem 1. We will consider the group 𝐺 to be global continuous and uniform.
The continuity of 𝐺 allows to define Noether currents and asking 𝐺 to be global permits to evade
gauge symmetries for which the conserved currents (defined through Noether first theorem) are
trivial (in the sense of the equivalence relation) [45, 46]. As we will see, Goldstone modes rely
on these conserved currents, we therefore wish to avoid any technical definitions (cf. Noether
second theorem). A connected argument is through the Brout-Englert-Higgs mechanism [47–51]
which illustrates that some of the NG modes are absorbed by gauge transformations and are thus
unphysical. In order to ensure that Goldstone’s theorem systematically leads to at least one physical
massless mode, we safely chose to consider 𝐺 as global. The last constraint on 𝐺, i.e. to be
uniform, is imposed to avoid the case of spacetime symmetries (spacetime translations symmetry
breaking will be ruled out by considering a homogeneous vacuum) and to ease the technicalities of
the computations.

Exercise 5. Read about the Elitzur theorem which, briefly stated, says that local symmetries cannot
spontaneously be broken at quantum level [52]. This is an additional argument against local 𝐺
for Goldstone’s theorem. The intuition of Elitzur’s theorem can be made through the exercise on
the singular limits. In Rubakov book [12], it is mentioned that at quantum level, the system cannot
be in a symmetric superposition of broken states because the action of a global broken symmetry
to go from one vacuum to another requires an infinite energy in large volume limit. Why does this
argument not hold anymore for gauge symmetries ?

Now that we are ensured to have properly defined conserved currents, we have to guarantee
to be able to associate to them conserved charges. This is done by specifying what we mean by
locality. We will ask the interactions to be local enough such that∫

B𝑉

𝑑𝑆 𝑗 𝑖 (𝑥) = 0 , (3.1)

where 𝑉 is the spatial volume of the system. Hence,

𝑑𝑄

𝑑𝑡
=

∫
𝑉

𝑑𝑑´1𝑥 B0 𝑗
0 = ´

∫
𝑉

𝑑𝑑´1𝑥 B𝑖 𝑗
𝑖 = ´

∫
B𝑉

𝑑𝑆 𝑗 𝑖 (𝑥) = 0 . (3.2)

A more precise statement is made in [26].
As cited above, we are not considering the spontaneous breaking of spacetime symmetries.

It implies that our vacuum |0〉 is homogeneous (i.e. an eigenstate of 𝑃𝜇). Also, since we do not
include gravity, we chose |0〉 to be the zero of energy: 𝑃𝜇 |0〉 = 0.

Finally, the main hypothesis of Goldstone’s theorem is that we have spontaneous symmetry
breaking. Let 𝑄 be a generator of 𝐺 such that 𝑄 is spontaneously broken. By definition, it exists a
field Φ giving

〈0| [𝑄,Φ(𝑥)] |0〉 ≠ 0 . (3.3)

To prove Goldstone’s theorem under the aforementioned hypothesis, we study the spectral
decomposition of (3.3) by injecting a closure relation where the basis vectors

��𝑛 ®𝑘〉 are eigenvectors
of 𝑃𝜇 [6].
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〈0| [𝑄,Φ(𝑥)] |0〉 =
∫

𝑑𝑑´1𝑥1 〈0| [ 𝑗0(𝑥1),Φ(𝑥)] |0〉 ,

=

∫
𝑑𝑑´1𝑥1

∑︁
𝑛

∫
𝑑𝑑´1𝑘

(2𝜋)𝑑´1

(
〈0| 𝑗0(𝑥1)

��𝑛 ®𝑘〉 〈
𝑛 ®𝑘

��Φ(𝑥) |0〉

´ 〈0|Φ(𝑥)
���𝑛

´®𝑘

〉 〈
𝑛

´®𝑘

��� 𝑗0(𝑥1) |0〉
)
.

(3.4)

As we did in (2.21), thanks to 𝑄 that generates a uniform symmetry, we translate the conserved
current to the origin:

〈0| [𝑄,Φ(𝑥)] |0〉 =
∫

𝑑𝑑´1𝑥1
∑︁
𝑛

∫
𝑑𝑑´1𝑘

(2𝜋)𝑑´1 𝑒
´𝑖𝑘𝜇𝑥

1𝜇
(
〈0| 𝑗0(0)

��𝑛 ®𝑘〉 〈
𝑛 ®𝑘

��Φ(𝑥) |0〉

´ 〈0|Φ(𝑥)
���𝑛

´®𝑘

〉 〈
𝑛

´®𝑘

��� 𝑗0(0) |0〉) ,
=

∑︁
𝑛

∫
𝑑𝑑´1𝑘 𝑒´𝑖𝐸𝑛 ( ®𝑘 )𝑡 𝜑( ®𝑘)

(
〈0| 𝑗0(0)

��𝑛 ®𝑘〉 〈
𝑛 ®𝑘

��Φ(𝑥) |0〉

´ 〈0|Φ(𝑥)
���𝑛

´®𝑘

〉 〈
𝑛

´®𝑘

��� 𝑗0(0) |0〉) ,
(3.5)

where, ∫
𝑑𝑑´1𝑥1

(2𝜋)𝑑´1 𝑒
𝑖 ®𝑘 ®𝑥 = 𝜑( ®𝑘) ÝÝÝÝÑ

𝑉Ñ+8
𝛿𝑑´1( ®𝑘) . (3.6)

From (3.6), we have that only the modes in the zero-momentum limit intervene in the integral of
(3.5). Furthermore, since we have 𝑑𝑄/𝑑𝑡 = 0, it means that the only time dependence in (3.5) is
coming from Φ(𝑥). Thus, the exponential should not intervene. Therefore, only the modes with

𝐸𝑛 ( ®𝑘) ÝÝÝÑ
®𝑘Ñ®0

0 , (3.7)

i.e. the massless modes, should contribute to the sum over 𝑛. Finally, with the hypothesis (3.3), the
final result should be non-zero. Thus, we are ensured there exists at least one particle10

��𝑛 ®𝑘〉 which
is massless and which is such that 〈0| 𝑗0(0)

��𝑛 ®𝑘〉 〈
𝑛 ®𝑘

��Φ(𝑥) |0〉 ≠ 0. These are the NG modes, we
learned that, besides being massless, they are created by the action of the broken symmetry on the
vacuum (here represented by 𝑗0(0) |0〉) in a way which still needs to be clarified/formalised (cf. the
coset construction).

The reason we did not write 𝜑( ®𝑘) directly as a Dirac delta is to emphasise that the evaluation of
(3.5) at ®𝑘 = 0 should be understood as a limit (coming from the infinite volume limit). Hence, we
should not consider isolated momentum eigenstates with zero eigenvalue (i.e. spurious states). So,
the NG modes are indeed properly defined particles. A more detailed discussion on the spurious
states can be found in the literature (e.g. [26, 32, 33, 53]). From this discussion, we learn that the
hypothesis on locality is not only there to guarantee charge conservation but also to avoid spurious

10The term “particle” is used in a generic way. Since these degrees of freedom are not the fundamental ones, we
usually speak of quasi-particles or collective excitations.
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states which would invalidate our conclusion on (3.5). The final outcome on locality is that the
theory should have a well behaved range of interactions (at most finite range or exponantially
decreasing with distance). If it is not the case, it should be checked case by case if the Noether
charges are time independent [6]. Notice that field theories with non-local interaction terms which
cannot be written as a single spacetime integration could then be allowed [35].

To avoid computational heaviness, we looked at a homogeneous vacuum. But this hypothesis
excludes a large area of applications in condensed matter. The spectral decomposition proof can
be generalised such that it is valid in the case where the fundamental theory possesses continuous
spatial translations symmetry in some directions and discrete ones in the remaining spatial directions
and in the case of spatial translations symmetry breaking to discrete lattices [34].

3.2 Intuitive picture of Goldstone’s theorem

Goldstone’s theorem and its hypothesis can be understood intuitively. We have that the broken
state is degenerated. Indeed, we can get a set of broken states by applying successively the
spontaneously broken symmetries on our broken states. Let us call this set of so obtained broken
states the coset space11. If we do the shortcut that the symmetries of the theory are also the
symmetries of the energy, we have that all the broken states of the coset space have the same
energy. For simplicity, we do not consider the breaking of spacetime symmetries. Hence, there is
no interplay between the kinetic energy and the potential energy while applying the spontaneously
broken symmetries on the broken states. So, the broken states of the coset space have the same
potential energy. Furthermore, the broken symmetries are continuous, which means that the coset
space is continuously connected as well. Therefore, there is no potential hill between the broken
states. A possible visualisation is to consider the Mexican hat potential example of Figure 1. The
degenerated broken states correspond to the 𝑈 (1)-circle lying at the bottom of the potential12,
we do indeed observe that there is no potential hill between them. Thus, fluctuations around a
chosen broken state in the directions of the broken symmetries will at quadratic order not have
potential terms in the pertubation Lagrangian. Hence, such fluctuations are massless. These are
precisely the (candidate13) NG modes! NG modes correspond to a spacetime modulated action of
the spontaneously broken symmetries on the considered background.

This schematic reasoning allowed us to understand why SSB leads to massless modes and
in particular, why the continuity of 𝐺 is crucial to reach masslessness. Concerning the global
aspect of 𝐺, the intuition was already commented in the previous section – it permits to evade the
Brout-Englert-Higgs mechanism and to make sure that the NG modes are observable.

With this intuitive picture we can go even further on collecting information on the properties
of the NG modes. We have that the Fourier transform of the spacetime modulated action of the
spontaneously broken symmetries tell us how fast these modulations fluctuate through spacetime.
If we go in the IR, usually we use the scale of the VEV to determine what low energy means, it

11This nomenclature can be understood by seeing the spontaneously broken symmetries as elements of 𝐺/𝐻. The
broken states being obtained by the successive action of the spontaneously broken symmetries, they are parametrised by
the coset space 𝐺/𝐻.

12Notice that the 𝑈 (1)-circle is indeed the coset space 𝐺/{𝑒}, where 𝑒 is the identity, corresponding to the full
spontaneous breaking of𝑈 (1) symmetry.

13It remains to see if these fluctuations are independent of each other.
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is equivalent to look for modulations with small wave vectors 𝑘𝜇 and thus fluctuating with long
wavelength. In the zero 𝑘𝜇 limit, the modulations become constant over spacetime. So, in this
limit, the modulated action of the spontaneously broken symmetries is nothing else than the regular
action of symmetries joining two vacua. Hence, the NG modes do no provide additional energy
to the background. This is the signature that they do not interact. We arrive at the conclusion
that in the IR, the NG modes are weakly coupled. Finally, it is customary to hear about the
NG modes as “NG bosons”. This is because many of the practical cases involve only internal
spontaneously broken symmetries. Indeed, the action of such symmetries does not mix the Lorentz
group representations (the symmetry algebra commutes with Lorentz algebra). So to speak, the
algebra of 𝐺 is spin zero, hence, the fluctuations produced by such elements by acting on the
vacuum are scalars. The common example of NG modes with a non-trivial spin are the Goldstinos
coming from the spontaneous symmetry breaking of supersymmetry which mix non-trivially the
Lorentz representations – in particular it links a boson with a fermion, we thus understand that the
fluctuations should have a non-trivial spin.

We learned that the definition of an NG mode is a fluctuation around the background in the
direction of one of the spontaneously broken generators. A thorough analysis is still needed to
establish if the NG modes are independent or not, but we know that the related independent degrees
of freedom are massless and weakly coupled in the IR. Furthermore, the spontaneous breaking of
internal symmetries leads to scalar NG modes, we then qualify them as (Nambu) Goldstone bosons.

3.3 Toy model: spontaneous symmetry breaking of𝑈 (1)

Till now, we remained abstract in the development of what Goldstone’s theorem is. The aim of
this subsection is to illustrate the different results we obtained so far with a concrete example. To
do so, let us consider the following toy model of a complex scalar field in 𝑑 ě 2 dimensions

L = B𝜇𝜙
˚B𝜇𝜙 + 𝑀2𝜙˚𝜙 ´ 𝜆(𝜙˚𝜙)2 with 𝑀2 ą 0 and 𝜆 ą 0 . (3.8)

The potential term 𝑉 ( |𝜙 |) = ´𝑀2𝜙˚𝜙 + 𝜆(𝜙˚𝜙)2 is the Mexican hat potential of Figure 1.
We can observe that the theory (3.8) is invariant under the𝑈 (1) symmetry

𝜙(𝑥) Ñ 𝑒𝑖𝛼𝜙(𝑥) . (3.9)

To find a stable background, we look for a particular solution of the EOM which minimises the
energy. We ask this solution to be a non-zero constant 𝜙0 to minimise to kinetic energy. Concerning
the potential energy, we impose

𝑑𝑉 ( |𝜙|)
𝑑 |𝜙|

����
𝜙0

= 0 ô |𝜙0 | =
c

𝑀2

2𝜆
” 𝑣 . (3.10)

From the energy minimisation, the phase remains unspecified (it corresponds to the 𝑈 (1) circle at
the bottom of the Mexican hat), therefore, we will arbitrarily choose it to be zero. Notice that 𝜙0 = 0
would also extremise the energy but it would correspond to a maximum and thus, to an unstable
background. So, our particular solution is 𝜙0(𝑥) = 𝑣 (it is straightforward to check that it is indeed
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a solution of the EOM). It breaks spontaneously𝑈 (1) symmetry because it transforms non-trivially
under it

𝑣 Ñ 𝑣 𝑒𝑖𝛼 . (3.11)
We have that all the hypothesis of Goldstone’s theorem are satisfied (check it). Hence, we expect
to find at least one massless mode in the pertubation theory. To explicitly verify it, we parametrise
the fluctuations as

𝜙(𝑥) = (𝑣 + 𝜎(𝑥)) 𝑒𝑖 𝜃 (𝑥 ) . (3.12)
The pertubation theory till third order is

L = B𝜇𝜎B𝜇𝜎 + 𝑣2B𝜇𝜃B𝜇𝜃 ´ 2𝑀2𝜎2 ´ 2
a

2𝜆𝑀2 𝜎3 + 2 𝑣 𝜎 B𝜇𝜃B𝜇𝜃 + O
(
𝜖4

)
. (3.13)

where 𝜖 „ 𝜃 „ 𝜎. We observe that 𝜃 (𝑥) is a massless mode. Is it the predicted NG mode or is it a
matter of luck ? We have that 𝜃 (𝑥) parametrises a perturbation of the vacuum 𝑣 in the direction of
the action of𝑈 (1)

𝑣 Ñ 𝑣 𝑒𝑖 𝜃 (𝑥 ) , (3.14)
where the arrow corresponds to a spacetime modulated𝑈 (1) action. We see that 𝜃 (𝑥) is by definition
an NG mode and so, the prediction of Goldstone’s theorem is indeed satisfied for our toy model.

If we pay attention to the interaction term of the NG mode 𝜃 (𝑥), it involves derivatives. If we
go in Fourier space, we understand that this interaction term will go to zero at low energy. We
recover the idea that NG modes are weakly coupled in the IR.

