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1. Introduction

A fundamental theory of Nature, such as string theory, should be able to explain at the same
time particle physics and cosmology, which are phenomena that involve very different scales from
the smallest microscopic four-dimensional (4d) quantum gravity length of 10−33 cm to the largest
macroscopic distances of the size of the observableUniverse∼1028 cm, spanned a region of about 60
orders of magnitude. In particular, besides the 4d Planck mass, there are three very different scales
with very different physics corresponding to the electroweak scale, dark energy and inflation. An
interesting possibility is that these scales are related by the dynamics of an underlying fundamental
theory, such as string theory. A first step towards this goal is to study possible connections between
the electroweak scale of the Standard Model or its possible extension (such as the supersymmetry
breaking scale) with that of inflation. An additional constraint would be to impose at the electroweak
vacuum the presence of a tiny tuneable cosmological constant in order to accommodate the observed
dark energy, without necessarily trying to explain it. Indeed, despite the absence of evidence of low-
energy supersymmetry at colliders, it is likely theoretically that supersymmetry plays a role at some
more fundamental level. On the other hand, inflation is an attractive paradigm for cosmology but the
associated models provide a phenomenological description leaving several unanswered questions,
such as the origin of the inflaton field, its fundamental or composite nature and its connection to
the rest of particle physics.

Inflationarymodels in supergravity1 suffer in general from several problems, such as fine-tuning
to satisfy the slow-roll conditions, large field initial conditions that break the validity of the effective
field theory, and stabilisation of the (pseudo) scalar companion of the inflaton arising from the fact
that bosonic components of superfields are always even. The simplest argument to see the fine tuning
of the potential is that a canonically normalised kinetic term of a complex scalar field X corresponds
to a quadratic Kähler potentialK = X X̄ that brings one unit contribution to the slow-roll parameter
η = V ′′/V , arising from the eK proportionality factor in the expression of the scalar potential V .
This problem can be avoided in models with no-scale structure where cancellations arise naturally
due to non-canonical kinetic terms leading to potentials with flat directions (at the classical level).
However, such models require often trans-Planckian initial conditions that invalidate the effective
supergravity description during inflation. A concrete example where all these problems appear is
the Starobinsky model of inflation [2], despite its phenomenological success.

In [4], we proposed a class of models that avoiding all three problems above in which the
inflaton is identified with the superpartner of goldstino2, in the presence of a gauged R-symmetry.
Indeed, the superpotential in this case is linear and cancels exactly the big contribution to η described
above. Since inflation takes place at a plateau around the maximum of the scalar potential (hill-
top) no large field initial conditions are needed. The pseudo-scalar companion of the inflaton is
eaten by the R-gauge field that becomes massive, leaving the inflaton as a single scalar degree
of freedom present in the low-energy spectrum. As we will show below, this model provides
therefore a minimal realisation of natural small-field inflation in supergravity, compatible with
present observations. Moreover, it allows a realistic minimum describing our present Universe with
an infinitesimal positive vacuum energy arising due to a cancellation between an F- and D-term

1For reviews on supersymmetric models of inflation, see for example [1].
2See [3] for earlier works relating supersymmetry and inflation.
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contributions to the scalar potential, without affecting the properties of the inflationary plateau,
along the lines of Refs. [5], [6] and [7].

In the model we discussed above, the D-term has a constant FI contribution but plays no role
during inflation and can be neglected, while the pseudoscalar partner of the inflaton is absorbed
by the U(1)R gauge field that becomes massive away from the origin. Recently, a new FI term
was proposed [8] that has three important properties: (1) it is manifestly gauge invariant already
at the Lagrangian level; (2) it is associated to a U(1) that should not gauge an R-symmetry and
(3) supersymmetry is broken by (at least) a D-auxiliary expectation value and the extra bosonic
part of the action is reduced in the unitary gauge to a constant FI contribution leading to a positive
shift of the scalar potential, in the absence of matter fields. In the presence of matter fields, the FI
contribution to the D-term acquires a special field dependence e2K/3 that violates invariance under
Kähler transformations.

In a recent work [9], we studied the properties of the new FI term and explored its consequences
to the class of inflation models we introduced in [4].3 We first showed that matter fields charged
under theU(1) gauge symmetry can consistently be added in the presence of the new FI term, as well
as a non-trivial gauge kinetic function. We then observed that the new FI term is not invariant under
Kähler transformations. On the other hand, a gauged R-symmetry in ordinary Kähler invariant
supergravity can always be reduced to an ordinary (non-R) U(1) by a Kähler transformation. By
then going to such a frame, we find that the two FI contributions to the U(1) D-term can coexist,
leading to a novel contribution to the scalar potential.

The resulting D-term scalar potential provides an alternative realisation of inflation from
supersymmetry breaking, driven by a D- instead of an F-term4. The inflaton is still a superpartner
of the goldstino which is now a gaugino within a massive vector multiplet, where again the
pseudoscalar partner is absorbed by the gauge field away from the origin. For a particular choice
of the inflaton charge, the scalar potential has a maximum at the origin where inflation occurs and
a supersymmetric minimum at zero energy, in the limit of negligible F-term contribution (such
as in the absence of superpotential). The slow roll conditions are automatically satisfied near the
point where the new FI term cancels the charge of the inflaton, leading to higher than quadratic
contributions due to its non trivial field dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that takes it to the non
R-symmetry frame. In the presence of a small superpotential, the inflation is practically unchanged
and driven by the D-term, as before. The maximum is still at the origin but the minimum has a
small non-vanishing positive cosmological constant, where supersymmetry is broken by both F-
and D-auxiliary expectation values of the same order of magnitude. In general, the model predicts
small primordial gravitational waves with a tensor-to-scaler ration r well below the observability
limit. However, when higher order terms are included in the Kähler potential, r can be increased to
large values r ' 0.015.