We could have guessed the shape of the interaction terms for 𝜃 (𝑥) based on the𝑈 (1) symmetry.
Indeed, the fundamental theory (3.8) is invariant under𝑈 (1) and so should be the perturbation theory
(3.13). The transformation rule of 𝜃 (𝑥) is given by

(𝑣 + 𝜎(𝑥)) 𝑒𝑖 𝜃 (𝑥 ) Ñ (𝑣 + 𝜎(𝑥)) 𝑒𝑖 𝜃 (𝑥 )𝑒𝑖𝛼 , (3.15)

so,
𝜃 (𝑥) Ñ 𝜃 (𝑥) + 𝛼 . (3.16)

We have that 𝜃 (𝑥) transforms as a shift and 𝜎(𝑥) is invariant. Therefore, the perturbation theory
(3.13) is𝑈 (1) invariant if on each 𝜃 (𝑥) there is a derivative acting on it. This explains why 𝜃 (𝑥) is
massless and why its interactions go to zero at low energy.

Exercise 6. Derive this toy model by using Mathematica and look at higher orders that indeed,
𝜃 (𝑥) always appears with a derivative in front of it in (3.13).

We can now have a sense of why we say that the symmetries which are spontaneously broken
are “hidden”. It is because they are non-linearly realised in the perturbation theory (cf. (3.16))
which makes it not always convenient to see the symmetry invariance. In addition, NG modes are
transforming non-homogeneously (cf. (3.16), even if we evaluate 𝜃 (𝑥) at zero, it still transforms)
which explains the systematic derivative operators acting on them.

We should emphasise that the intuition we acquired from subsections 3.2 and 3.3 is valid for
the spontaneous breaking of internal symmetries. When the breaking of spacetime symmetries is
involved, there are additional conceptual and technical difficulties which might spoil some of the
intuitive results we derived so far (but the masslessness aspect of NG modes claimed by Goldstone’s
theorem remain robustly true).
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3.4 Directions of research

Goldstone’s theorem provides an interesting observation. But, as often in science, an interesting
observation leads to new questionings. Here are listed some of the main open questions brought by
Goldstone’s theorem:

1. Goldstone’s theorem predicts the existence of gapless modes when a global continuous SSB
occurs but does not provide a precise statement on how many there will be in the pertubation
theory. We thus need a counting rule for such modes, said otherwise, we need to know which
NG modes candidates are dependent and independent from each other. To do such counting,
we probably also need a classification of the NG modes.

2. The fundamental hypothesis of Goldstone’s theorem is that we have a SSB. Therefore, it could
be meaningful to probe what are the conditions to have spontaneous symmetry breaking in
a given theory. For example, Coleman’s theorem [15] states that, at quantum level, for
relativistic theories in two dimensional spacetime, there are no SSB that could lead to NG
modes.

3. If we know the number of NG modes and their statistics (for internal symmetries, these are
bosons) it could be interesting to have their dispersion relations. This would, for example,
allow us to compute thermodynamic observables. A generic study of the possible shape of
dispersion relations, for instance [54], could then be of interest.

4. The NG modes are systematically present in the IR since they are massless. But they are not
the only type of light particles. So, in the perspective of building effective field theories, we
should understand how NG particles interact with other non-symmetry originated particles.
An example could be the Cooper pairs where it is the interaction between the electrons and
the phonons (NG modes coming from the discrete breaking of spatial translations) which
display the effective attractive interaction between the electrons once we integrated out the
phonons.

Partial answers have already been provided to this list of questions but, each of these points remains
an active topic of research. A brief state of the art will be made at Section 6.

4. Counting rule through the coset construction

We already exposed the fact that Goldstone’s theorem does not provide a precise statement on
the number of NG modes we could expect from a given symmetry breaking pattern. It remains an
open question for a totally generic breaking pattern, however, some progress and some strong results
have been obtained through the past decades. We will present one of the existing counting rules and
its associated classification. To derive this counting rule, we will do the hypothesis that𝐺 is internal
and compact (in addition to be global and continuous). We are going to establish, by using the coset
construction, the most generic shape of the dominant terms in the IR of an effective field theory
describing NG modes resulting from a given breaking pattern 𝐺 Ñ 𝐻. Then, we will count the
number of canonical independent degrees of freedom contained in this generic theory which will
provide us a counting rule for the NG modes and a classification based on the broken generators.
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The obtained counting rule was conjectured and partially proved by Brauner and Watanabe [35]
and proved by Murayama and Watanabe [55, 56] in the early decade of 2010. Their work is based
on several progress in the counting and the classification of NG modes, a (non-exhaustive) list of
relevant papers could be [6, 34, 38–40, 53, 57–62].

4.1 The coset construction

From a general perspective, the coset construction is the classification of the non-linear real-
isations of a given continuous symmetry group14 𝐺 which reduce to linear representations when
considering a continuous subgroup �̃� of 𝐺. Then, Lagrangians, which consist of an expansion in
the fields and their derivatives (this defines locality), are built such that they are invariant under
these specific realisations. We thus understand that the name “coset construction” comes from the
quotient space𝐺/�̃�, the part of𝐺 which is non-linearly realised, and from the construction method
to get invariant Lagrangians.

The coset construction was first established in the sixties in the area of elementary particles
physics. Indeed, effective theories were built in order to describe light mesons. Such theories were
displaying non-linear realisations of respectively the chiral group 𝑆𝑈 (2) ˆ 𝑆𝑈 (2) and the chiral
group 𝑆𝑈 (3) ˆ 𝑆𝑈 (3) (see for example the non-exhaustive list [63–66]). It is Coleman, Wess and
Zumino who, in the end of the sixties, established a classification of all the non-linear realisations
respecting the criteria defined in the preceding paragraph for a generic connected compact semi-
simple internal symmetry group𝐺 [36]. Just afterwards, with the additional help of Callan, they set
up a method which permits to build invariant local Lagrangians and to gauge the symmetry [37].
The coset construction is sometimes referred to CCWZ construction, the initials of the previously
cited authors.

Intuitively, if we take back our 𝑈 (1) Mexican hat example, we have that the Lagrangian
we obtained after the spontaneous symmetry breaking reproduces non-linearly the𝑈 (1) symmetry
through the shift of the phase field which is nothing else than the NG mode. The obtained pertubation
theory could then be likened to a particular case of the coset construction. This intuition and so,
the interest of the coset construction for Goldstone physics, was formally noticed in [67]. They
showed that effective field theories describing NG modes where corresponding to CCWZ invariant
Lagrangians. From a coset construction they were able to recover all the properties of NG fields,
i.e. massless modes (or with a light mass when a small explicit symmetry breaking occurs) and
fields which are weakly coupled at small energy. Furthermore, by gauging the symmetries, they
retrieve the Brout-Englert-Higgs mechanism. The non-linear transformations of NG fields are also
discussed in [38].

From now on, we will consider the coset construction only in the framework of Goldstone
physics. Since the transformation rules for the NG fields are settled by the transformation rules
of the fundamental fields, we do not need the mathematical machinery of classifying the different
equivalent transformation laws. We therefore can relax some of the hypotheses of the papers
[36, 37]. This introduction to the coset construction heavily relies on the review [7], another
relevant review is [68].

14More precisely, it concerns only the realisation of the elements of the group which are connected to the identity.
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4.1.1 Hypotheses on the symmetry group

Let 𝐺 be an internal continuous compact group which is faithfully linearly realised in the
fundamental theory where the dimension of the realisation15 is finite. In such case, we can always
ask [12]

Tr
(
𝐺𝛼𝐺𝛽

)
= 𝛿𝛼𝛽 ,

𝐺
:
𝛼 = 𝐺𝛼 ,

(4.1)

(4.2)
where {𝐺𝛼} is the realisation of the generators of 𝐺. We will do a misnomer by denoting 𝐺𝛼 as
a generator of 𝐺. The choice made such that (4.1) and (4.2) are satisfied implies that the structure
constants of the algebra are fully anti-symmetric:

[𝐺𝛼, 𝐺𝛽] = 𝑖 𝑓 𝛾

𝛼𝛽
𝐺𝛾 , (4.3)

where 𝑓 𝛾

𝛼𝛽
is anti-symmetric in its 3 indices.

4.1.2 Comment on the algebra

We will consider that 𝐺 is spontaneously broken to a continuous subgroup 𝐻. Let us call 𝑋𝑎

the broken generators of 𝐺, and 𝑇𝐴 the unbroken ones. Since 𝐻 is a subgroup, we have

[𝑇𝐴, 𝑇𝐵] = 𝑖 𝑓 𝐶
𝐴𝐵 𝑇𝐶 ô @𝑎, 𝑓 𝑎

𝐴𝐵 = 0 . (4.4)

By using the full anti-symmetry of the structure constants and (4.4), we have

@𝑎, 𝑓 𝐵
𝐴𝑎 = 0 ô [𝑇𝐴, 𝑋𝑎] = 𝑖 𝑓 𝑏

𝐴𝑎 𝑋𝑏 . (4.5)

We observe that {𝑋𝑎} is a representation of 𝐻 (more precisely, the space generated by {𝑖𝑋𝑎} is a
representation of the Lie algebra of 𝐻). Let us emphasize that this last observation is always true for
compact groups. This is one of the main reason why we take𝐺 as being compact in our hypotheses.

4.1.3 Coset construction for NG modes

A fundamental field 𝜙 can be parametrised as [7]

𝜙(𝑥) = 𝑈 (𝜋(𝑥)) 𝜒(𝑥) , (4.6)

with
𝑈 (𝜋(𝑥)) ” 𝑒𝑖 𝜋

𝑎 (𝑥 )𝑋𝑎 , (4.7)
where 𝜋𝑎 (𝑥) and 𝜒(𝑥) are general functions. If we particularise to 𝜒(𝑥) = 𝑣 with 𝑣 being the
constant VEV (no spacetime SSB), we have that

𝑒𝑖 𝜋
𝑎 (𝑥 )𝑋𝑎𝑣 (4.8)

corresponds to a spacetime modulated fluctuation around the VEV in a spontaneously broken
direction of 𝐺. It is, by definition, a NG mode. The NG modes are therefore naturally parametrised
by 𝜋𝑎 (𝑥), i.e. the coordinates of a mapping between spacetime and the connected patch to the
identity16 of 𝐺/𝐻. Henceforth, we refer to 𝜋𝑎 as the NG modes and we consider them as small

15We use the more general terminology “realisation” instead of “representation” since, as we will see, the action of 𝐺
will be non-linear for the specific parametrisation we will choose for the fields.

16This is mathematically quickly said, it should need a more formal description. But, the gist of what this mapping is
geometrically is enough for our purpose.
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pertubation fields. The Equation (4.7) is called the coset parametrisation.
To get the transformation rules of 𝜋𝑎, we use the realisation of 𝐺 on the fundamental field

which leads us to
𝑔𝑈 (𝜋(𝑥)) 𝜒(𝑥) = 𝑈 (�̃�(𝑥)) �̃�(𝑥) , (4.9)

where the tildes refer to the transformed fields and 𝑔 P 𝐺 is a shortcut to denote the realisation of
𝑔. We will keep using this misuse as long as it leads to no ambiguity. Since 𝑔𝑈 (𝜋(𝑥)) P 𝐺 by
associativity of the product and because

@𝛼𝑎, 𝑒𝑖𝛼
𝛽𝐺𝛽 = 𝑒𝑖 𝑓

𝑎 (𝛼)𝑋𝑎 𝑒𝑖𝑔
𝐴 (𝛼)𝑇𝐴 , (4.10)

we can write
𝑔𝑈 (𝜋(𝑥)) = 𝑈 (�̃�(𝑥)) 𝑒𝑖𝑢𝐴 (𝜋,𝑔)𝑇𝐴 . (4.11)

Exercise 7. Give an infinitesimal proof of (4.10).

The transformation rules 𝜋 Ñ �̃�, 𝜒 Ñ �̃� therefore satisfy

𝑔𝑈 (𝜋(𝑥)) = 𝑈 (�̃�(𝑥)) 𝑒𝑖𝑢𝐴 (𝜋,𝑔)𝑇𝐴 ,

�̃�(𝑥) = 𝑒𝑖𝑢𝐴 (𝜋,𝑔)𝑇𝐴𝜒(𝑥) .

(4.12)

(4.13)

Exercise 8. Check that it is indeed a good realisation (i.e. the product of the realisation is the
realisation of the product).

In general, these transformation rules are non-linear through the dependency of 𝑢𝐴 in 𝜋. The
transformation law for 𝜋𝑎 is complicated, however, the one for 𝜒 is technically easier. This because
it is a (non-linear) covariant transformation under 𝐺 built on a covariant realisation of 𝐻.

If we particularise the transformation laws (4.12), (4.13) for 𝑔 = ℎ P 𝐻 and that we use (4.5),
we obtain

ℎ𝑈 (𝜋(𝑥)) = 𝑈 (�̃�(𝑥)) ℎ ô �̃�𝑎 (𝑥)𝑋𝑎 = ℎ 𝜋𝑎 (𝑥)𝑋𝑎 ℎ
´1 ,

𝜒(𝑥) = ℎ �̃�(𝑥) .
(4.14)
(4.15)

We observe that our fields transform linearly under 𝐻 while generically, according to (4.12) and
(4.13), they transform non-linearly under𝐺. Thus, Nambu-Goldstone modes and their effective field
theories could indeed be well described by the coset construction formalism where �̃� corresponds
to 𝐻 (concerning internal symmetries at least). We remind that �̃� is defined as the continuous
subgroup of 𝐺 which is linearly realised.

It could be instructive to develop a bit further the transformation rule of 𝜋𝑎 when 𝑔 is generated
by broken generators. Infinitesimally, the left-hand side of (4.12) is

𝑔𝑈 (𝜋(𝑥)) = 𝑒𝑖𝜔𝑎𝑋𝑎𝑒𝑖 𝜋
𝑏 (𝑥 )𝑋𝑏 ,

= (1 + 𝑖𝜔𝑎𝑋𝑎 + O(𝜔2)) (1 + 𝑖𝜋𝑏 (𝑥)𝑋𝑏 + O(𝜋2)) ,
= 1 + 𝑖(𝜋𝑎 (𝑥) + 𝜔𝑎)𝑋𝑎 + O(𝜖2) ,

(4.16)
(4.17)
(4.18)

where 𝜋 „ 𝜔 „ 𝜖 . It should be equal to the right-hand side of (4.12)

𝑈 (�̃�(𝑥)) 𝑒𝑖𝑢𝐴 (𝜋,𝑔)𝑇𝐴 = (1 + 𝑖�̃�𝑎 (𝑥)𝑋𝑎 + O(�̃�2)) (1 + 𝑖𝑢𝐴(𝜋, 𝑔)𝑇𝐴 + O(𝑢2)) ,
= 1 + 𝑖𝑢𝐴(𝜋, 𝑔)𝑇𝐴 + 𝑖�̃�𝑎 (𝑥)𝑋𝑎 + O(𝜖2) ,

(4.19)
(4.20)
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where �̃� „ 𝑢𝐴 „ 𝜖 . By comparing (4.18) to (4.20), we get

�̃�𝑎 (𝑥) = 𝜋𝑎 (𝑥) + 𝜔𝑎 + O(𝜖2) , 𝑢𝐴(𝜋, 𝑔) = O(𝜖2) . (4.21)

The transformation of the NG modes is inhomogenous. This is a signature that in the EFTs
describing NG modes, there cannot be any mass terms for 𝜋𝑎 and the interacting terms involving
NG modes should contain derivatives (i.e. weakly coupled in the IR). The coset construction allows
us to recover all the characteristic features predicted by Goldstone’s theorem.

Building an invariant Lagrangian directly using the transformation law of 𝜋𝑎 under 𝐺 is an
involved process. We need an object which transforms covariantly with respect to 𝐺 and will
therefore, constitute our building block. This object is obtained through the Maurer-Cartan 1-form:
𝑑𝑥𝜇𝑈 (𝜋)´1B𝜇𝑈 (𝜋). It is a 1-form which takes its values in the Lie algebra of 𝐺. We can thus
write:

𝑈 (𝜋)´1B𝜇𝑈 (𝜋) = ´𝑖A𝐴
𝜇 (𝜋) 𝑇𝐴 + 𝑖 𝑒𝑎𝜇 (𝜋) 𝑋𝑎 . (4.22)

With 𝛾 = 𝑒𝑖𝑢
𝐴 (𝜋,𝑔)𝑇𝐴 and

𝑈 (�̃�(𝑥)) = 𝑔𝑈 (𝜋(𝑥)) 𝛾´1 , (4.23)

coming from (4.12), we have

𝑈 (�̃�)´1B𝜇𝑈 (�̃�) = 𝛾𝑈 (𝜋)´1B𝜇𝑈 (𝜋)𝛾´1 + 𝛾 B𝜇𝛾
´1 . (4.24)

Hence, by recalling (4.4) and (4.5), the transformation rules are given by:

𝑒𝑎𝜇 (�̃�) 𝑋𝑎 = 𝛾

(
𝑒𝑎𝜇 (𝜋) 𝑋𝑎

)
𝛾´1 ,

´ 𝑖A𝐴
𝜇 (�̃�) 𝑇𝐴 = 𝛾

(
´𝑖A𝐴

𝜇 (𝜋) 𝑇𝐴
)
𝛾´1 + 𝛾 B𝜇𝛾

´1 .

(4.25)

(4.26)

We thus have that 𝑒𝜇 (𝜋) ” 𝑒𝑎𝜇 (𝜋)𝑋𝑎 transforms in a covariant way under𝐺 from a realisation of 𝐻.
Therefore, 𝑒𝜇 (𝜋) is the building block we were looking for. Indeed, any function of 𝑒𝜇 (𝜋) which is
covariantly invariant under 𝐻 will automatically be invariant under𝐺. However, the transformation
laws are spacetime dependent through their dependency in the fields 𝜋𝑎 (𝑥)17. So, B𝜈𝑒𝜇 (𝜋) does
not transform covariantly. We need to define a good differential operator. If we look at (4.26), we
observe that A𝐴

𝜇 (𝜋) transforms as a gauge field and can then be used to define a covariant derivative
for 𝑒𝜇 (𝜋): (

𝐷𝜇𝑒𝜈
)𝑎

” B𝜇𝑒
𝑎
𝜈 + 𝑓 𝑎𝐵𝑐 A𝐵

𝜇 𝑒
𝑐
𝜈 . (4.27)

Exercise 9. With an infinitesimal expansion of 𝛾 = 𝑒𝑖𝑢
𝐴 (𝜋,𝑔)𝑇𝐴 in (4.25) and (4.26), find 𝛿𝑒𝑎𝜇 ”

𝑒𝑎𝜇 (�̃�) ´ 𝑒𝑎𝜇 (𝜋) and 𝛿𝐴𝐴
𝜇 . Show that

(
𝐷𝜇𝑒𝜈

)𝑎 transforms as 𝑒𝑎𝜇. By doing so, we can be convinced
that (4.27) is indeed a covariant derivative.

Before commenting on the construction of an invariant Lagrangian, we can try to have a sense
on the way 𝑒𝜇 (𝜋) and A𝐴

𝜇 (𝜋) depend on 𝜋𝑎. We have that

𝑈 (𝜋)´1B𝜇𝑈 (𝜋) = 𝑒´𝑖 𝜋𝑎𝑋𝑎B𝜇 𝑒
𝑖 𝜋𝑏𝑋𝑏 ,

= 𝑖 B𝜇𝜋
𝑏

(
𝑒´𝑖 𝜋𝑎𝑋𝑎𝑋𝑏 𝑒

𝑖 𝜋𝑐𝑋𝑐

)
.

(4.28)

(4.29)

17Let us emphasize/remind that we are looking to a global realisation of 𝐺, 𝐺 is not gauged.
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We can notice the global B𝜇𝜋
𝑏 factor, and by comparing the obtained expression with (4.22), we

can conclude that 𝑒𝜇 (𝜋) and A𝐴
𝜇 (𝜋) will systematically contain a derivative of 𝜋𝑎.

Exercise 10. Keep developing (4.29) to get the infinitesimal expressions

𝑒𝑎𝜇 (𝜋) = B𝜇𝜋
𝑎 ´

1
2

B𝜇𝜋
𝑏𝜋𝑐 𝑓 𝑎

𝑏𝑐 + O(𝜋2) ,

A𝐴
𝜇 (𝜋) =

1
2

B𝜇𝜋
𝑎𝜋𝑏 𝑓 𝐴

𝑎𝑏 + O(𝜋2) .

(4.30)

(4.31)

We can build a 𝐺 invariant Lagrangian by using 𝑒𝜇 and 𝐷𝜇𝑒𝜈 by asking this Lagrangian to be
𝐻 covariantly invariant:

L(𝑒𝜇, 𝐷𝜇𝑒𝜈 , . . .) such that L(ℎ 𝑒𝜇 ℎ´1, ℎ 𝐷𝜇𝑒𝜈 ℎ
´1, . . .) = L(𝑒𝜇, 𝐷𝜇𝑒𝜈 , . . .) , (4.32)

where the ellipses denote higher covariant derivatives. Let us mention that we could also add other
fields than the NG modes through 𝜒(𝑥) which transforms covariantly (4.13) (the derivative operator
would then be given by 𝐷𝜇𝜒(𝑥)).

4.1.4 Effective field theories for NG modes

Said crudely, an effective theory is the most general theory respecting some given symmetry
constrains which can be written as an expansion in energy.

So, to establish the effective theory for NG modes associated to a given symmetry breaking
pattern, we need to show that the most general 𝐺 invariant Lagrangian for 𝜋𝑎 built with 𝑒𝜇 (𝜋) is
equivalent to the most general 𝐺 invariant Lagrangian directly constructed with 𝜋𝑎. This is proven
in [7], we will not repeat the proof and accept the statement (but it is a good exercise to read the
proof).

Furthermore, since a generic construction based on 𝑒𝜇 (𝜋) is indeed totally general, we have
that each term of the Lagrangian contains a derivative of 𝜋𝑎 (cf. the paragraph below (4.29)). The
expansion in energy is therefore rather natural. We are thus able to write a generic EFT and to
guess the first dominant terms. In fact, we know that the EFT will systematically have a derivative
in each term, the dominant terms will be the ones with the minimum number of derivatives.

For the relativistic case, since we need to contract the Lorentz indices, the minimum number
of derivatives we can have is two. Hence,

L (𝜋) = 1
2
𝑔𝑎𝑏 (𝜋)B𝜇𝜋

𝑎B𝜇𝜋𝑏 + O(B4) , (4.33)

where 𝑔𝑎𝑏 (𝜋) is a symmetric matrix. To ensure the kinetic energy to be positive, we take 𝑔𝑎𝑏 (𝜋)
to be positive definite for all 𝜋𝑎. The additional constrains we have to impose on 𝑔𝑎𝑏 (𝜋) in order
for L (𝜋) to be 𝐺 invariant will give us a geometric interpretation.

Let us see the 𝐺 transformation

�̃�𝑎 = 𝜋𝑎 + 𝜉𝑎 (𝜋) , (4.34)

as a diffeomorphism on 𝐺/𝐻, where 𝜉𝑎 (𝜋) generically depends on 𝜋𝑎. The latter statement can be
seen by considering the higher terms in (4.21). We get

L (�̃�) = 1
2
𝑔𝑎𝑏 (𝜋 + 𝜉) B𝜇 (𝜋𝑎 + 𝜉𝑎) B𝜇 (𝜋𝑏 + 𝜉𝑏) + O(B4) ,

= L (𝜋) + 1
2
(𝜉𝑎 B𝑎𝑔𝑏𝑐 + 𝑔𝑎𝑐 B𝑏𝜉

𝑎 + 𝑔𝑏𝑎 B𝑐𝜉
𝑎) B𝜇𝜋

𝑏B𝜇𝜋𝑐 + O(𝜉2) ,

(4.35)

(4.36)
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where we Taylor expanded 𝑔𝑎𝑏 (𝜋 + 𝜉). Imposing L (�̃�) = L (𝜋) to have the 𝐺 invariance is
equivalent to ask

𝜉𝑎 B𝑎𝑔𝑏𝑐 + 𝑔𝑎𝑐 B𝑏𝜉
𝑎 + 𝑔𝑏𝑎 B𝑐𝜉

𝑎 = 0 . (4.37)

By seeing 𝜋𝑎 as coordinates on 𝐺/𝐻 and its transformation under 𝐺 as a diffeomorphism, we can
interpret 𝑔𝑎𝑏 (𝜋) as a metric with the isometry group 𝐺. Indeed, (4.37) is the Lie derivative with
respect to 𝜉𝑎 (𝜋), thus the constraint of being 𝐺 invariant is given by

L𝜉𝑔 = 0 . (4.38)

This provides an interesting geometric picture because it shows that finding the dominant term of
the most general relativistic 𝐺 invariant EFT is equivalent to looking for the most generic positive
definite 𝐺 invariant metric on 𝐺/𝐻.

The geometrical interpretation of the coset construction has been established by [69], this in
the goal to make a link with general relativity. Volkov enriched this geometrical approach in [70].

Exercise 11. It can be shown that when {𝑋𝑎} forms a completely reducible representation of 𝐻
(we have already seen that it is a representation, cf. (4.5)), the set of positive definite 𝐺 invariant
metrics on 𝐺/𝐻 is parametrised by 𝑛 positive parameters, where 𝑛 is the number of irreducible
representations of 𝐻 in {𝑋𝑎}. In particular, when {𝑋𝑎} is an irreducible representation of 𝐻, the
metric is unique up to a positive normalisation factor. Be convinced by this statement by reading
the relevant sections of [7] – which is the main reference for this section on the coset construction.

For the non-relativistic case, we are going to keep the spatial rotation symmetry. This leads us
to

L (𝜋) = 𝑐𝑎 (𝜋)B𝑡𝜋𝑎 +
1
2
𝑔𝑎𝑏 (𝜋)B𝑡𝜋𝑎B𝑡𝜋

𝑏 ´
1
2
�̄�𝑎𝑏 (𝜋)B𝑖𝜋𝑎B𝑖𝜋

𝑏 + O(B3
𝑡 , B𝑡B

2
𝑖 , B

4
𝑖 ) , (4.39)

where 𝑔𝑎𝑏 (𝜋) and �̄�𝑎𝑏 (𝜋) are generic positive definite 𝐺 invariant metrics on 𝐺/𝐻 (they are
proportional to each other when {𝑋𝑎} is an irreducible representation of 𝐻). To have an invariant
theory, we need the function 𝑐𝑎 (𝜋) to be a generic covector field on 𝐺/𝐻 which transforms under
the 𝐺 diffeomorphism (4.34) as a global (𝜋-)derivative

L𝜉 𝑐𝑎 = B𝑎Ω𝜉 (𝜋) , (4.40)

where Ω𝜉 (𝜋) is an unconstrained function on 𝐺/𝐻. Indeed,

𝑐𝑎 (�̃�)B𝑡 �̃�𝑎 = (𝑐𝑎 (𝜋) + B𝑏𝑐𝑎𝜉
𝑏) (B𝑡𝜋𝑎 + B𝑏𝜉

𝑎B𝑡𝜋
𝑏) + O(𝜉2) ,

= 𝑐𝑎 (𝜋)B𝑡𝜋𝑎 + (𝜉𝑏B𝑏𝑐𝑎 + 𝑐𝑏B𝑎𝜉
𝑏)B𝑡𝜋𝑎 + O(𝜉2) ,

= 𝑐𝑎 (𝜋)B𝑡𝜋𝑎 + B𝑡Ω𝜉 + O(𝜉2) ,

(4.41)
(4.42)
(4.43)

where we Taylor expended till the first order and where we used the definition of the Lie derivative
acting on a covector. We notice that under the constrain (4.40), the Lagrangian transforms up to a
global derivative. Our goal is to have an invariant theory rather than an invariant Lagrangian. So,
this transformation behaviour is tolerated for our EFT.
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Let us mention that, in the context of effective theories for NG modes, terms transforming
up to a global derivative are called Wess-Zumino-Witten terms [68]. To be totally generic, the
classification of such terms should be added to our discussion. This classification is outside the
scope of this lecture. However, a discussion of such terms for our particular case can be found in
[56] which ensures that (4.39) is indeed totally general. Some possible directions to look at to learn
about these Wess-Zumino-Witten terms are [71–75].

4.1.5 Recap on the hypotheses made for the EFT

We established that (4.39) corresponds to the most general dominant terms of an EFT describing
NG modes in the IR – let us notice that the limit of low energy is consistent with the massless
aspect of NG modes. Some of the hypotheses were explicitly stated and others have been implicitly
considered. We thus here provide a recap under which hypotheses (4.39) has been obtained.

• The spontaneous symmetry breaking pattern 𝐺 Ñ 𝐻 is such that 𝐺 is a continuous global
compact internal group with a faithful finite dimensional linear representation on the funda-
mental theory. And 𝐻 is either a continuous subgroup of𝐺 or the trivial subgroup containing
only the identity. The constrains on𝐺 might look extensively restrictive but they are satisfied
in many physical cases. Indeed, 𝑈 (1), 𝑆𝑂 (3), 𝑆𝑈 (𝑁) are for example common groups en-
countered in physics where they are realised through faithful matrix representations. Hence,
they do satisfy the requirements on 𝐺. Let us remind that we took 𝐺 to be compact mainly to
ensure that {𝑋𝑎} is a representation of 𝐻. A specificity that we notably used when displaying
the transformation rules. It suggests that we might relax the hypothesis on the compactness
of 𝐺 on the condition that (4.5) is still satisfied.

• We considered that NG modes are the only massless modes (or light modes) in the spectrum.
So to speak, we went to enough low energy such that all the massive modes have been
integrated out. Of course, the discussion remains to be generalised to the case of additional
massless perturbations and/or very light modes.

• We made the hypothesis of continuous spacetime translation symmetries. In particular, the
notion of mass is well defined. Let us mention that lattice physics could be discussed through
our EFT in the continuum limit which is consistent with the IR limit.

• The locality of the theory has been taken such that only fields at the same spacetime position
interact (modulo the infinitesimal difference due to the finite number of derivatives).

• The dimension of spacetime 𝑑 has been chosen to be strictly greater than two. Indeed, we
took in consideration spatial rotation symmetries, spatial rotations require at least two spatial
directions. If we would have studied the case 𝑑 = 2, additional terms as B𝑡𝜋B𝑥𝜋, etc. would
have been tolerated. It is discussed in [56]. Furthermore, the case 𝑑 = 2 is singular (mainly
for the relativistic case) due to Coleman’s theorem and requires specific attention.

• There might be possible additional hypotheses that we overlooked due to some lack in the
mathematical rigour of the development. Since we do not claim to have an axiomatic approach
of physics, we will consider these hypotheses to be encompassed in the term “physical theory”.
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Let us mention that, when writing a general EFT, we have to keep in mind that this EFT should
be consistent with a possible UV completion (as discussed in Section 2). This could for example
impose some constraints on the parameters of the theory, to avoid superluminal speeds for example.