In the following, we will present the main features of these models. A brief review of
the proposed single field model for inflation from supersymmetry breaking where the goldstino
superpartner plays the role of the inflaton is given in Section 2. Assuming that inflation arises near

3The new FI term was also studied in [10] to remove an instability from inflation in Polonyi-Starobinsky supergravity.
4See [11], [12] for earlier works on D-term inflation.
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the maximum of the scalar potential where R-symmetry is restored, supersymmetry breaking is
driven predominantly either by an F-term or by a D-term. In Section 3, we introduce an example
of the microscopic origin for the effective field theory of the inflation model described above. In
Section 4, we discuss the new FI-term and analyse its consequences in the models of inflation driven
by supersymmetry breaking. In Section 5, we briefly describe the coupling of the supersymmetry
breaking sector to the MSSM and calculate the decay modes of the inflaton and the resulting
reheating temperature. Finally, we present our conclusions in the last section.

2. Inflation from supersymmetry breaking

Let us consider D = 4, N = 1 supergravity with gauged R-symmetry [13]. The theory contains
one chiral multiplet and a corresponding vector multiplet. The chiral multiplet X transforms as:

X → e−iqΛX, (1)

where q and Λ denote the charge of X and the gauge parameter respectively. The Kähler potential
is a function of X X̄ while we choose the linear superpotential

K = K(X X̄), W = κ−3 f X, (2)

where f is a constant parameter. Note that X is dimensionless and the reduced Planck mass
κ−1 = 2.4× 1018 GeV. Without loss of generality, we choose the gauge kinetic function to be 1. The
scalar potential is given by

V = VF +VD, (3)

where the F and D-term potential are

VF = eκ
2K

(
−3κ2WW̄ + ∇XWgXX̄ ∇̄X̄W̄

)
, VD =

1
2
P2. (4)

The Kähler covariant derivative is defined by

∇XW = ∂XW(z) + κ2(∂XK)W. (5)

The moment map P is defined by

P = i(kX∂XK − r̃). (6)

kX denotes the Killing vector for X under the U(1) R-symmetry, and r̃ ≡ −κ−2kXWX/W; in
the present setup, they become kX = −iqX, r̃ = iκ−2q. As usual, subscripts stand for partial
derivatives: WX := ∂XW.

We assume the inflaton starts rolling around a local maximum of the potential near the origin
X = 0, where R-symmetry is preserved. Let us expand the Kähler potential up to quadratic order
in X X̄:

κ2K = X X̄ + A(X X̄)2 + ... . (7)

4
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With this, the F-term potential becomes

κ4VF = f 2eXX̄(1+AXX̄)

[
−3X X̄ +

(
1 + X X̄ + 2A(X X̄)2)

)2

1 + 4AX X̄

]
, (8)

and the D-term potential is

κ4VD =
q2

2
[
1 + X X̄ + 2A(X X̄)2

]2
. (9)

By making the change of field variables

X = ρeiθ, X̄ = ρe−iθ, (ρ ≥ 0), (10)

the scalar potential becomes

κ4V = f 2eρ
2+Aρ4

[
− 3ρ2 +

(
1 + ρ2 + 2Aρ4)2

1 + 4Aρ2

]
+

q2

2

(
1 + ρ2 + 2Aρ4

)2
. (11)

Note that the phase θ get absorbed by the U(1)R gauge field in the standard Brout-Englert-Higgs
mechanism. Thus, the scalar potential is only a function of the modulus ρ.

We now indentify the field ρ as the inflaton. However, in order to calculate the slow-roll
parameters, we introduce the canonically normalised field χ satisfying

dχ
dρ
=

√
2KXX̄ . (12)

The slow-roll parameters can be defined in terms of the canonical field χ as:

ε =
1

2κ2

(
dV/dχ
V

)2
, η =

1
κ2

d2V/dχ2

V
. (13)

Since inflation arises near the maximum ρ = 0, we expand

ε = 4
(
−4A + y2

2 + y2

)2

ρ2 + O(ρ4),

η = 2
(
−4A + y2

2 + y2

)
+ O(ρ2), (14)

where we defined y = q/ f . The above equation implies ε ' η2ρ2 � η. For simplicity, we focus
on the special case y → 0 where F-term contribution to the scalar potential is dominant. By
considering the behaviour near the origin, we can put some constraints on the coefficient A of the
quadratic term of the Kähler potential defined on the right-hand side of (7). We can easily show
that A > 0 is required for having a local maximum of the scalar potential at ρ = 0. Furthermore,
the slow-roll condition |η | � 1 sets an upper bound A � 0.25. Taking these requirements into
account, the constraint on A is

0 < A� 0.25. (15)

We can choose A ∼ 0.005 to obtain η ∼ −0.02 which is in agreement with CMB observational
data. In the following sections we introduce a microscopic model that can generate the coefficient
A satisfying the constraint in (15).

5
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3. Microscopic model

In this section, we introduce an example of the microscopic origin for the effective field theory
of the inflation model described in the previous section. It is a “generalisation" version of the
Fayet-Iliopoulos (FI) model [14]. The model has a vacuum configuration that spontaneously breaks
both gauge symmetry and supersymmetry, leaving (in the decoupling limit) the goldstino as the
only light degree of freedom in this sector.

3.1 The generalised Fayet-Iliopoulos model

Let us consider a supergravity model with two chiral multiplets Φ± and one vector multiplet.
As we will show shortly, this theory has a vacuum in which onlyΦ+ is lighter than the other degrees
of freedom. After integrating out all other heavy degrees of freedom, we will obtain an effective
supergravity action for Φ+. The UV supergravity action formulated in Poincaré superspace as in
[13] is given by

S =
1
4

∫
d4xd2θ EF (Φ−)WαWα + h.c.

+ κ−3m
∫

d4xd2θ EΦ+Φ− + h.c.

− 3κ−2
∫

d4xd4θ Ee−κ
2K0/3−(q+−q−)V/3. (16)

In the following, we will mostly work in supergravity mass units κ = 1, for notational simplicity.
This theory is invariant under a gauged U(1) transformation which acts only on matter superfields,
which we call U(1)m transformation. Under U(1)m, the chiral superfields Φ± and the vector
superfield V transform as,5

Φ± 7→ e∓iq±ΛΦ±, V 7→ V + i(Λ − Λ̄). (17)

where Λ is chiral. The function K0 is the U(1)m-invariant Kähler potential,

κ2K0 = Φ̄+eq+VΦ+ + Φ̄−e−q−VΦ−. (18)

The gaugino superfieldWα is defined with the super-Poincaré covariant derivatives Dα, D̄ Ûα as

Wα = −
1
4
D̄2DαV . (19)

The gauge kinetic function F (Φ−) is given by

F (Φ−) = 1 + b lnΦ−, b =
(x − 1)3q2

−

24π2 , x = q+/q−. (20)

The logarithmic term cancles the chiral anomaly of U(1)m through Green-Schwarz mechanism. For
more details see [4] and [15].