4.2 Counting rule and classification

All the NG modes in (4.39) are not necessarily dynamically independent. In fact, canonical
conjugation between 𝜋𝑎 fields can appear if the Lagrangian is of the form

L „ 𝜋1B𝑡𝜋
2 ´ 𝜋2B𝑡𝜋

1 + . . . . (4.44)

By using the definition of the canonical momentum

𝑃𝑎 ”
BL

B(B𝑡𝜋𝑎)
, (4.45)

we find that the canonically conjugated pairs are (𝜋1,´𝜋2) and (𝜋2, 𝜋1). Hence, we have that 𝜋1

and 𝜋2 are canonically conjugated and both of them form one degree of freedom18. From this
schematic reasoning, we understand that the term 𝑐𝑎 (𝜋)B𝑡𝜋𝑎 in (4.39) is crucial for our counting
rule.

To count the number of independent NG modes, we have to label which modes are conjugated
to which other modes. To do so, we need a classification. A natural classification could be based on
the broken generators since, as we have seen in the coset construction, it is them which generate the
NG modes. Hence, we need to establish a link between the𝑄𝑎’s (the conserved charges which after
quantisation correspond to the broken generators) and the 𝑐𝑎 (𝜋)’s. This is done thanks to Noether
currents.

The guidelines of this subsection will be to compute the Noether currents. It will provide us a
non-explicit relation between the conserved charges and the 𝑐𝑎 (𝜋) coefficients. By introducing a
new quantity and with the preceding relation in mind, we will be able to establish a direct contact
between the 𝑄𝑎’s and the 𝑐𝑎 (𝜋)’s. It will then remain to express 𝑐𝑎 (𝜋)B𝑡𝜋𝑎 in terms of the 𝑄𝑎’s
in our Lagrangian. So, the canonical structure of the theory will be given in terms of the 𝑄𝑎’s.
We will thus end up with a classification and a counting rule based on the broken generators. This
subsection leans on [35, 55, 56].

Let us start by re-expressing a bit differently the transformation law of 𝜋𝑎.

𝜋𝑎 (𝑥) 𝐺
ÝÑ 𝜋𝑎 (𝑥) + 𝜉𝑎 (𝜋) = 𝜋𝑎 (𝑥) + 𝜔𝛼ℎ𝑎𝛼 (𝜋) , (4.46)

such that

ℎ𝑎𝛼 (𝜋) =
{
ℎ𝑎
𝑏
(𝜋) if 𝛼 = 𝑏

𝜋𝑐ℎ𝑎
𝐴𝑐

if 𝛼 = 𝐴
, (4.47)

where ℎ𝑎
𝐴𝑐

is constant, because 𝜋𝑎 transforms linearly under 𝐻. The action of the generators of 𝐺
is then given by the operators

𝐺𝛼 = ℎ𝑎𝛼 (𝜋)B𝑎 . (4.48)

18We define the degrees of freedom as the quantities for which we have set their instantaneous speed and their values
at initial time to unequivocally fix the dynamics.
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We have seen that the Lagrangian (4.39) transforms up to a global derivative. It permits to
define 𝐾0

𝛼 in such manner that 𝛿L(𝜋) ” 𝜔𝛼B𝑡𝐾
0
𝛼. In such case, the (zero component of) the

Noether currents are given by (cf. (2.5))

𝑗0𝛼 (𝜋) =
BL

B(B𝑡𝜋𝑎)
ℎ𝑎𝛼 (𝜋) ´ 𝐾0

𝛼 (𝜋) . (4.49)

Let us find out the expression of 𝐾0
𝛼.

𝛿L(𝜋) = B𝑡Ω𝜉 =
(
L𝜉 𝑐𝑎

)
B𝑡𝜋

𝑎 ,

=

(
𝜔𝛼ℎ𝑏𝛼 (𝜋)B𝑏𝑐𝑎 (𝜋) + 𝑐𝑏 (𝜋)𝜔𝛼B𝑎ℎ

𝑏
𝛼 (𝜋)

)
B𝑡𝜋

𝑎 ,

= 𝜔𝛼ℎ𝑏𝛼 (𝜋)B𝑏𝑐𝑎 (𝜋)B𝑡𝜋𝑎 + 𝑐𝑏 (𝜋)𝜔𝛼B𝑡ℎ
𝑏
𝛼 (𝜋) ,

= B𝑡

(
𝑐𝑏 (𝜋)𝜔𝛼ℎ𝑏𝛼 (𝜋)

)
+ 𝜔𝛼ℎ𝑏𝛼 (𝜋) (B𝑏𝑐𝑎 (𝜋) ´ B𝑎𝑐𝑏 (𝜋)) B𝑡𝜋

𝑎 ,

(4.50)

(4.51)

(4.52)

(4.53)

where to go from (4.52) to (4.53) we used an integration by part. We know that the Lagrangian
transforms up to a global derivative. So, it must exist a function 𝑟𝛼 (𝜋) such that

B𝑎𝑟𝛼 (𝜋) = ℎ𝑏𝛼 (𝜋) (B𝑏𝑐𝑎 (𝜋) ´ B𝑎𝑐𝑏 (𝜋)) . (4.54)

Thus
𝛿L(𝜋) = 𝜔𝛼B𝑡

(
𝑐𝑏 ℎ

𝑏
𝛼 + 𝑟𝛼

)
, (4.55)

which gives

𝐾0
𝛼 = 𝑐𝑏 (𝜋) ℎ𝑏𝛼 (𝜋) + 𝑟𝛼 (𝜋) . (4.56)

We are now able to compute the (zero component of) Noether currents:

𝑗0𝛼 (𝜋) =
BL

B(B𝑡𝜋𝑎)
ℎ𝑎𝛼 (𝜋) ´ 𝐾0

𝛼 (𝜋) ,

=
1
2
𝑔𝑎𝑏 (𝜋)ℎ𝑎𝛼 (𝜋)B𝑡𝜋𝑏 ´ 𝑟𝛼 (𝜋) .

(4.57)

(4.58)

The vacuum expectation value of 𝑗0𝛼 is given by its classical vacuum value. The argument is that a
renormalisation factor 𝑗0𝛼 Ñ 𝑍 𝑗0𝛼 would spoil the commutation algebra [ 𝑗0𝛼, 𝑗0𝛽] = 𝑖 𝑓

𝛾

𝛼𝛽
𝑗0𝛾 , [56]19.

Evaluating (4.58) on the vacuum corresponds to consider the fields 𝜋𝑎 as vanishing fields. This can
be understood from (4.6) and (4.8). So,

〈0| 𝑗0𝛼 (𝑥) |0〉 = 𝑗0𝛼 (𝑥)
��
𝜋=0 = ´ 𝑟𝛼 |𝜋=0 . (4.59)

Through equations (4.54) and (4.59), we have a non-explicit relation between the broken charge
densities and the 𝑐𝑎’s. To make this connection more explicit, let us study the quantity

𝜌𝛼𝛽 ” lim
𝑉Ñ+8

´𝑖

𝑉
〈0| [𝑄𝛼, 𝑄𝛽] |0〉 , (4.60)

19An alternative approach based on the Ward-Takahashi identities recovers the similar result that a non-zero VEV of
non-abelian charge densities induces a one-time derivative term in the effective Lagrangian [39].
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where𝑉 is the spatial volume of our system. We can develop this expression by using the definition
of a conserved charge, by translating the conserved current at the origin, by taking into account the
internal aspect of 𝑄𝛼 and by considering a uniform vacuum

𝜌𝛼𝛽 = lim
𝑉Ñ+8

´𝑖

𝑉

∫
𝑉

𝑑𝑑´1𝑥 〈0| [𝑄𝛼, 𝑗
0
𝛽 (𝑥)] |0〉 ,

= ´𝑖 〈0| [𝑄𝛼, 𝑗
0
𝛽 (0)] |0〉 .

(4.61)

(4.62)

With the help of (2.14), (4.48) and (4.59),

𝜌𝛼𝛽 = ´ 𝛿𝛼 𝑗
0
𝛽 (0)

���
𝜋=0

= ´ ℎ𝑎𝛼 (𝜋)B𝑎 𝑗0𝛽 (0)
���
𝜋=0

= ℎ𝑎𝛼 (𝜋)B𝑎𝑟𝛽 (𝜋)
��
𝜋=0 . (4.63)

Let us notice that if we particularise at 𝛽 = 𝐴, we have B𝑎𝑟𝐴|𝜋=0 = 0 because ℎ𝑏
𝐴
(𝜋 = 0) = 0

(cf. (4.54), (4.47)). Thus,
𝜌𝛼𝐴 = 0 = ´𝜌𝐴𝛼 . (4.64)

This is consistent with𝑄𝐴 |0〉 9 |0〉, since𝑄𝐴 is unbroken, which implies 𝜌𝛼𝐴 = 0 = 𝜌𝐴𝛼. We will
therefore focus on 𝜌𝑎𝑏. With (4.54),

𝜌𝑎𝑏 = ℎ𝑐𝑎 (0)ℎ𝑑𝑏 (0) (B𝑑𝑐𝑐 ´ B𝑐𝑐𝑑) |𝜋=0 ,

ô B[𝑑𝑐𝑐]
��
𝜋=0 =

1
2
𝜌𝑎𝑏

(
ℎ´1(0)

)𝑎
𝑑

(
ℎ´1(0)

)𝑏
𝑐
,

(4.65)

(4.66)

where the brackets [. . .] on the indices correspond to an anti-symmetrisation of these indices. The
intuition that we can indeed invert ℎ𝑑

𝑏
(0) is that 𝜋𝑎 transforms inhomogeneously under the action

of broken generators and so, ℎ𝑑
𝑏
(0) ≠ 0. More formally, {𝑋𝑎} forms a basis of the tangential

space of 𝐺/𝐻 at 𝜋 = 0 and these generators are faithfully realised by {ℎ𝑎
𝑏
(𝜋)B𝑎}. Hence, the latter

expression, evaluated at 𝜋 = 0, is as well a basis of the tangential space of the coset space at the
identity. Thus, ℎ𝑎

𝑏
(0) is a full ranked matrix.

We are now able to express the canonical structure of our theory in terms of 𝜌𝑎𝑏. From our
schematic reasoning (4.44), we can limit ourselves to the quadratic part of the Lagrangian to probe
the canonical conjugated fields. Therefore, let us expand the first term of the Lagrangian (4.39) till
the quadratic order in 𝜋:

𝑐𝑎 (𝜋)B𝑡𝜋𝑎 = (𝑐𝑎 (0) + B𝑏𝑐𝑎 |𝜋=0 𝜋
𝑏)B𝑡𝜋𝑎 ,

= (𝑐𝑎 (0) + B[𝑏𝑐𝑎] |𝜋=0 𝜋
𝑏 + B{𝑏𝑐𝑎} |𝜋=0 𝜋

𝑏)B𝑡𝜋𝑎 ,
(4.67)
(4.68)

where the braces {. . .} on the indices denote a symmetrisation of these indices. To continue the
development, we can notice that

B𝑡 (B{𝑏𝑐𝑎} |𝜋=0 𝜋
𝑏𝜋𝑎) = B{𝑏𝑐𝑎} |𝜋=0 B𝑡𝜋

𝑏𝜋𝑎 + B{𝑏𝑐𝑎}𝜋
𝑏B𝑡𝜋

𝑎 ,

= 2B{𝑏𝑐𝑎} |𝜋=0 𝜋
𝑏B𝑡𝜋

𝑎 .

(4.69)
(4.70)

Using the last equality in (4.68)

𝑐𝑎 (𝜋)B𝑡𝜋𝑎 = B[𝑏𝑐𝑎] |𝜋=0 𝜋
𝑏B𝑡𝜋

𝑎 + B𝑡 (𝑐𝑎 (0)B𝑡𝜋𝑎 +
1
2

B{𝑏𝑐𝑎}𝜋
𝑏𝜋𝑎) . (4.71)
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We can drop the term with the total derivative because it will lead to a surface term in the expression
of the action and due to the fact that we neglect the boundary effects, it will not influence the evolution
of the system. The first term of (4.71) can be re-expressed with (4.66)

𝑐𝑎 (𝜋)B𝑡𝜋𝑎 =
1
2
𝜌𝑎𝑏

(
ℎ´1(0)

)𝑎
𝑐

(
ℎ´1(0)

)𝑏
𝑑
𝜋𝑐B𝑡𝜋

𝑑 ,

=
1
2
𝜌𝑎𝑏 �̃�

𝑎B𝑡 �̃�
𝑏 ,

(4.72)

(4.73)

where we did a field redefinition, i.e. a change of coordinate on 𝐺/𝐻 induced by the full ranked
matrix ℎ𝑎

𝑏
(0). Let us do the misnomer 𝜌 as being the matrix 𝜌𝑎𝑏 instead of 𝜌𝛼𝛽 . Since 𝜌 is a real

and an anti-symmetric matrix, there exists an orthogonal change of basis such that (let us suppose
that we work with this new basis since the beginning)

𝜌 =

©«

𝑀1
. . .

𝑀𝑚

0
. . .

0

ª®®®®®®®®®®¬
with 𝑀𝑖 =

(
0 𝜆𝑖

´𝜆𝑖 0

)
, (4.74)

where 𝜆𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑚. We emphasise that

rank(𝜌) =
𝑚∑︁
𝑖=1

rank(𝑀𝑖) = 2𝑚 ô 𝑚 = 1
2 rank(𝜌) . (4.75)

From (4.73) and (4.74), we have

𝑐𝑎 (𝜋)B𝑡𝜋𝑎 =

𝑚∑︁
𝑖=1

1
2
𝜆𝑖 (�̃�2𝑖B𝑡 �̃�

2𝑖´1 ´ �̃�2𝑖´1B𝑡 �̃�
2𝑖) . (4.76)

By comparison with our schematic reasoning (4.44), we have that the �̃�2𝑖 field is canonically
conjugated with the �̃�2𝑖´1 field. Hence, they do form one single degree of freedom instead of two.
The associated independent NG mode is called a type B NG mode. Since 𝑖 is running from 1 to 𝑚,
we have that the number of type B NG modes, 𝑛B, is given by

𝑛B = 1
2 rank(𝜌) . (4.77)

Concerning the 𝜋𝑎 fields lying in the null part of 𝜌, cf. (4.74), they do not intervene in the single
time derivative term of the Lagrangian and are therefore canonically independent from the other
fields. Each of these 𝜋𝑎 represents one degree of freedom. We denote these NG modes as type A
NG modes.

Conceptually, a type B NG mode is generated by two broken generators20 while a type A NG
mode is produced by one broken generator. However, in practice, this classification might not be
robust with respect to an arbitrary choice of basis in the algebra. This is discussed in [35].

20Qualitatively speaking, we are going to say that two broken generators𝑄𝑖 and𝑄 𝑗 are conjugated if 〈0| [𝑄𝑖 , 𝑄 𝑗 ] |0〉 ≠
0. In such case, we consider that 𝑄𝑖 and 𝑄 𝑗 generate one type B NG mode. But it remains to show that, in the chosen
basis, the generators are either conjugated by pairs or are independent.
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It is interesting to notice that by looking at (4.39) and to its Fourier transform, type B NG mode
will systematically have a quadratic dispersion relation (𝜔 „ 𝑞2) while type A will in general have
a linear dispersion relation (𝜔 „ 𝑞). In fact, �̄�𝑎𝑏 (𝜋) might be semi-definite positive in some cases
(we, here, extend a bit our hypotheses) and thus zero for some directions. In such situation, the
dispersion relations are dictated by the O(B4

𝑖
) term and so, type A NG mode would have a quadratic

dispersion relation (𝜔 „ 𝑞2).
With all these developments, we have recovered (with some shortcuts) the theorem established

by Brauner, Murayama and Watanabe in [35, 55, 56]. This theorem can be stated as

Theorem 2 (Brauner-Murayama-Watanabe’s theorem). Let us consider a physical field theory
living in 2 + 1 or above Minkowski spacetime which is invariant under translations and rotations
(at least at long distances) and where no terms contain fields at two separated spacetime points
(it could eventually be relaxed to an exponentially decrease of the interactions with distance).
If the fundamental theory has a faithfully linearly realised global continuous internal compact
symmetry group 𝐺 generated by {𝑄𝛼} such that it is either completely spontaneously broken
or partially spontaneously broken to a continuous subgroup 𝐻, this without any anomalies and
explicit symmetry breaking being involved, then, considering that the associated NG modes are the
only massless modes, the number of NG bosons 𝑛NG is related to the number of broken symmetry
generators 𝑛BS by the equality

𝑛NG = 𝑛BS ´
1
2

rank(𝜌) , (4.78)

with
𝜌𝑎𝑏 ” lim

𝑉Ñ8

´𝑖

𝑉
〈0| [𝑄𝑎, 𝑄𝑏] |0〉 , (4.79)

where 𝑉 is the spatial volume of our system in spacetime and {𝑄𝑎} are the broken generators.

Let us mention that the hypothesis on the locality of the fundamental theory should ensure the
effective field theory to be itself local, as we required in our preceding developments.

We conclude this discussion on the Brauner-Murayama-Watanabe’s counting rule with several
observations and remarks.

First, this counting rule is not totally model independent since 𝜌 is the VEV of the commutators
of the broken generators of 𝐺. So, there is a dependency on the vacuum of the theory and on how
the symmetry group is realised. Based on a thorough analysis of the topology/geometry of the coset
space 𝐺/𝐻 and of the presymplectic structures which can live on 𝐺/𝐻, Murayama and Watanabe
completely classified the possible combinations of numbers of type A and type B NG modes for a
given breaking pattern 𝐺 Ñ 𝐻 [56]. Hence, it is partial information on the number of NG modes
which rely only on the symmetries and so, is totally model independent.

Second, the counting rule can be sensible to the central extension of the Lie algebra at the
quantum level since 𝜌 depends on the commutators of the generators acting on the Hilbert space
rather than on the phase space (the projective Hilbert space). Let us mention that the central
extensions of a Lie algebra g are classified by the second Chevalley-Elenberg cohomology group
𝐻2(g). This group is trivial for semi-simple finite-dimensional algebras, hence, such algebras do
not have central extensions [76, 77]

Third, we have seen that it is the one-time derivative term which canonically combined the
NG modes. Since the relativistic EFT (4.33) does not possess this term, we can safely conclude
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that all the NG modes are independent and so, their number corresponds to the number of broken
generators. This is in fact displayed by (4.78). For relativistic theories, no charged operator under
Lorentz group can acquire a VEV otherwise Lorentz symmetry would be broken. Considering no
central extension, we have for relativistic theories

𝜌 „ 〈0| [𝑄𝑎, 𝑄𝑏] |0〉 = 𝑖 𝑓 𝑐
𝑎𝑏 〈0|𝑄𝑐 |0〉 „ 〈0| 𝑗0𝑐 |0〉 = 0 , (4.80)

because 𝑗0𝑐 is a component of the conserved current which is a Lorentz-vector [8]. Thus, for
relativistic theories 𝜌 = 0 and 𝑛NG = 𝑛BS as expected. Let us emphasise that 𝑛NG = 𝑛BS would not
necessarily be true if we consider spontaneous breaking of spacetime symmetries in a relativistic
fundamental theory.

Fourth, if we force the effective theory to depend only on the independent NG modes, the
obtained EFT will be complicated. Indeed, if we try to integrate out one of the two canonically
conjugated fields 𝜋𝑎 of a type B NG mode, it will lead to non-local interaction terms in Leff [56].
Furthermore, it will spoil the classification since a type B would then be described by one 𝜋𝑎 which
might be interpreted as a type A. We thus understand that the considered locality is necessary for
the classification to make sense.

Fifth, if we go to higher enough energy, the two-time derivative term become dominant com-
pared to the single time derivative term. The canonical structure would then rather be determined by
𝑔𝑎𝑏 (𝜋)B𝑡𝜋𝑎B𝑡𝜋

𝑏 instead of 𝑐𝑎 (𝜋)B𝑡𝜋𝑎. Since we consider 𝑔𝑎𝑏 as being a positive definite metric,
and so a non-degenerate metric, the two 𝜋𝑎 fields associated to a type B NG mode will be canon-
ically independent. This means that each massless type B NG mode has a massive partner called
an almost NG mode. The case where 𝑔𝑎𝑏 is semi-positive definite, thus degenerate, is discussed in
[78] where a counting rule is provided to give the number of almost NG mode we could expect.

Sixth, it should be mentioned that the counting rule (4.78) has been independently obtained in
[79] by Mori projection operator method. Furthermore, in this article they extend the discussion to
the finite temperature case. During the mid-2010 decade, [80] re-derived the counting rule (4.78)
by the Bogoliubov theory and discussed how we could take into consideration other gapless modes
than the NG modes in the analysis and discussed also how we could deal with spontaneously broken
spacetime symmetry breaking.

Finally, while Brauner and Watanabe conjectured the counting rule in [35], they provided a
partial proof which requires the symmetry to be uniform instead of compact and internal. Further-
more, the proof of the counting rule relies heavily on the shape of the EFT (4.39) and on the fact
that the single time derivative is due to a non-zero VEV of a charge density. Leutwyler recovered
these two ingredients thanks to an EFT building method based on the Ward Identities, where he
used similar hypothesis than the ones we imposed for the coset construction except that he does not
require 𝐺 to be compact [38, 39]. In addition, several examples we can find in the already cited
literature (e.g. the acoustic phonon analysis in [55]) also point toward the idea that the counting rule
could be extended to uniform symmetries – mainly because the shape of (4.39) can correspond to
EFTs not necessarily coming from compact groups. Moreover, lattice systems (and the associated
breaking of spatial translations and spatial rotations) could be encompassed in the discussion since
we are in the IR which is consistent with a spatial continuum limit.
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5. Concrete example : ferromagnetism

The aim of this section is to illustrate how the results and the technology we introduced so
far can be implemented on a specific observable physical phenomenon. We do not intend to do
precise phenomenological predictions but rather to show how an analysis of the symmetries alone
can already provide the behaviour of the observations, and how the coset construction can lead to
crude quantitative predictions. The two main references for this part of the script are [7, 14]

The example we are going to look at is ferromagnetism: below a critical temperature 𝑇𝑐
(usually between 102 K and 103 K) certain materials acquire a spontaneous magnetisation. This
magnetisation come from the magnetic moment the elementary constituents (atoms, molecules, ions,
electrons,...) of the considered material can have due to their spin and their orbital momentum. At
high temperature, the thermal agitation randomly orients the different magnetic momenta and so,
by average, there is no global magnetisation. By decreasing the temperature and depending how
the elementary constituents interact, a magnetic ordering can appear, the global alignment of each
magnetic momenta can generate a spontaneous global magnetic field.

We are going to study ferromagnet at low temperature (𝑇 ! 𝑇𝑐), low enough such that we can
do the approximation to study the microscopic theory at zero temperature in order to establish the
fundamental state and the excitation spectrum. Afterwards, to get the thermodynamic quantities,
we will apply the statistics on our microscopic spectrum.

Since our purpose is mainly pedagogical, we can limit ourselves to a coarse model. As a first
approximation, we can reasonably consider the electrons to be localised on their corresponding
atoms. These atoms will be taken as identical and we will assume that they are placed at the
sites of a 3 (spatial)-dimensional Bravais lattice. Each of them should possess a non-zero total
angular momentum ®𝑆. It is standard practice to call this angular moment “spin” in reference to the
original Heisenberg Hamiltonian, cf. later. We will already start from an effective theory where
the Coulomb interactions combined with the Pauli exclusion provide effective interactions among
momenta described by the Heisenberg Hamiltonian. We will consider that our system can indeed
be effectively described by the Heisenberg Hamiltonian:

�̂� = ´
∑︁
RR’

𝐽RR’ ŜRŜR’ , (5.1)

where bold letters correspond to 3-dimensional vectors, R labelises the Bravais lattice sites and
𝐽RR’ depends on R and R’ only by the difference L = R ´ R’. We will suppose 𝐽RR’ to decrease
fast enough with L such that our requirements on locality are satisfied. Furthermore, in the case of
ferromagnetic materials: 𝐽RR’ ą 0 @ R,R’.

To minimise the energy, we should maximise the scalar product in (5.1). To do so, all the spins
should be aligned. The direction of the global alignment is not fixed by the energy minimisation
principle, let us arbitrarily chose that all the spins align in the 𝑥´direction.

5.1 Analysis based on solely the symmetries

The interactions between spins depend on the relative orientation of the spins (5.1). Hence, a
global rotation of the spins will not alter the dynamics. We thus have a global 𝑆𝑈 (2) symmetry.
From the coset construction and the counting rule of Section 4, we learned that it is mainly the
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algebra which matters. Since 𝑠𝑢(2) � 𝑠𝑜(3), for a better visualisation, we will consider the
dynamics to have a global internal 𝑆𝑂 (3) symmetry. It is indeed an internal symmetry since we
rotate the spins around their attach points – we do not rotate the crystal (the space).

The vacuum has been established and chosen such that all the spins are aligned along the
𝑥´direction. We thus have a spontaneous symmetry breaking of 𝑆𝑂 (3) to 𝑆𝑂 (2) since the vacuum
is invariant under a rotation along the𝑂𝑥 axis but does transform under any other kind of rotations.
We thus have that the generators 𝑆𝑦 and 𝑆𝑧 are spontaneously broken.

Another important symmetry breaking for the coset construction is the spontaneous symmetry
breaking of time reversal symmetry. Indeed, we can visualise the spin of each atom due to orbital
rotation and to intrinsic rotation (the actual spin) of their constituents. By inverting the flow of
time, the direction of rotation will change and so, the spins will flip. The dynamics is invariant
under this flip since only the relative orientation between the spins matter. However, our vacuum
will transform from an alignment along 𝑥 to an alignment along ´𝑥.

From the breaking pattern 𝑆𝑂 (3) Ñ 𝑆𝑂 (2), and from the hypothesis of our model, we can
apply both Goldstone’s theorem and the Brauner-Murayama-Watanabe’s counting rule. We have
that

〈0| [𝑆 𝑗 , 𝑆 𝑗] |0〉 = 0 , 𝑗 = 𝑦, 𝑧 ,
〈0| [𝑆𝑦 , 𝑆𝑧] |0〉 = 𝑖 〈0| 𝑆𝑥 |0〉 = 𝑖 𝑛𝑉𝑆 ,

(5.2)
(5.3)

where 𝑛 is the density of atoms, 𝑉 is the volume of our lattice and 𝑆 is the norm of the spin of one
atom. So,

𝜌 = lim
𝑉Ñ8

´𝑖

𝑉

(
0 𝑖 𝑛𝑉𝑆

´𝑖 𝑛𝑉𝑆 0

)
=

(
0 𝑛𝑉𝑆

´ 𝑛𝑉𝑆 0

)
ñ rank(𝜌) = 2 . (5.4)

The low energy excitation spectrum will contain one NG mode and it will be of type B. Indeed,

𝑛NG = 𝑛BS ´
1
2

rank(𝜌) = 2 ´ 1 = 1 ,

𝑛𝐵 =
1
2

rank(𝜌) = 1 ,

𝑛𝐴 = 𝑛NG ´ 𝑛𝐵 = 0 .

(5.5)

(5.6)

(5.7)

Since the action of 𝑆𝑂 (3) does not modify the Lorentz representation of the spins, the perturbations
around the vacuum in the broken directions of 𝑆𝑂 (3) will be scalars. The type B NG mode will
thus be a boson and because it is a type B, it will have a quadratic dispersion relation. In condensed
matter literature, this excitation is either called a magnon or a spin wave (since it is a fluctuation in
the spin orientation which propagates through the system).

We have all the necessary tools to get the behaviour of certain thermodynamic quantities. We
work in the natural units 𝑐 = ℏ = 𝑘𝐵 = 1, where 𝑘𝐵 is the Boltzmann constant. Let us focus on the
heat capacity per unit of volume:

𝑐(𝑇) ”
𝑑𝜖

𝑑𝑇
, (5.8)

where 𝜖 is the energy per unit of volume.
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The magnetic contribution to 𝑐(𝑇) is computed from

𝜖𝑚 = 𝜖0 +
∑︁

q
𝜔q 〈𝑛q〉𝑇 , (5.9)

where 𝜖𝑚 is the magnetic energy density, 𝜖0 is the vacuum energy density and 〈𝑛q〉𝑇 is the average
number density of magnetic NG modes of wave vector q at temperature 𝑇 . Because we are
working at finite volume (ferromagnet materials are of finite size), the values for the wave vector
are discretised due to the Born–von Karman boundary conditions

𝑞𝑖 = 2𝜋
𝑘𝑖

𝐿𝑖
with 𝑘𝑖 P Z, 𝑖 = 1, . . . , 𝑑 ´ 1 , (5.10)

where 𝐿𝑖 is the length of the system in the 𝑖-direction.
Since the excitation modes are bosons, 〈𝑛q〉𝑇 is given by the Bose-Einstein statistics:

〈𝑛q〉𝑇 =
1

𝑉 (𝑒
𝜔q
𝑇 ´ 1)

. (5.11)

By going to the large volume limit, we can switch the sum for an integral in (5.9) and use (5.10) to
determine the density of states in the integration measure. We roughly obtain

𝜖𝑚 = 𝜖0 +
1

(2𝜋)3

∫
𝑑3𝑞

𝜔q

𝑒
𝜔q
𝑇 ´ 1

„ 𝜖0 +
∫ +8

0
𝑑𝑞

𝑞4

𝑒
𝑞2
𝑇 ´ 1

„ 𝜖0 + 𝑇5/2
∫ +8

0
𝑑𝑥

𝑥3/2

𝑒𝑥 ´ 1
, (5.12)

where we used the quadratic shape of the dispersion relation, we went to spherical coordinates and
we made a change of variable. The most right-hand side integral is given by the Riemann zeta
function ∫ +8

0
𝑑𝑥

𝑥3/2

𝑒𝑥 ´ 1
= 𝜁

(
5
2

)
Γ

(
5
2

)
, (5.13)

which is non-zero and finite.
Finally, we have that the magnetic contribution 𝑐𝑚(𝑇) to the specific heat evolves with temper-

ature as
𝑐𝑚(𝑇) ”

𝑑𝜖𝑚

𝑑𝑇
„ 𝑇3/2 . (5.14)

This thermal behaviour at low temperature is the standard textbook law obtained through more
“usual” condensed matter computations [81]. To compare it with experiment, from the hypothesis
of our model, we have to consider the specific heat as well coming from the phonons, i.e. the crystal
oscillations.