5Strictly speaking, this includes a local rotation of the fermionic coordinates and the overall phase rotation because
the superpotential also transforms under U(1)m. Hence, U(1)m is a gauged R-transformation.

6



P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
0
-
2
0
2
1
)
0
0
2

Challenges in supersymmetric cosmology Ignatios Antoniadis

The scalar potential in the microscopic model considered in (16) is given by

κ4VUV =
1
4

q2
−

(
x |ϕ+ |2 − |ϕ− |2 + x − 1

)2

2(1 + b ln v)
+ m2e |ϕ+ |

2+ |ϕ− |
2 (
|ϕ+ |

2 + |ϕ− |
2 − |ϕ+ |

2 |ϕ− |
2), (21)

where ϕ± = Φ± | is the lowest component ofΦ±. Note that the first term is the D-term contribution
and x − 1 is the Fayet-Iliopoulos parameter. Below, it is natural to introduce the parameter ∆ as

∆ := x − 1 − v2. (22)

The vacuum which spontaneously breaks U(1)m and supersymmetry is of the form

〈ϕ+〉 = 0, 〈ϕ−〉 = v. (23)

Around this vacuum, the fields of V ,Φ− are heavier than those of Φ+, in the limit of small SUSY
breaking scale. The extremisation condition with respect to ϕ− reads

−
1
4

q2
−v

2 ∆

1 + b ln v
−

1
16

bq2
−

(
∆

1 + b ln v

)2
+ m2v2(1 + v2)ev

2
= 0. (24)

This provides us a constraint among the parameters ∆, v, x and q− which we will use in Section 3.4.
Let us consider the approximation b = 0 where equation (24) has a unique solution

∆ =
4m2

q2
−

(1 + v2)ev
2
. (25)

We can easily see that Im ϕ− plays the role of the massless R-Goldstone boson while Re ϕ− gets a
correction to its mass-squared compared to the global SUSY case q2

−v
2 by 4m2v2(2 + v2)ev

2 . The
mass-squared of ϕ+ also changes to m2(1+ x + xv2)ev

2 . If this mass is much smaller than the other
masses the integrating out condition is satisfied.

For b , 0 eq. (24) gives two solutions ∆ = ∆±, where

∆± :=
2v2(1 + b ln v)

b

(
− 1 ±

√
1 +

4bm2(1 + v2)ev2

q2
−v

2

)
. (26)

The mass2 of the vector field Aµ is q2
−v

2 and the mass matrices of ϕ± are given by

VUV
ϕ∗+ϕ

∗
+
|vac = 0, (27)

VUV
ϕ∗+ϕ+
|vac = m2ev

2
+

1
4

xq2
−

∆

1 + b ln v
, (28)

VUV
ϕ∗−ϕ

∗
−
|vac = m2ev

2
v2(2 + v2) +

1
4

q2
−

v2

1 + b ln v
+

1
16

bq2
−

∆2

v2(1 + b ln v)2

+
1
4

bq2
−

∆

(1 + b ln v)2
+

1
16

b2q2
−

∆2

v2(1 + b ln v)3
, (29)

VUV
ϕ∗−ϕ−
|vac = m2ev

2
(1 + 3v2 + v4) +

1
4

q2
−

v2

1 + b ln v
−

1
4

q2
−

∆

1 + b ln v

+
1
4

bq2
−

∆

(1 + b ln v)2
+

1
16

b2q2
−

∆2

v2(1 + b ln v)3
. (30)

In the following, we assume that the integrating out condition is satisfied.
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3.2 Integrating out heavy fields

The UV action in conformal superspace takes exactly the same form as in the case with the
super-Weyl compensators [16]:

S =
1
4

∫
d4xd2θ EF (Φ−)WαWα + h.c.

+ κ−3m
∫

d4xd2θ EC3Φ+Φ− + h.c.

− 3κ−2
∫

d4xd4θ ECCe−κ
2K0/3−(q+−q−)V/3. (31)

After fixing the conformal compensators as C = C = 1, it becomes the action (16). Let us briefly
explain the notation. In conformal superspace, there are two important classes of superfields namely
chiral and primary superfield. A chiral superfield Φ is defined by

∇̄ ÛαΦ = 0, (32)

where ∇̄ Ûα is the superconformally covariant spinor derivative. A primary superfield Φ of charges
(δ, w̃) (conformal and chiral weights) is defined by

D̂Φ = δΦ, ÂΦ = iw̃Φ, K̂AΦ = 0, (33)

where D̂, Â, K̂A are the generators for the dilatation, chiral U(1) rotation, and special conformal
transformations respectively [17].6

We now explain the notation. For details, see [18]. An action integral with
∫

d4xd4θ in the
third line of (31) is called the D-type action. In order to be invariant under gauge transformation, its
integrand must be real primary of charge (0,0). On the other hand, action integrals with

∫
d4xd2θ

in the first and second lines of (31) are called the F-type action. Their integrands are required to be
chiral primary of charge (0,0) for gauge invariance. The determinant E of the vierbein superfield
is real primary of charges (−2,0), while the chiral density E is chiral primary of charges (−3,−2).

The chiral superfields Φ± are primaries of charges (0,0). They transform under the matter
U(1)m as Φ± 7→ e∓iq±ΛΦ±, where Λ is chiral primary of charges (0,0). The vector superfield V is
primary of charges (0,0). It transforms under U(1)m as V 7→ V + i(Λ − Λ).