Exercise 12. Enumerate the number of NG modes coming from the spontaneous symmetry breaking
of continuous spatial translation symmetries to their discrete subset due to the crystal lattice itself.
To do so, you have to consider the extension of Theorem 2 for uniform symmetries, which as we
have discussed, is reasonable. Such NG modes are called phonons. Guess the dispersion relations
of these NG modes from their types. With a similar handy reasoning we did for the magnons, show
that the contribution of the phonons to the specific heat goes as 𝑇3. Let us mention that there are
no additional NG modes due to the breaking of spatial rotations, this will be explained in the next
section.
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Solely based on the symmetries involved in our model describing ferromagnets, we displayed
that the specific heat receives two contributions21 such that at low temperature, it has the following
behaviour

𝑐(𝑇) = 𝑎 𝑇3/2 + 𝑏 𝑇3 , (5.15)

where the 𝑎 and 𝑏 coefficients quantify respectively the magnetic contribution and the crystal
contribution. If we conduct a measurement on a ferromagnetic material with close enough properties
to our models and that we plot 𝑐(𝑡) 𝑇´3/2 in function of𝑇3/2, we should get a straight line permitting
to determine 𝑎 and 𝑏. This can be observed for Yttrium Iron Garnet from 1.5 to 4.2 K [82]. The
plot is given at Figure 2.

Figure 2: Heat capacity of yttrium iron garnet at low temperature [81, 82].

5.2 Coset construction for ferromagnetism

In order to have more quantitative results for our analysis of ferromagnetism, we can build
the effective field theory describing magnons through the coset construction. Indeed, the breaking
pattern 𝑆𝑂 (3) Ñ 𝑆𝑂 (2) does satisfy the criteria with which we introduced the coset construction.

The coset space is

𝐺/𝐻 = 𝑆𝑂 (3)/𝑆𝑂 (2) � 𝑆2 . (5.16)

The 2-sphere can be parametrised by the azimuthal angle 𝜑 P [0, 2𝜋[ and by the angular angle
𝜃 P [0, 𝜋]. Thus, our candidates NG modes 𝜋 are

𝜋(𝑥) = (𝜃 (𝑥), 𝜑(𝑥)) . (5.17)

21We made the assumption that the electrons are localised, hence, no additional electronic contribution to the specific
heat is considered.
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Time reversal symmetry is broken, thus the EFT should contain a single time derivative term
and this term will be dominant with respect to O

(
B2
𝑡

)
since we consider to be (deep enough)

in the IR. Furthermore, the IR region is consistent with the continuum limit, and we will thus
make the approximation that we have continuous spatial translation symmetries and spatial rotation
symmetries. Hence, the shape of the effective Lagrangian is

L (𝜋) = 𝑐𝑎 (𝜋)B𝑡𝜋𝑎 ´
1
2
�̄�𝑎𝑏 (𝜋)B𝑖𝜋𝑎B𝑖𝜋

𝑏 + O(B2
𝑡 , B𝑡B

2
𝑖 , B

4
𝑖 ) . (5.18)

Exercise 13. Show that the real vector space generated by {𝑖𝑆𝑦 , 𝑖𝑆𝑧} is an irreducible representation
of 𝑠𝑜(2) – a real algebra – where the action of 𝑠𝑜(2) is defined by [¨, 𝑖𝑆𝑥] [7].

The coefficient �̄�𝑎𝑏 (𝜋) should be a generic metric on 𝑆2 invariant under 𝑆𝑂 (3). Since the
broken generators form an irreducible representation of 𝑆𝑂 (2) (cf. Exercise 13) and from Exercise
11, �̄�𝑎𝑏 (𝜋) is given up to a global factor, a natural particular metric is the canonical metric of the
2-sphere, thus our generic metric is:

�̄�𝑎𝑏 (𝜋) = 𝑢1

(
1 0
0 sin2(𝜃)

)
, (5.19)

where 𝑢1 is a general constant. Another way to recover (5.19) as the most generic metric is to
solve the system given by the vanishing Lie derivatives of the metric with respect to the 𝑆𝑂 (3)
generators22.

The coefficient 𝑐𝑎 (𝜋) is a generic covector which should transform as

L𝜉 𝑐𝑎 = B𝑎Ω𝜉 (𝜋) , (5.21)

where Ω𝜉 (𝜋) is an unconstrained function on 𝑆2 and where 𝜉 is any of the Killing vectors corre-
sponding to the generators of 𝑆𝑂 (3) . It means that the anti-symmetric tensor

𝐹𝑎𝑏 ” B𝑎𝑐𝑏 ´ B𝑏𝑐𝑎 , (5.22)

is invariant under the isometry generated by 𝜉. Furthermore, since 𝐹𝑎𝑏 is defined on a two-
dimensional manifold (the 2-sphere), it is defined by one scalar function 𝑢1

0(𝜋):

𝐹𝑎𝑏 = 𝑢1
0

a

Det(�̄�) 𝜖𝑎𝑏 . (5.23)

The invariance of 𝐹𝑎𝑏 reduces to
L𝜉𝑢

1
0 = 𝜉𝑎B𝑎𝑢

1
0 = 0 , (5.24)

for all the rotation Killing vectors 𝜉. This condition implies that 𝑢1
0(𝜋) is in fact independent of 𝜋.

Combining this observation with (5.19), (5.22) and (5.23) we obtain an equation for 𝑐𝑎 (𝜋)

B𝜃𝑐𝜑 ´ B𝜑𝑐𝜃 = 𝑢1
0 𝑢1 sin(𝜃) . (5.25)

22The 𝑆𝑂 (3) generators realising rotations on the 2-sphere are

𝜉𝑎(1) = 𝛿
𝑎
𝜙 , 𝜉

𝑎
(2) = ´

(
𝑐𝑜𝑠(𝜙)𝛿𝑎𝜃 ´ 𝑐𝑜𝑡 (𝜃)𝑠𝑖𝑛(𝜙)𝛿𝑎𝜙

)
, 𝜉𝑎(3) = 𝑠𝑖𝑛(𝜙)𝛿

𝑎
𝜃 + 𝑐𝑜𝑡 (𝜃)𝑐𝑜𝑠(𝜙)𝛿𝑎𝜙 . (5.20)
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Because the transformation (5.21) of 𝑐𝑎 (𝜋) is a symmetry of the theory and it is driven by an
arbitrary function Ω𝜉 (𝜋), we can use it to eliminate one of the components of 𝑐𝑎 (𝜋). Let us set to
zero 𝑐𝜃 (𝜋). Thus, a generic solution for (5.25) is

𝑐(𝜋) = (0, 𝑢0 cos(𝜃)) with 𝑢0 ” ´𝑢1
0𝑢1 . (5.26)

Exercise 14. Explicitly check that L𝜉 𝑐𝑎 = B𝑎Ω𝜉 (𝜋) is satisfied for each Killing vectors (5.20)
when the solution (5.26) is considered.

Our effective Lagrangian is now of the form

L (𝜋) = 𝑢0 cos(𝜃)B𝑡𝜑 ´
𝑢1
2

(
B𝑖𝜃B𝑖𝜃 + sin2(𝜃)B 𝑗𝜑B 𝑗𝜑

)
+ O(B2

𝑡 , B𝑡B
2
𝑖 , B

4
𝑖 ) . (5.27)

To connect our NG fields, 𝜃 (𝑥) and 𝜑(𝑥), to a physical interpretation, we express the 2-sphere with
Cartesian coordinates 

𝑠𝑥 = sin(𝜃) cos(𝜑) ,
𝑠𝑦 = sin(𝜃) sin(𝜑) ,
𝑠𝑧 = cos(𝜃) ,

(5.28)

were the Cartesian coordinates correspond to the “spin field” (this field provides the spin we have
in our material at the spacetime position 𝑥). The fundamental state is when all the spins are aligned
in the 𝑥´direction, so, our spin field should be constant over space and time, and it should point
toward the 𝑥´direction. This means that 

𝜃0(𝑥) =
𝜋

2
,

𝜑0(𝑥) = 0 .
(5.29)

NG modes correspond to small fluctuations around the vacuum in the broken directions, hence, to
properly describe NG modes we have to infinitesimally fluctuate around (5.29)

𝜃 (𝑥) = 𝜋

2
+ 𝜃1(𝑥) ,

𝜑(𝑥) = 𝜑1(𝑥) .
(5.30)

Till quadratic order, we have

L (𝜋) = 𝑢0
2
𝜑1B𝑡𝜃

1 ´
𝑢0
2
𝜃1B𝑡𝜑

1 ´
𝑢1
2

(
B𝑖𝜃

1B𝑖𝜃
1 + B 𝑗𝜑

1B 𝑗𝜑
1
)
+ O(B2

𝑡 , B𝑡B
2
𝑖 , B

4
𝑖 ) . (5.31)

From Fourier transform we can notice that we will get a unique dispersion relation

𝜔 =
𝑢1
𝑢0
𝑞2 . (5.32)

Therefore, we recover the fact that we have a single particle corresponding to a type B NG mode.
The two unknown coefficients 𝑢0 and 𝑢1 can be obtained experimentally. For example, by

inelastic neutron scattering through the medium: if we know how much energy and momentum
have the neutrons before and after the propagation, we can deduce how much energy and momentum
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were provided to the system in order to excite the modes of the solid. We thus get a curve of 𝜔 in
terms of 𝑞. Of course, we have to discriminate the phonon excitations and the magnon excitations.
The magnons are sensible to temperature, hence, by doing the experiment at various temperature
we can discriminate the two kinds of excitations and extract the dispersion relation of the magnons.
Once 𝑢0 and 𝑢1 are determined, we can explicitly compute (5.12) and obtained a value for (5.14) or
at least, an order of magnitude.

6. Some further directions

These lecture notes are an introduction to Goldstone physics and therefore, they are not meant
to be exhaustive. A significant amount of the various topics we can encounter in this area of physics
has been omitted to keep this work of a reasonable size but also due to the limited competence of
the author.

In this last section we will briefly comeback on important well settled results that we did not
mention so far. It will also permit to provide some possible further directions to look at. Hence, the
interested reader will have some references from where to start if she/he wants to expand her/his
knowledge in a specific subject.

6.1 Classification based on dispersion relations

Prior to the counting rule based on the broken generators, Nielsen and Chadha proposed a
classification relying on the dispersion relations of the NG modes [53]. This classification led to a
counting rule. The guideline of the proof of the latter is the spectral decomposition of (2.22), in
the same spirit as the argument we displayed for Goldstone’s theorem at Subsection 3.1. One of the
original hypotheses of Nielsen and Chadha was that the considered fundamental theory should have
continuous spatial translations symmetry. This has been relaxed in [34] such that discrete spatial
translations are tolerated.

Theorem 3 (Nielsen and Chadha’s theorem). Let us consider a fundamental (field) theory such that
the locality of the interactions implies that at quantum level, if 𝐴(𝑥) and 𝐵(0) are any two local
operators then

| x |Ñ 8 : | 〈0| [𝐴(x, 𝑡), 𝐵(0)] |0〉 |Ñ 𝑒´𝜏 |x | , 𝜏 ą 0 . (6.1)

If

• 𝑛BS generators of the uniform symmetries of our fundamental theory are spontaneously broken
(while the non-uniform ones remain untouched),

• the notion of gap is well defined,

• the dispersion relations of the NG modes are isotropic and can be written as a polynomial
expansion at low momentum,

then we classify as type I the NG modes with an energy which is proportional to an odd power of
the momentum at long wavelengths, 𝑛I is the number of such modes. The ones with an even power
are called type II and 𝑛II is their number. The amount of NG particles satisfies the inequality

𝑛I + 2𝑛II > 𝑛BS . (6.2)
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We can notice that asking the dispersion relation to be isotropic is an implicit hypothesis of
rotational symmetry of the fundamental theory. Relaxing this hypothesis is discussed in [34]. The
locality condition (6.1) ensures an analytic behaviour of the Fourier transform and so, indirectly
of the dispersion relations. Specifying that the latter should have a polynomial expansion at
long wavelengths could be considered as tautological – this tautology is not present in the original
statement of Nielsen and Chadha, it is due to the reformulation made by the author of this manuscript.

The Nielsen and Chadha counting rule is weaker than the one of Brauner, Murayama and
Watanabe. However, the classification based on dispersion relations is still used in the literature
since in some cases it is more practical.

Exercise 15. Make a link between type A/type B NG modes and type I/type II NG modes. Notice that
the counting rule of Nielsen and Chadha correctly reproduces the fact that for relativistic theories,
the number of NG modes is equal to the number of broken generators (when we consider solely the
breaking of internal symmetries).

6.2 Pseudo Goldstone modes

In the context of spontaneous symmetry breaking, there might be similar modes to the NG
modes which are present in the theory. They also are symmetry-originated and have a mass
(partially) settled by the symmetries. To understand their origin, we can take back the intuitive
picture we have for the NG modes. We spontaneously break the symmetries of the system by looking
for a non-trivial solution which minimises the energy. Taking this solution to be homogeneous (in
this section, we are mostly interested by the breaking of internal symmetries), the kinetic part
of the theory does not intervene in the discussion which simplifies the reasoning. Then, the flat
directions of the potential around the background correspond to opportunities to build massless
on-shell fluctuations. The broken symmetries parametrise some of these flat directions and are
thus, the origin of the NG modes. However, there can be additional flat directions:

• The potential part of the action might have a bigger continuous symmetry group than the action
as a whole. If these additional symmetries are spontaneously broken by the background, it
leads to additional flat directions.

• The equations for the potential minimisation might see some emergent symmetries which
with the SSB mechanism could correspond to additional flat directions.

• There might be a fine tuning among the Lagrangian parameters which makes that for a specific
vacuum, the potential at this particular point has flat directions.

The additional symmetries coming from the potential are called approximate symmetries (since
they are not exact symmetries of the full action). We understand that if we fluctuate the system
around the vacuum along the flat directions associated to the approximate symmetries, we are
getting massless modes [83, 84]. These modes are called quasi NG modes since at classical
level, they are massless but their mass is not symmetry protected when we quantise the theory (or
when we follow the RG flow). The quasi NG modes represent a limitation of Brauner-Murayama-
Watanabe’s counting rule because it has been established considering the NG modes as being the
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only massless modes in the theory. A first counting rule was derived in [84] but the generalization
of Brauner-Murayama-Watanabe’s counting rule is discussed in [80, 85].

There is another family of modes which are closely related to the Nambu Goldstone mechanism.
They appear when a symmetry is explicitly broken by a small parameter 𝑚 in the Lagrangian
compared to the VEV. If the VEV would have spontaneously broken the symmetry then, we would
have had an NG mode. If we consider the theory to have a continuous behaviour in the limit𝑚 Ñ 0,
we can expect that the would-be NG mode has a small mass which goes to zero in the zero limit
of 𝑚. This intuition was notably used by Nambu and Jona-Lasinio to describe light mesons in [2],
one of the articles which led to the conjecture of Goldstone’s theorem. It is Gell-Mann, Oakes
and Renner who first established, still in the context of QCD, that the square of the mass of the
would-be NG mode scales linearly with 𝑚 [86]. This relation bears their name and is abbreviate
as the GMOR relation. This result has been derived in several ways in the literature, mostly in the
context of QCD, by using the Ward identities (e.g. [87, 88]) or by following the effective theory
approach (e.g. [7, 89]). In a more general context than QCD, a derivation of the GMOR relation
has been done for generic relativistic effective field theories in [38]. A proof of the GMOR law, at
the level of the fundamental theory, for abelian internal symmetries in relativistic theories has been
established in [10].