The compensators C,C are chiral primaries of charges (1,2/3), and anti-chiral primary of
charges (1,−2/3), respectively. To guarantee gauge invariance, we assign U(1)m charges to the
compensators as

C 7→ ei(q+−q−)Λ/3C, C 7→ e−i(q+−q−)Λ/3C . (34)

K0 is the gauge-invariant Kähler potential defined in (18) and Wα is the chiral primary gaugino
superfield of charges (3/2,1), defined here with the superconformally covariant derivatives ∇α, ∇̄ Ûα
as7

Wα = −
1
4
∇̄2∇αV . (35)

6The local Lorentz index A in K̂A stands for the vector and the undotted and dotted spinor indices (a, α, Ûα). Therefore
K̂A denotes the generators (K̂a, Ŝα, ˆ̄S Ûα), with Ŝα, ˆ̄S Ûα the generators of the S-supersymmetry.

7Note that ∇α has charges (1/2,−1) and ∇̄ Ûα has charges (1/2,1).
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Let us proceed to integrating out the heavy degrees of freedom. In the unitary gauge Φ− = v, the
action reads

S =
1
4

∫
d4xd2θ EWαWα + h.c.

+ κ−3mv

∫
d4xd2θ EC3Φ+ + h.c.

− 3κ−2
∫

d4xd4θ ECCe−κ
2K/3, (36)

where the vector superfield V is rescaled to absorb the factor 1 + b ln v, and K is the gauge-fixed
Kähler potential,

κ2K = Φ+exq−VΦ+ + v2e−q−V + (x − 1)q−V . (37)

Recall that x = q+/q−.
To integrate out V at tree level, we will solve the equation of motion of V around its vacuum

where higher derivative contributions are neglected. The equation of motion of V reads

−κ2∇αWα + CCe−κ
2K/3q−

(
xΦ+exq−VΦ+ − v2e−q−V + x − 1

)
= 0. (38)

After making the shift in ∇αWα | to remove the tadpole [19], and then neglecting the derivative
term, we obtain the following low-energy effective equation of motion

CCe−κ
2K/3q−

(
xΦ+exq−VΦ+ − v2e−q−V + x − 1

)
− q−∆ ' 0. (39)

We now integrate out V in the following way:

1
4

∫
d4xd2θ EWαWα + h.c. = −

1
2

∫
d4xd4θ EV∇αWα, (40)

and then eliminate ∇αWα by substituting the exact equation of motion (38). The first and third
terms of the action (36) then become∫

d4xd4θ E

(
−

1
2
V∇αWα − 3κ−2CCe−κ

2K/3
)

= κ−2
∫

d4xd4θ ECCe−κ
2K/3

×

[
−

1
2

q−V
(
xΦ+exq−VΦ+ − v2e−q−V + x − 1

)
− 3

]
. (41)

Next, we combine the (low-energy) equation of motion (39) with the second line of (41). This gives
us the low-energy effective action,

Seff[C;Φ+] = κ−3mv

∫
d4xd2θ EC3Φ+ + h.c.

+ κ−2
∫

d4xd4θ E
(
−

1
2
∆q−V − 3CCe−κ

2K/3
)
, (42)

where V is understood as a function of Φ+, determined by the (low-energy) equation of motion
(39).
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U(1)m U(1)′

Φ+ +q+ q
Φ− −q− 0

Table 1: The chiral multiplet Φ+ and Φ− are charged under U(1)m × U(1)′. Note that U(1)′ plays the role
of R-symmetry in the low-energy theory and does not play any role during the integrating out process.

3.3 Effective Kähler potential and superpotential

We will fix the compensators in such the way that the gauge fixing

C = C = eκ
2Keff/6 (43)

makes the effective action (42) into the integral in the Kähler superspace characterised by the
effective Kähler potential Keff . This is easy to be realised by

κ2Keff = κ
2K + 3 ln

(
1 −

1
6
∆q−V

)
, κ3Weff = mvΦ+, (44)

where the second term is the supergravity modification. The gauge fixing (43) simplifies the
effective equation of motion (39) into(

1 −
1
6
∆q−V

) (
xΦ+exq−VΦ+ − v2e−q−V + x − 1

)
− ∆ = 0. (45)

This gives us an analytic solution for Φ+Φ+ as a function of V ,

Φ+Φ+ = x−1e−xq−V
(
v2e−q−V − x + 1 +

∆

1 − 1
6∆q−V

)
= x−1e−xq−V

(
v2e−q−V − v2 +

1
6∆

2q−V

1 − 1
6∆q−V

)
. (46)

Since, the low-energy effective theory obtained in the this section does not have a gauged R
symmetry, we need to add another gauged R symmetry to the low-energy theory by hand. Let
us denote this additional gauge by U(1)′. The simplest way to achieve this is by extending the
symmetry of the UV theory from U(1)m to U(1)m × U(1)′ and assuming that the additional U(1)′

does not take part in the integrating out process and survives as the gauged R-symmetry of the
low-energy theory. As we summarise in Table 1, Φ+ transforms under U(1)m × U(1)′ with charge
(q+,q) while Φ− is singlet under U(1)′.

In the next section, we will identify the parameter regions in which the scalar potential has a
local maximum at the origin by analysing the behaviour of the effective Kähler potential near the
origin.

3.4 Inflation from the effective low-energy theory

For simplicity, we absorb q− into the vector multiplet. To explore the behaviour near the origin,
we first assume the solution V of equation (45) can be written perturbatively in the form

V = V0 + V1Φ̄+Φ+ + V2(Φ̄+Φ+)
2 + ... . (47)
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Substituting this into equation (45) we can show that

V0 = 0, V1 =
6x

∆2 − 6v2 ,

V2 =
6x2(

∆2 − 6v2)3

(
− ∆3 + 6∆2x − 18v2(2x + 1)

)
. (48)

After substituting the perturbative solution of V in (47) into the effective Kähler potential (44), the
effective Kähler potential around the local maximum can be written as

κ2Keff = v2 + K1Φ̄+Φ+ + K2(Φ̄+Φ+)
2 + ... , (49)

where the first two coefficients are

K1 =
∆2 + 3∆x − 6v2

∆2 − 6v2 , (50)

K2 = −
3x2 (
−∆4 − 12∆3x + 30∆2v2 + 36∆v2(2x + 1) − 72v4)

2
(
∆2 − 6v2)3 . (51)

Then we define the canonically normalized chiral superfield Φ as

Φ :=
√

K1 Φ+. (52)

We can absorbe the constant term v2 in (49) by a Kähler transformation. Around the origin, the
effective Kähler potential becomes

κ2Keff = ΦΦ + A2(ΦΦ)
2 + ... , (53)

where the first nontrivial coefficients A2 read

A2 =
3x2 (

∆4 + 12∆3x − 30∆2v2 − 36∆v2(2x + 1) + 72v4)
2
(
∆2 − 6v2) (

∆2 + 3∆x − 6v2)2 . (54)

3.5 The effective scalar potential and slow-roll parameters

Weare now exploring the globalminimumof the scalar potential and comparing our predictions
for inflation with the observational data. To do these, we need the exact expression of the scalar
potential which can be achieved by the following way. Using the analytic solution (46) for Φ+Φ+
as a function of V , we obtain the scalar potential as a function of c = V | instead of ϕ+ = Φ+ | .

Let us combine (44) with (46), the effective Kähler potential can be expressed as a function of
the vector multiplet V ,

κ2Keff(V ) =
1
x

[
v2(1 + x)e−V +

∆

1 − 1
6∆V

− x + 1
]
+ (x − 1)V

+ 3 ln
[
1 −

1
6
∆V

]
, (55)

where V is a function of Φ+Φ+. The effective superpotential is

κ3Weff = mvΦ+. (56)

11
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We find the effective D-term potential in terms of c | given by

κ4VD =
y2e−2cm2v2

8x2

[
ρv2(x + 1 − xec)c′ − 2ecx

− ecρc′
x∆(3 − c∆)

6 − c∆
−

6ecρc′∆2

(6 − c∆)2

]2
, (57)

where a new parameter y := q/mv. The inflaton field ρ is defined as ρ := (ϕ∗+ϕ+)1/2 and it can be
written in terms of c with the help of (46) as

ρ2 =
e−xc

x

[
v2e−c − x + 1 +

∆

1 − 1
6∆c

]
. (58)

For any given value of the parameters v and x, the “physical domain" of c is defined in such a way
that ρ2 > 0. We also define c′ = dc/dρ, c′′ = d2c/dρ2 in terms of c with the help of (58) as

c′ =
2ρx(6 − c∆)ec(x+1)

ec∆2 − v2 (6 − (c + ec − 1)∆) − ρ2xec(x+1)(6x − c∆x − ∆)
, (59)

c′′ = −
v2(6 − c∆ + 2∆) (c′)2

ec∆2 − v2 (6 − (c + ec − 1)∆) − ρ2xec(x+1)(6x − c∆x − ∆)

+
xec(x+1) (ρc′ (ρxc′(x(6 − c∆) − 2∆) + 4(x(6 − c∆) − ∆)) + 2(6 − c∆))

ec∆2 − v2 (6 − (c + ec − 1)∆) − ρ2xec(x+1)(6x − c∆x − ∆)
. (60)

On the other hand, the F-term contribution to effective potential is written as

κ4VF = m2v2eκ
2Keff (c)

(
− 3ρ2 +

4A2(c)
B(c)

)
, (61)

where the functions A(c) and B(c) are

A(c) = 1 +
ρc′

2x(6 − c∆)2
e−c

[
6ecv4 + ecξ

(
x
(
c2
∆

2 − 9c∆ + 18
)
+ 6ξ

)
+ v2

(
−c2
∆

2 + 12c∆ − 12ecξ + x(6 − c∆) (c∆ + 3ec − 6) − 36
) ]
, (62)

B(c) = −
3∆ (ρc′′ + c′)
ρ(6 − c∆)

+
ξ (ρc′′ + c′)

ρ
+
(ρc′′ + c′)

(
6∆2

(6−c∆)2 − e−cv2(x + 1)
)

xρ

+
(c′)2

x

(
e−cv2(x + 1) +

12∆3

(6 − c∆)3

)
−

3∆2 (c′)2

(6 − c∆)2
. (63)

To define the slow-roll parameters, we introduce the canonically normalised inflaton field χ

defined through χ′ := dχ
dρ =

√
2gΦ̄+Φ+ . It can be written in terms of c as

χ′ = κ

√(
c′

2ρ
+

c′′

2

)
d
dc
Keff(c) +

(c′)2

2ρ
d2

dc2Keff(c). (64)
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The slow-roll parameters ε and η can be written in terms of c as

ε =
1

2κ2

(
dV/dχ
V

)2
=

1
2κ2

(
dV/dc
V

c′

χ′

)2
, (65)

η =
1
κ2

d2V/dχ2

V
,

=
1
κ2

(
d2V/dc2

V

(
c′

χ′

)2
+

dV/dc
V

c′′

χ′
−

dV/dc
V

dχ′/dc
χ′

(
c′

χ′

)2
)
. (66)

The number of e-folds N during inflation period can be obtained by

N =
∫ χend

χ∗

V

∂χV
dχ =

∫ ρend

ρ∗

V

∂ρV
(χ′)2dρ =

∫ c∗

cend

V

∂cV

(
χ′

c′

)2
dc, (67)

where |η(cend)| = 1 and c∗ is the value of c at the horizon exit. In the following, we will compare
our theoretical predictions to the CMB observational data. The amplitude of density fluctuations
As, the spectral index ns and the tensor-to-scalar ratio r can be written in terms of the slow-roll
parameters:

As =
κ4V∗

24π2ε∗
, (68)

ns = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗, (69)
r = 16ε∗, (70)

evaluated at the horizon exit. Let us consider for example

v = 1.86945, x = 0.08435, y = 4.07, m = 3.77 × 10−8. (71)

As it was shown in [18], we can choose the initial condition c∗ = −0.00017 and cend = −0.01192
(or equivalently, by using (58), ρ∗ = 0.0225 and ρend = 0.1869) to obtain N = 59.48, ns = 0.9597,
r = 4.15 × 10−6 and As = 2.2 × 10−9, which are within the 2σ-region of Planck’18 data [20].

4. Fayet-Iliopoulos (FI) D-terms in supergravity

In this section, we follow the notation in [17]. The chiral weight w′ in this section is related to
the chiral weight w̃ of the previous section by w̃ = 2

3w
′.