We close this subsection with a clarification on the nomenclature. We call approximated
symmetries, transformations which either leave the potential part of the action invariant but not
the action as a whole or which are symmetries explicitly broken by a small parameter. The modes
which have for origin the first case of approximate symmetries are called quasi NG modes. When
the symmetry is explicitly broken by a small parameter and that the associated mode follow the
GMOR relation, we call such mode pseudo NG mode. Finally, the term massive NG mode can refer
either to the massive partner of a type B NG mode (i.e. an almost NG mode) either to a massive
symmetry-originated mode obtained in the context of the introduction of a chemical potential (cf.
next section).

6.3 Goldstone physics at finite density

As we have seen, spontaneous symmetry breaking occurs in several areas of physics. It could
then be interesting to see how Goldstone’s theorem is implemented in these different domains.
With the quantum field theory formalism we employ, the implementation of the theorem in particle
physics is rather straightforward. We could now look how does it apply for many-body systems
at equilibrium. A first step to it is to consider QFTs still at zero temperature but with a chemical
potential. This is the aim of this subsection.

For a statistical system we can associate a chemical potential to each of its conserved charges –
the microscopic dynamics is as usual dictated by either a Hamiltonian or a Lagrangian which might
possesses some symmetries and therefore, some conserved quantities are defined. Switching on the
chemical potential 𝜇𝑄 associated to the charge 𝑄 means that we consider that the external world
acts on our statistical system such that it can vary the “conserved” charge𝑄. We are thus working in
the grand canonical ensemble where 𝜇𝑄 scales the energy cost when we vary 𝑄. Considering our
statistical system to be at equilibrium, its thermal state is dictated by the grand canonical partition
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function
𝑍 = Tr

[
𝑒´𝛽(𝐻´𝜇𝑄𝑄)

]
. (6.3)

The trace in (6.3) represents a summation/integration on the phase space. Hence, in the zero
temperature limit, i.e. 𝛽 Ñ +8, we can do the saddle-point approximation. This means that the
thermal state is given by the minimisation of 𝐻 ´ 𝜇𝑄𝑄 and by the small fluctuations around the
minimum.

From this brief recap of statistical physics, we emphasise that the microscopic dynamics is
given by 𝐻 and that the thermal state of the system is settled by �̃� ” 𝐻 ´ 𝜇𝑄𝑄. So, switching on a
chemical potential means that the background, which will spontaneously break the symmetries of𝐻,
minimises �̃� instead of 𝐻. Thus, compared to the zero chemical potential case, the vacuum might
change and also the symmetry breaking pattern 𝐺 Ñ 𝐻𝐺 (the unbroken subgroup is now written
with a sub-index to not be mistaken with the Hamiltonian). Furthermore, it is the fluctuations
around �̃� which are physically important, thus, the gap (the mass) will be defined with respect to
�̃� instead of 𝐻.

Let us call |𝜇〉 the microscopic state which minimises �̃�. It is therefore an eigenvector of the
latter operator and since we do not consider gravity, we can redefine the energy scale such that the
eigenvalue is zero:

�̃� |𝜇〉 =
(
𝐻 ´ 𝜇𝑄𝑄

)
|𝜇〉 = 0 . (6.4)

The current literature on Goldstone physics at finite density deals in three ways with the chemical
potential case at zero temperature:

1. We can interpret �̃� as generating an evolution of the system in a new time direction. Thermally
speaking, it is the fluctuations evolving along this new time direction which interest us. Hence,
we can effectively consider that the dynamics and the mass is given by �̃�. Furthermore, from
(6.4), |𝜇〉 does not break spontaneously time-translation with respect to the new definition of
time. We see that we recover exactly the setup of Goldstone’s theorem where the theory is
changed from 𝐻 to �̃� and that the considered symmetry group should be the one of �̃�. This
idea is recovered in [57, 58]23. It is an efficient way to proceed to “get back on our feet”
and extract, without additional costs, informations on the low energy thermal excitations. Of
course, since we disregard some of the physical aspects, we lose some results, as it will be
confirmed later.

2. We can tackle the problem with the standard spectral decomposition approach as we did in
Subsection 3.1, where the time evolution of the microscopic states (i.e. the kets) is driven by
𝐻 and where the gap is computed with respect to �̃�. It is the results of this method that we
present here below. It has the advantage of keeping track of the physical origin of 𝜇𝑄.

23These papers are written in the Lagrangian field theory approach. In such case, a chemical potential 𝜇 can be
effectively described by gauging the symmetry to which it is related and by fixing the gauge field to be 𝐴𝜈 = 𝜇𝑄 𝛿

𝜈0

[90]. Schematically, the Lagrangian is thus of the form:

𝐿 = 𝐷𝜇𝜙
˚𝐷𝜇𝜙 + . . . = (B0 + 𝑖𝜇𝑄)𝜙˚ (B0 ´ 𝑖𝜇𝑄)𝜙 ´ B𝑖𝜙

˚B𝑖𝜙 + . . . . (6.5)
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3. When 𝑄 is spontaneously broken by |𝜇〉, the vacuum |𝜇〉 evolves non-trivially in 𝐻-time as
it can be noticed from (6.4). Therefore, time translation symmetry is spontaneously broken
as well as maybe other spacetime symmetries (such as boosts for example). An approach
based on the study of spacetime symmetry breaking can thus be used. The references [91, 92]
explicitly deal with such problematic. Spacetime symmetry breaking is out of the scope
of these notes, however, let us mention that the EFTs built on a generalisation of the coset
construction for sapcetime symmetries permit to extract additional results compared to the
ones we get with the standard spectral decomposition approach.

Nicolis, Piazza [93] and Brauner, Murayama, Watanabe [94] showed, by a spectral decom-
position of the order parameter, that the number of gapless NG modes is given by the Brauner-
Murayama-Watanabe’s counting rule where the considered broken generators are the broken sym-
metry generators of �̃�, i.e. the broken symmetry generators of 𝐻 which commute with 𝑄. They
also showed that the remaining broken symmetry generators of 𝐻 lead to gapped modes where the
gap is entirely fixed by 𝜇𝑄 and by group theory. This can be summarised in the following theorem
(NPBMW stands for the initials of the authors of [93, 94]).

Theorem 4 (NPBMW theorem). Let us consider a system satisfying the Goldstone’s theorem
hypotheses where the symmetry group 𝐺 of the theory is restrained to be internal and compact. We
switch on a chemical potential, 𝜇𝑄, for a particular symmetry generated by 𝑄. The thermal state
of the system is driven by the free energy and the notion of gap is defined according to it. The free
energy has a symmetry group �̃� such that �̃� Ď 𝐺. The number of massless NG bosons 𝑛NG is
related to the number of broken symmetry generators 𝑛BS of �̃� by the equality

𝑛NG = 𝑛BS ´
1
2

rank( �̃�) , (6.6)

with
�̃�𝑎,𝑏 ” lim

𝑉Ñ+8

´𝑖

𝑉
〈𝜇 | [�̃�𝑎, �̃�𝑏] |𝜇〉 , (6.7)

where 𝑉 is the volume of our system in spacetime, |𝜇〉 is the vacuum and {�̃�𝑎} are the broken
generators of �̃�.
The spectrum possesses some gapped modes as well, where their gap is entirely fixed by group
theory and by 𝜇𝑄. The number of the massive NG modes 𝑛mNG is given by

𝑛mNG =
1
2
[rank(𝜌) ´ rank( �̃�)] , (6.8)

where 𝜌 is defined in a similar fashion than �̃� but using the broken generators of 𝐺, {𝑄𝑎}, instead
of the ones of �̃� ({�̃�𝑎} Ď {𝑄𝑎}). Under an appropriate choice of basis for the Lie aglebra of𝐺, the
massive NG modes are generated by pairs of broken generators {𝑄˘𝜎} (* {�̃�𝑎}) and their gaps
are 𝜇𝑄 𝑞𝜎 where [𝑄,𝑄˘𝜎] = ˘𝑞𝜎𝑄˘𝜎 .

From an effective theory approach, Brauner, Murayama and Watanabe [94] have seen that there
are additional massive NG modes for which the mass goes to zero when 𝜇𝑄 is sent to zero but, this
mass is different form the one of the gapped modes predicated by Theorem 4. Assuming a continuous
behaviour of the theory with the limit 𝜇𝑄 Ñ 0 and that the new vacuum in this limit still displays the
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same breaking pattern𝐺 Ñ 𝐻𝐺 , the number of such additional massive NG modes can be obtained
by counting the number of NG modes at zero chemical potential and substract the number of NG
modes and massive NG modes of Theorem 4 at finite chemical potential. To understand the nature
of these additional modes, their dispersion relations etc. a deeper analysis should be done. This
is the subject of [92] based on seeing the introduction of a chemical potential as breaking the time
translation symmetry. As already mentioned, we will not expand much on spacetime symmetry
breaking. We can, however, already guess candidates for such additional massive NG modes. If we
consider a relativistic microscopic theory at finite density (Lorentz symmetry is thus broken), the
partners of the massive NG modes of Theorem 4 can also be massive24. When we send 𝜇𝑄 to zero,
we recover our relativistic theory and so, all NG modes are type A, including our initial massive
NG modes of Theorem 4. Thus, their massive partners should also be massless, it makes them part
of the additional massive NG modes we have when the chemical potential is switched on.

6.4 No spontaneous symmetry breaking at low dimensions

Spontaneous symmetry breaking is the fundamental hypothesis of Goldstone’s theorem. It
is therefore consistent to ask whenever a spontaneous symmetry breaking is possible. In this
subsection we will enunciate some theorems which state that at lower spacetime dimensions, some
spontaneous symmetry breaking patterns are impossible. In accordance with these lecture notes,
we will mainly discuss the zero temperature case, then, a comment will be made for the finite
temperature case.

6.4.1 Coleman’s theorem

From Exercise 3, at quantum level, the quantum superposition of the possible classical vacua
is avoided thanks to the large volume of spacetime: the energy required for the system to switch
from one classical vacuum to another is proportional to the system volume (even if the potential
directions are flat, there is still kinetic energy involved during the switching). Naively said, the lower
the dimension of the spacetime is, the lower is the volume of the system. Hence, we could guess
that at sufficiently low dimensions, the quantum fluctuations will be large enough to statistically
give rise to a symmetric quantum vacuum. For example, if we take the𝑈 (1)-circle of the Mexican
hat of figure 1, the specific classically selected point of the circle playing the role of the classical
vacuum will be forgot by the system due to the large quantum fluctuation around such point. Indeed,
the fluctuations go all over the circle giving then a zero average state. The VEV being the order
parameter, we lose the spontaneous symmetry breaking at quantum level.

This idea has been formally stated by Coleman [15] under the theorem:

Theorem 5 (Coleman’s theorem). For relativistic physical field theories in two-dimensional space-
time, at the quantum level, there cannot be any spontaneous breaking of continuous internal global
symmetries.

The proof of Coleman [15] is rather mathematical, hence, we will sketch the proof of [95]
which is more physical and closer to the intuition we proposed earlier. It is a proof by contradiction,

24A massive NG mode of Theorem 4 corresponds here to a combination of two generators. We can therefore consider
a partner which is given by the orthogonal combination of the two same generators.

46



P
o
S
(
M
o
d
a
v
e
2
0
2
1
)
0
0
4

Goldstone Boson Physics and Effective Field Theories Daniel Naegels

spontaneous symmetry breaking implies massless modes at quantum level. In two-dimensional
spacetime, such massless modes induce an IR divergence which makes vanish the VEV (the order
parameter) and so, we lose spontaneous symmetry breaking. The consistent picture is thus that we
never have spontaneous symmetry breaking in such context.

To see this, we know that at enough low energy the relativistic Goldstone modes are described
by (4.33) and are thus free. In such regime, the NG modes being independent from each other, we do
not lose much generality by considering the specific abelian case of𝑈 (1) symmetry spontaneously
broken. The unique associated NG mode is denoted by 𝜃 (𝑥). A relativistic massless free theory is
a conformal theory, thus 𝜃 (𝑥) has a propagator of the form

〈𝜃 (𝑥)𝜃 (0)〉 9

Γ

(
𝑑
2 ´ 1

)
|𝑥 |𝑑´2 9

𝑑=2
´ ln

(
|𝑥 |
|𝑥0 |

)
. (6.9)

We observe that we have a radical change of behaviour when the spacetime dimension 𝑑 is equal
to two. With a proper regularisation we get a logarithmic behaviour for 𝑑 = 2 where 𝑥0 is the
regulator25. Considering 𝜃 (𝑥) as a free field, we have

〈𝜃 (𝑥)𝜃 (0)〉 =
〈
𝜃+(𝑥)𝜃´(0)

〉
=

〈[
𝜃+(𝑥), 𝜃´(0)

]〉
, (6.10)

with 𝜃 ” 𝜃+ + 𝜃´ where 𝜃+ is associated to the positive energy modes and is proportional to
an annihilation operator, 𝜃´ is associated to the negatives energy modes and is proportional to a
creation operator. We now evaluate the one-point function of the fundamental complex field 𝜙:

〈𝜙(𝑥)〉 =
〈
(𝑣 + 𝜎(𝑥))𝑒𝑖 𝜃 (𝑥 )

〉
,

= 𝑣

〈
𝑒𝑖 𝜃 (𝑥 )

〉
= 𝑣

〈
𝑒𝑖 𝜃

´(𝑥 )𝑒𝑖 𝜃
+(𝑥 )𝑒1/2[𝜃´(𝑥 ) , 𝜃+(𝑥 )]

〉
= 𝑣 𝑒´1/2〈[𝜃+(𝑥 ) , 𝜃´(𝑥 )]〉 ,

= 𝑣 𝑒´1/2(〈𝜃 (0) 𝜃 (0) 〉) ,

= 0 for d=2 ,

(6.11)

where 𝜎(𝑥) is the small massive norm perturbation and 𝑣 is the classical chosen vacuum. By using
(6.9) and translational symmetry, we notice that in two-dimensional spacetime, the VEV vanishes
which makes inconsistent the initial hypothesis that 𝑈 (1) symmetry is spontaneously broken at
quantum level. This concludes the sketch of the proof by contradiction.

It should be emphasised that it is the massless nature of the NG modes which leads to the
logarithmic behaviour (6.9). If they were massive, we would not have a CFT and the two-point
correlator would be an exponential decrease with an argument weighted by the mass of the considered
particle. This explains why Coleman’s theorem does not exclude the breaking of discrete symmetries
or local symmetries in two dimensions. This is because such symmetries do not lead to Goldstone
modes, i.e. to massless particles “free” in the IR.

25It should be mentioned that the logarithmic behaviour has for origin an IR divergence. Indeed, the masslessness of
𝜃 (𝑥) means that the two-point correlator is of the form

∫
𝑑𝑑´1𝑘 (𝑒𝑖𝑘𝑥/| ®𝑘 |). In addition to the UV divergence, which is

handled by a usual renormalisation, we have an IR divergence when 𝑑 = 2 which makes ill defined the associated theory.
Mathematically, it is solved by introducing a mass regulator which will be sent to zero at the end. For the sake of the
schematic proof, we do not display such technical details.
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The non-relativistic scenario has been studied by Murayama and Watanabe [56] and is as well
discussed in [5]. The idea remains the same except that they consider a generalisation of (4.39)
(at two dimensions there are additional symmetry-allowed terms). For the case where only type A
NG modes are present, Coleman’s theorem remains valid: no spontaneous symmetry breaking for
𝑑 = 2. This is consistent with the relativistic case since in relativistic theories all NG modes are
type A. However, for the case with only type B NG modes, Coleman’s theorem does not hold and it
is is possible to have continuous global internal symmetry breaking. The mix case where both type
A and type B NG modes interact is still an open question.