4.1 Review

In [8] (see also in [21]), a new (constant) FI term was proposed of the form LFI = ξ2 D+
fermions, that can be coupled to supergravity without gauging the R-symmetry. It is non-singular
when the D-auxiliary filed has a non vanishing vacuum expectation value (VEV), and the corre-
sponding supergravity Lagrangian is:

LFI = ξ2

[
S0S̄0

w2w̄2

T̄(w2)T(w̄2)
(V)D

]
D

, (72)
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where ξ2 is a constant parameter. In the superconformal formalism, the chiral compensator field
S0, with Weyl and chiral weights (δ,w′) = (1,1), has components S0 = (s0,PLΩ0,F0). The vector
multiplet has weights (0,0), and its components are given byV =

(
v, ζ,H, vµ, λ,D

)
. We will use the

Wess-Zumino gauge in which the first components v = ζ = H = 0. The multiplet w2 is of weights
(1,1), and given by

w2 =
λ̄PLλ

S2
0
, w̄2 =

λPRλ̄

S̄2
0

. (73)

The components of λ̄PLλ can be written as

λ̄PLλ =
(
λ̄PLλ ;

√
2PL

(
−

1
2
γ · F̂ + iD

)
λ ; 2λ̄PL /Dλ + F̂− · F̂− − D2

)
. (74)

The corresponding kinetic terms in supergravity Lagrangian for the gauge multiplet are

Lkin = −
1
4

[
λ̄PLλ

]
F
+ h.c. . (75)

The operator T (T̄) in (72) is defined in [22] and [23], and can be used to define a chiral (antichiral)
multiplet. For example, the chiral multiplet T(w̄2) has weights (2,2). In global supersymmetry, this
corresponds to the usual chiral projection operator D̄2. Note that we will drop the notation of h.c.
and implicitly assume its presence for every [ ]F term in the Lagrangian. Finally, the multiplet
(V)D is a (2,0) linear multiplet. Its components are given by

(V)D =
(
D, /Dλ,0,Db F̂ab,− /D /Dλ,−�

CD
)
. (76)

The component /Dλ and the covariant field strength F̂ab are defined in eq. (17.1) of [17]. In our
case, they can be written as

F̂ab = e µ
a e νb

(
2∂[µAν] + ψ̄[µγν]λ

)
Dµλ =

(
∂µ −

3
2

bµ +
1
4
wab
µ γab −

3
2

iγ∗Aµ

)
λ −

(
1
4
γab F̂ab +

1
2

iγ∗D
)
ψµ . (77)

Here e µ
a is the vierbein, with frame indices a, b and coordinate indices µ, ν. The gauge fields wab

µ ,
bµ, andAµ correspond to Lorentz transformations, dilatations, and TR symmetry of the conformal
algebra respectively, while ψµ denotes the gravitino. We define the conformal d’Alembertian by
�C ≡ ηabDaDb.

Let us consider first the case of pure supergravity coupled to a U(1) gauge multiplet with the
FI term in (72). The supergravity Lagrangian can be written as

L = −3
[
S0S̄0

]
D
+

[
S3

0W0
]
F
−

1
4

[
λ̄PLλ

]
F
+ LFI. (78)

Supersymmetry is broken via a non-vanishing VEV of the D-auxiliary component of the vector
multiplet driven by the linear term in D, with the Goldstino being the U(1) gaugino. After fixing
the compensator S0 = 1, integrating out the auxiliary fields, and choosing the unitary gauge where
the Goldstino vanishes, the Lagarangian in component form is [8]:

e−1L =
1
2

(
R − ψ̄µγµνρDνψρ + m3/2ψ̄µγ

µνψν
)
−

1
4

FµνFµν −
(
−3m2

3/2 +
1
2
ξ2

2

)
, (79)
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with a constant superpotential m3/2 = W0. In the absence of matter, any non-vanishing value of
ξ2 uplifts the vacuum energy by a constant term VFI = ξ2

2/2 and supersymetry is broken. It is
important to note that the FI term in eq. (72) breaks the Kähler invariance and does not require the
gauging of an R-symmetry.

Let us now couple the FI-term given by eq. (72) to additional matter fields charged under the
U(1). For simplicity, we focus on a single chiral multiplet X . The Lagrangian is given by

L = −3
[
S0S̄0e−

1
3 K(X ,X̄)

]
D
+

[
S3

0W(X)
]
F
−

1
4

[
f (X)λ̄PLλ

]
F
+ LFI. (80)

Here K(X, X̄), W(X) and f (X) are a Kähler potential, a superpotential and a gauge kinetic function
respectively. The first three terms in eq. (80) are the usual supergravity Lagrangian [17]. Assuming
that the multiplet X transforms under the U(1) as

V → V + iΛ − iΛ̄,

X → Xe−iqΛ, (81)

where Λ is a gauge multiplet parameter. In the case we consider, the superpotential does not
transform under the gauge symmetry therefore the U(1) is not an R-symmetry. For a model with a
single chiral multiplet, the superpotential must be constant

W(X) = F . (82)

To ensure gauge invariance of the supergravity action, the Kähler potential must be a function of
XeqV X̄ . However, for notational simplicity, in the following we drop the eqV factors.

Indeed, in this case we can consistently add the FI-term LFI to the theory, similar to [8], and
the resulting D-term potential acquires an extra term proportional to ξ2

VD =
1
2
Re ( f (X))−1

(
ikX∂XK + ξ2e

1
3 K

)2
, (83)

where the Killing vector is kX = −iqX . For a constant superpotential (82), the F-term potential
reduces to

VF = |F |2eK(X ,X̄)
(
−3 + gXX̄∂XK∂X̄K

)
. (84)

From eq. (83) it is easy to see that if the Kähler potential has a term proportional to ξ1 log(X X̄), the
D-term contribution to the scalar potential obtains another constant contribution. For example, if

K(X, X̄) = X X̄ + ξ1 ln(X X̄), (85)

the D-term potential becomes

VD =
1
2
Re ( f (X))−1

(
qX X̄ + qξ1 + ξ2e

1
3 K

)2
. (86)

The term proportional to ξ1 is the usual FI term in a non R-symmetric Kähler frame. It can be
consistently added to the model with the new FI term proportional to ξ2.
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In the absence of the extra term, a Kähler transformation

K(X, X̄) → K(X, X̄) + J(X) + J̄(X̄),

W(X) → W(X)e−J(X), (87)

with J(X) = −ξ1 ln X allows us to recast the model in the form

K(X, X̄) = X X̄,

W(X) = m3/2X, (88)

where m3/2 = F. The two models result in the same Lagrangian, at least classically8. However, in
the Kähler frame of eqs. (88) the superpotential transforms nontrivially under the gauge symmetry.
As a consequence, the gauge symmetry becomes an R-symmetry.

Note that the extra term (72) violates the Kähler invariance of the theory, and the two models
related by a Kähler transformation are no longer equivalent. The model written in the Kähler frame
where the gauge symmetry becomes an R-symmetry in eqs. (88) can not be consistently coupled to
LFI. A generalized Kähler invariant FI term has been built in [24] and [25].

4.2 The scalar potential in a Non R-symmetry frame

In this section, we work in the Kähler frame where the superpotential does not transform,
and take into account the two types of FI terms which were discussed in the last section. For
convenience, we repeat here the Kähler potential in eq. (85) and restore the inverse reduced Planck
mass κ = M−1

Pl = (2.4 × 1018 GeV)−1:

K = κ−2(X X̄ + ξ1 ln X X̄). (89)

The superpotential and the gauge kinetic function are set to be constant 9:

W = κ−3F, f (X) = 1. (90)

After performing a change of the field variable X = ρeiθ where ρ ≥ 0 and setting ξ1 = b, the full
scalar potentialV = VF +VD is a function of ρ. The F-term contribution to the scalar potential is
given by

VF =
1
κ4 F2eρ

2
ρ2b

[ (
b + ρ2)2

ρ2 − 3

]
, (91)

and the D-term contribution is

VD =
q2

2κ4

(
b + ρ2 + ξρ

2b
3 e

1
3ρ

2
)2
. (92)

Note that we rescaled the second FI parameter by ξ = ξ2/q. We are interested in the role of the new
FI-term in inflationary models driven by supersymmetry breaking.

8At the quantum level, a Kähler transformation also introduces a change in the gauge kinetic function f , see for
example [16].

9In order to cancel the chiral anomalies [4], the gauge kinetic function gets a field-dependent correction ∝ q2 ln ρ.
However, the correction turns out to be very small and can be neglected below, since q is chosen to be of order of 10−5

or smaller.
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Scalar potential

F=0

F≠0

ρ

κ4 Vmin

κ4 Vmax

κ4 V

Figure 1: This plot presents the scalar potentials for F = 0 and F , 0 cases. For F = 0, we have a local
maximum at ρmax = 0 and the global minimum has zero cosmological constant. For F , 0, the origin ρ = 0
is still the maximum but the global minimum now has a positive cosmological constant.

For F = 0, one finds that for ξ < −1 and b = 3 the potential has a maximum at the origin,
and a supersymmetric minimum. Since we set the superpotential to zero, the SUSY breaking is
measured by the D-term order parameter, i.e. the Killing potential associated with the gauged U(1),
which is given by

D = iκ−2−iqX
W

(
∂W
∂X
+ κ2 ∂K

∂X
W

)
+ κ−2qξρ2eρ

2/3. (93)

This enters the scalar potential asVD = D
2/2. So, at the local maximum and during inflationD is

of order q and supersymmetry is broken. On the other hand, at the global minimum, supersymmetry
is preserved and the potential vanishes. Strictly speaking, the supersymetric minimum is not valid
because the new FI term becomes singular since the D-auxiliary vanishes. Therefore a small F is
required in any case.

For F , 0, the potential has still a local maximum at ρ = 0 for b = 3 and ξ < −1. For this
choice, the derivatives of the potential have the following properties,

V ′(0) = 0, V ′′(0) = 6κ−4q2(ξ + 1). (94)

For ξ < −1, the extremum is a local maximum, as desired.
Let us comment on the global minimum after turning on the F-term contribution. As long as

F2/q2 � 1, the change in the global minimum ρv is very small, of order O(F2/q2), The plot of
this change is shown in Fig. 1.

Let us comment on super symmetry breaking in the present case F , 0, the order parameters
are both the Killing potential D and the F-term contribution FX , which read

D ∝ q[3 + ρ2(1 + ξeρ
2/3)], FX ∝ Fρ2(3 + ρ2)eρ

2/2, (95)

where the F-term order parameter FX is defined by

FX = −
1
√

2
eκ

2K/2
(
∂2K

∂X∂ X̄

)−1/2 (
∂W̄
∂ X̄
+ κ2 ∂K

∂ X̄
W̄

)
. (96)
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Therefore, near the local maximum, FX/D ∼ F
q ρ

2. On the other hand, at the global minimum,
both D and FX are of the same order i.e. FX/D ∼ F

q , assuming that ρ at the minimum is of order
O(1), which is true in our models below. This makes tuning of the vacuum energy between the F-
and D-contribution in principle possible, along the lines of [4] and [7].

Let us consider the case b = 0 where only the new FI parameter ξ contributes to the potential.
In this case, the condition for the local maximum of the scalar potential at ρ = 0 can be satisfied
for −3 < ξ < 0. In the case where F is set to zero, the scalar potential (92) has a minimum at
ρ2
min = 3 ln

(
− 3
ξ

)
. In order to have Vmin = 0, we can choose ξ = − 3

e . However, we find that this
choice of parameter ξ does not allow slow-roll inflation near the maximum of the scalar potential.
Similar to our previous models [4] it may be possible to achieve both the scalar potential satisfying
slow-roll conditions and a small cosmological constant at the minimum by adding correction terms
to the Kähler potential and turning on a parameter F. However, here we will focus on b = 3 case
where, as we will see shortly, less parameters are required to satisfy the observational constraints.