Coleman’s theorem can as well fail for specific relativistic theories. Theories with a large
number 𝑁 of constituents are known to have ordered phases in the 𝑁 Ñ 8 limit [16, 17]. It can be
seen that the large quantum fluctuations are actually suppressed by a 1/𝑁 power [18]

〈𝜙(𝑥)𝜙(0)〉 9
|𝑥 |Ñ8

1
|𝑥 |1/𝑁

ÝÑ
𝑁Ñ8

𝑐𝑠𝑡 , (6.12)

where 𝜙 is the fundamental field and its two-point correlator probes the ordered structure of the
vacuum. This is precisely the case for theories which have a holographic dual. It was shown in [96]
that indeed 𝐴𝑑𝑆3 holography allows for spontaneous symmetry breaking in its dual two-dimensional
QFT.

Let us notice that large 𝑁 theories could a priori be seen as QFT curiosities rather than proper
physical theories. So, the failure of Coleman’s theorem is a rather axiomatic discussion. However, in
the framework of holographic dualities, such models could describe sensible gravitational physics.

6.4.2 Mermin-Wagner-Hohenberg theorem

A bit prior to Coleman work, a similar discussion has been done at finite temperature where
the thermal fluctuations play a similar role as the quantum fluctuations on the parameter order. It is
the Mermin-Wagner-Hohenberg theorem [97, 98]. It states that at finite temperature, no continuous
spontaneous symmetry breaking can occur for 𝑑 ď 3 where 𝑑 is the spacetime dimension. Let
us notice that the critical value for 𝑑 is more strict than the one for the zero temperature case
(Coleman’s theorem) which is consistent with the idea that now, both quantum fluctuations and
thermal fluctuations add up in order to vanish the order parameter.

In these lecture notes, we are not discussing thermal field theory, hence, we will not expand on
how Goldstone physics fits with Mermin-Wagner-Hohenberg theorem. For the interested reader, a
discussion on the possible NG modes in a thermal theory, at low spacetime dimension, is done (for
example) in [5, 56].

6.5 Spontaneous breaking of spacetime symmetries

Till now, we concentrate our study of the counting rules and of the classifications on the
breaking of internal compact symmetry groups. We also discussed and argued that it is reasonable
to think that we can extend the known results to the breaking of uniform symmetries. But concerning
the breaking of spacetime symmetries, the analysis is much more involved. A generic counting rule
for such symmetry breaking patterns is still unknown and represents a current active research topic.
Because this field is not yet well established, we will remain sketchy in our discussion.
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6.5.1 Spacetime symmetry specificities

We can have a feeling why spacetime symmetry breaking is a complex problem. First of
all, many of the spacetime symmetries are non compact – e.g. dilatation, translations, boosts,... It
means that the useful group theory properties we used so far are not anymore systematically verified.
We did not expand much on it, but we have noticed that the coset construction can be related to
differential geometry. The geometric study of coset spaces 𝐺/𝐻 where 𝐺 is non compact is more
involved. More broadly, taking𝐺 totally general makes more difficult a generic classification of the
NG modes, of all the possible terms in a symmetric-invariant EFT,...

Furthermore, breaking spacetime symmetries usually means to work with a spacetime de-
pendent background where before it was purely constant. Thus, the functional aspect of QFT is
emphasised. Indeed, to find a stable vacuum, we minimise the energy. When we look for a constant
solution, the energy can be seen as a function defined on a set of numbers (i.e. a real or a complex
space). But, when we tolerate for spacetime modulated vacua, we are forced to consider the energy
as it is, i.e. a functional.

Another difficulty is that the effective Lagrangians are less constrained and thus, are more
complicated. If we look at (4.33) and (4.39), we were able to write them in a compact form thanks
to respectively Lorentz symmetry and rotation symmetry. The dispersion relations for the NG
modes are therefore more involved with less constrained EFTs and can even be non analytic. We
understand that the classification based on dispersion relations might have some flaws.

Finally, Derrick theorem [12] suggest that we would need to have higher derivative terms in
the fundamental theory to have stable and physical solitonic solutions. Of course, this should be
qualified but it displays the tendency that even toy models are difficult theories. See for instance
[99–101].

We just gave a gist of the technical difficulties associated to spacetime spontaneous symmetry
breaking, but does it affect the counting rules we already know ? The answer is yes. In fact, even
for relativistic fundamental theories, the number of NG modes can be reduced compared to the
number of broken generators. Indeed, [70, 102] studied the spontaneous breaking of the conformal
group down to the Poincaré group. They found that (for some cases) only one massless mode was
present in the spectrum. It appears that it is the NG mode associated to the breaking of dilatation
while the breaking of the special conformal transformations is not providing additional NG modes.
A simpler example is the spontaneous breaking of translation and rotation symmetries to a discrete
subset by a crystal lattice. With an explicit computation of the oscillation modes of the lattice, it
can be noticed that the number of NG modes are linked to the breaking of translations and that
the rotations do not provide additional massless excitations. We can intuitively understand this last
result.

By looking at Figure 3, we have an infinite straight rope disposed in a plane𝑂𝑥𝑦. By choosing
this specific position/configuration, we spontaneously break translation symmetry in the 𝑥´direction
and the rotation symmetry of the plane. We can observe that a global rotation acting on the rope
is equivalent to a modulated action of the 𝑥-translation where the modulation is linear with 𝑦. If
we extrapolate this information, we have that a local action of rotation on our rope can always be
reproduced by a local action of 𝑥-translation. By definition, a NG mode is a spacetime modulation
of the background in the direction of one of the spontaneously broken symmetries. Hence, the NG
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mode generated by the broken rotation is equivalent to the NG mode generated by the 𝑥-translation.
So, unlike to the internal case, even before discussing dynamical conjugation between NG modes,
we can already have locking between some broken directions ; and thus, a reduction of the number
of independent NG modes. This instinctive reasoning has been formalised and talked through in
[103–105].

𝜃

𝜃
„ 𝜃𝐿𝑥𝑦

„ 𝑦𝑃𝑥

𝑦

𝑥

Figure 3: In this cartoon, we illustrate how a modulated translation on a line can reproduce a global rotation
of this line. This is the schematic reasoning providing that some NG modes associated to broken spacetime
symmetries can be locked together.

6.5.2 Coset construction for spacetime symmetries

The coset construction has been extrapolated to particular cases of spontaneous spacetime
symmetries. In fact, we already mentioned that [70, 102] studied the spontaneous breaking of the
conformal group down to the Poincaré group. Volkov in [70] displayed a coset construction for an
unspecified group 𝐺 spontaneously broken to a subgroup 𝐻 containing the Poincaré group. This
particular extension to spacetime symmetries is explained in the lecture notes of Ogievetsky [106].
In this framework, it was noticed that, for some specific symmetry breaking patterns, it is possible
to build invariant Lagrangians without requiring all the NG mode candidates. Hence, some of
them might be non-physical or can be massive (e.g., the single dilaton associated to the breaking of
dilatation symmetry and of special conformal transformation symmetries). The conditions when
this situation occurs have been investigated by Ivanov and Ogievetsky in [107]. We provide below a
schematic description of the prescription provided by [70, 106, 107], a more detailed review can be
found in [68]. The hypothesis of validity of this prescription are not yet well established. Thus, the
following results should be taken with care and any application of the prescription to an extended
case should carefully be checked.

We consider a symmetry group 𝐺 which can include spacetime transformations. This group
𝐺 is spontaneously broken to a subgroup 𝐻 which contains the Poincaré group and other internal
symmetries. We denote 𝑋𝑎 the broken generators, 𝑃𝜇 the unbroken translation generators and
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𝑇𝐴 the remaining unbroken generators – so, 𝑇𝐴 contains the Lorentz generators and some internal
unbroken generators (notice the difference with Subsection 4.1, where 𝑇𝐴 was denoting all the
unbroken generators). The subgroup generated by 𝑇𝐴 is called �̃� and, on the contrary to the internal
case, it is different from 𝐻. We ask for the additional relations

[𝑋𝑎, 𝑇𝐴] = 𝑖 𝑓 𝑏
𝑎𝐴 𝑋𝑏 ,

[𝑃𝜇, 𝑇𝐴] = 𝑖 𝑓 𝜈

𝜇𝐴
𝑃𝜈 .

(6.13)

(6.14)

The coset parametrisation is given by

𝑈 (𝜋(𝑥), 𝑥) = 𝑒𝑖𝑥𝜇𝑃𝜇𝑒𝑖 𝜋
𝑎 (𝑥 )𝑋𝑎 . (6.15)

A possible intuition on why there is an additional 𝑒𝑖𝑥𝜇𝑃𝜇 factor compared to the internal case is that
the coset parametrisation is built with the objects transforming non-linearly under the symmetry
group. Now that the translations are explicitly listed in𝐺, and because the coordinates 𝑥𝜇 transform
as a shift (so, non-linearly) under the action of the translations, we intuitively understand that we
have to introduce the 𝑒𝑖𝑥𝜇𝑃𝜇 factor in the coset parametrisation. The latter provides a supplementary
term to the Maurer-Cartan 1-form

𝑈 (𝜋)´1B𝜇𝑈 (𝜋) = ´𝑖A𝐴
𝜇 (𝜋) 𝑇𝐴 + 𝑖 𝑒𝑎𝜇 (𝜋) 𝑋𝑎 + 𝑖 𝑟𝛼𝜇 (𝜋) 𝑃𝛼 . (6.16)

The Maurer-Cartan 1-form preserves its covariant-like transformation properties despite the more
involved transformation rules (the coordinates 𝑥𝜇 are, now, affected by the symmetries). We can
thus, as usual, use 𝑒𝑎𝜇 (𝜋) as our building block for an invariant Lagrangian. However, we have to pay
attention that the partial derivative B𝜇 does not transform trivially anymore. The covariant derivative
definition (4.27) should include a new differential operator with appropriate transforming rules. This
operator can be built thanks to 𝑟𝛼𝜇 (𝜋) 𝑃𝛼. We refer to [68, 106] for its explicit construction. The
same comment can be made on the measure 𝑑𝑑𝑥 in the effective action. An invariant Lagrangian
is not anymore sufficient to obtain an invariant theory since we have to ensure the invariance of the
measure. An invariant volume form can be built from 𝑟𝛼𝜇 (𝜋) 𝑃𝛼.

6.5.3 Inverse Higgs constraints

Several examples in the literature (e.g. [70, 102]) emphasise that in particular cases with
spacetime symmetry breaking, it is possible to get rid of some 𝜋𝑎 fields and still get an invariant
theory. This happens when one (or several) of the Cartan form 𝑒𝑎𝜇 (𝜋) depend linearly and additively
on some of the 𝜋𝑎 fields, schematically it looks like

𝑒𝑎𝜇 (𝜋) | (1) „ B𝜇𝜋
𝑎
(1) + 𝜅 𝜋

𝑎
(2) + . . . , (6.17)

where the numbers in brackets label different subsets of {𝜋𝑎} that will be expressed in terms of
each other. The mathematical meaning of these subsets will be explained later. We understand that
if we impose (6.17) to be zero, the obtained equation will be solvable and we can express the 𝜋𝑎(2)
in terms of B𝜇𝜋

𝑎
(1) . Furthermore, this constraint will be consistent with the symmetries since 𝑒𝑎𝜇 (𝜋)

transforms covariantly and so, the constraint is symmetric invariant.
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Such constraint bears the name of inverse Higgs constraint. The name comes from the case
when we gauge the symmetry. In such a situation there are additional gauge fields and sometimes,
we can impose a constraint like (6.17) to eliminate some of these gauge fields in terms of the NG
candidates. Namely, it is sort of the Brout-Englert-Higgs mechanism in reverse.

With additional hypotheses, Ivanov and Ogievetsky [107] established the conditions under
which it is possible to impose an inverse Higgs constraint. The broken generators 𝑋𝑎 should be in a
completely reducible representation of �̃� and we will denote with brackets the different multiplets
𝑋

(𝑖)
𝑎 (where the index 𝑎 now labelises the different generators inside the multiplet (𝑖))

[𝑋 (𝑖)
𝑎 , 𝑇𝐴] = 𝑖 𝑓 𝑏

𝑎𝐴 𝑋
(𝑖)
𝑏
. (6.18)

If
[𝑃𝜇, 𝑋

(𝑖)
𝑎 ] Ą 𝑓

𝑏
𝜇𝑎 𝑋

( 𝑗 )
𝑏

, 𝑓
𝑏

𝜇𝑎 ≠ 0 , (6.19)

we can impose the inverse Higgs constraint 𝑒𝑎𝜇 (𝜋) | ( 𝑗 ) = 0 to eliminate the multiplet 𝜋 (𝑖)𝑎 (the
transformation rules under �̃� should also be consistent between 𝜋 (𝑖)𝑎 and B𝜇𝜋

( 𝑗 )
𝑎 ).

After imposing the inverse Higgs constraint, the coset construction is equivalent to the one we
would have done with 𝐺 1, the reduced symmetry group where we subtracted the broken generators
we got rid of. However, a trace of𝐺 would remain in the relative numerical values of the coefficients
of the Lagrangian.

An example of inverse Higgs constraint could be the intuitive locking between some spacetime
symmetries we illustrated at Figure 3 [103]. However, it is not always so obvious to know if an
inverse Higgs constraint should be imposed. Indeed, it is not because we can do it that we should
do it. It is an open question which is mainly dealt with by exploring several particular cases and
by trying to deduce some objective criteria on which to decide to impose or not the inverse Higgs
constraints. Here we provide some references which deal with this problematic and also, probe
the coset construction for spacetime symmetries outside the hypothesis of these notes – such as
non-relativistic cases – [92, 105, 108–110]. To illustrate how this uncertainty on the inverse Higgs
constraint impacts Goldstone physics, we emphasised at Subsection 6.3 that there are additional
massive NG modes at finite density which are not counted by Theorem 4. A counting rule for such
massive NG modes has been established in [92] by using the coset construction including a time
translation symmetry breaking (coming from the chemical potential). Due to the current question
mark we have on whether or not we have to impose some inverse Higgs constraints (so, whether or
not we have a direct NG modes reduction), the obtained counting rule is an inequality rather than
an equality.

7. Take home message

Goldstone Physics is a broad subject due to its main asset: it is a universal approach of the infra
red physics which relies on symmetries. Low energy physics is mainly our daily life surroundings,
which makes it observable by definition. Therefore, Goldstone Physics is a formal description of
physics but it can almost straightforwardly provide material for phenomenology and for experiments.
This explains the large scope of this area of science.
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Goldstone physics is two folds. First, it is the study of the infra red spectrum from the
perspective of symmetry-originated modes. When spontaneous symmetry breaking occurs, given
additional not too restrictive conditions, the spectrum will contain massless particles (NG modes)
and light particles (pseudo NG modes). Theorems exist to provide us information on their number
and their characteristics. An active research direction is to generalise and to enrich these theorems.

Second, Goldstone physics has the aim to build the most general shape of an effective field
theory for a given symmetry pattern. To do so, it uses several building methods, consequently, it
helps to improve these methods.

In conclusion, knowing both the spectrum content and the shape of the theory at low energy en-
tirely fix the dynamics of the infra red physics. The approach is mainly based on symmetry concepts
which are model independent. Hence, the outcomes are generic, which leads to universality.
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