4.3 Example for slow-roll D-term inflation

In this section we focus on the b = 3 case and assume that the scalar potential is D-term
dominated by choosing F = 0. The model has only two free parameters, namely q and ξ. The first
parameter controls the overall scale of the potential and it will be fixed by the amplitude As of the
CMB data. The only free-parameter left over is the second parameter ξ. We derive the condition
that leads to slow-roll inflation scenarios, where the start of inflation (or, horizon crossing) is near
the maximum of the potential at ρ = 0.

Since we assume inflation to start near the origin ρ = 0, the expansion of slow-roll parameters
for small ρ can be expressed as

ε =
4
9
(ξ + 1)2ρ2 + O(ρ3),

η =
2(1 + ξ)

3
+ O(ρ2). (97)

Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ to avoid the
η-problem. The observation is that at ξ = −1, the effective charge of X vanishes and thus the
ρ-dependence in the D-term contribution (92) becomes of quartic order.

Note that we obtain the same relation between ε and η as in the model of inflation from
supersymmetry breaking driven by an F-term from a linear superpotential and b = 1 (see eq. (14))
[4]. Thus, there is a possibility to have flat plateau near the maximum that satisfies the slow-roll
condition and at the same time a small cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by

N = κ2
∫ χend

χ∗

V

∂χV
dχ = κ2

∫ ρend

ρ∗

V

∂ρV

(
dχ
dρ

)2
dρ, (98)

where we choose |ε(χend)| = 1. Notice that the slow-roll parameters for small ρ2 satisfy the simple
relation ε = η(0)2ρ2 +O(ρ4) by eq. (97). Therefore, the number of e-folds between ρ = ρ1 and ρ2
(ρ1 < ρ2) takes the following simple approximate form as in [4],

N '
1
|η(0)|

ln
(
ρ2
ρ1

)
=

3
2|ξ + 1|

ln
(
ρ2
ρ1

)
. (99)
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as long as the expansions in (97) are valid in the region ρ1 ≤ ρ ≤ ρ2. Note that we used the
approximation η(0) ' η∗, which holds in this case.

We are now comparing the theoretical predictions of this model to the observational data via
the power spectrum of scalar perturbations of the CMB such as the amplitude As, tilt ns and the
tensor-to-scalar ratio r . From the relation of the spectral index above, one should have η∗ ' −0.02,
and thus eq. (99) gives approximately the desired number of e-folds when the logarithm is of order
one. Actually, using this formula, we can estimate the upper bound of the tensor-to-scalar ratio r
and the Hubble scale H∗ following the same argument given in [4]; the upper bounds are given by
computing the parameters r,H∗ assuming that the expansions (97) hold until the end of inflation.
We then get the bound

r . 16(|η∗ |ρende−|η∗ |N )2 ' 10−4, H∗ . 1012 GeV, (100)

where we used η∗ = −0.02, N ' 50 − 60 and ρend . 0.5, which are consistent with our models.

4.4 A small field inflation model from supergravity with observable tensor-to-scalar ratio

Supergravity models with higher r are of particular interest. In this section we show that our
model can get large r at the price of introducing some additional terms in the Kähler potential. Let
us consider the previous model with additional quadratic and cubic terms in X X̄:

K = κ−2 (X X̄ + A(X X̄)2 + B(X X̄)3 + b ln X X̄
)
, (101)

while the superpotential and the gauge kinetic function remain as in eq. (90). We assume that
inflation is driven by the D-term by setting the parameter F = 0. The scalar potential in terms of
the field variable ρ can be written as:

V = q2
(
b + ρ2 + 2Aρ4 + 3Bρ6 + ξρ

2b
3 e

1
3 (Aρ

4+Bρ6+ρ2)
)2
. (102)

We now have two additional parameters A and B. These parameters do not affect our previous
discussions on the choices of the parameter b because they appear in higher orders in ρ in the scalar
potential. Therefore, we can continue with the b = 3 case. The formula (99) for the number of
e-folds also holds for small ρ2 even when A,B are not zero because the new parameters appear at
order ρ4 and higher. However these two parameters can increase the value of the tensor-to-scalar
ratio r . To obtain r ≈ 0.01, we can choose for example

q = 8.68 × 10−6, ξ = −1.101, A = 0.176, B = 0.091. (103)

By choosing the initial condition ρ∗ = 0.445 and ρend = 1.155, we get the results N = 58, ns = 0.96,
r = 0.01 and As = 2.2 × 10−9 , which is in agreement with the CMB data. Note that an application
of the new FI term in no-scale supergravity model for inflation can be found for example in [25]
and [26].

5. Reheating after inflation by supersymmetry breaking

In this section, we couple the inflaton and supersymmetry breaking sector described above with
the (supersymmetric) Standard Model (MSSM) and study the reheating after the end of inflation.
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Q ū d̄ L ē H̃u H̃d ζ λR λ1 λ2 λ3

U(1)R − 1
2 − 1

2 − 1
2 −1

2 − 1
2 −1

2 − 1
2

1
2

1
2

1
2

1
2

1
2

U(1)Y 1
6 − 2

3
1
3 −1

2 1 1
2 − 1

2 0 0 0 0 0
SU(2)L 2 1 1 2 1 2 2 1 1 1 3 1
SU(3)c 3 3̄ 3̄ 1 1 1 1 1 1 1 1 8

Table 2: MSSM and U(1)R charges of the fermions. ζ is the inflatino, λR is the U(1)R gaugino, and λ1,2,3
are bino, wino, and gluino, respectively. The gravitino has the same R-charge as λR.

In principle, there are two possibilities for the MSSM superpotential Ω: (1) to be neutral under the
R-symmetry, in which case the full superpotential is proportional to the goldstino superfield Z and
Ω is added to the goldstino decay constant; (2) to have the same R-charge as Z so that Standard
Model particles are neutral while their superpartners are charged, in which case Ω is just added to
the supersymmetry breaking sector superpotential. It turns out that both possibilities lead to similar
results and thus we choose to perform the explicit analysis for case (1). Of course, one could have
more general situations with different R-charges that can be studied by extending our analysis in a
straightforward way.

The starting point is a class of models with gauged U(1)R phase symmetry, defined by Kähler
potential and superpotential,

K(Z, Z, φ, φ) =
∑

φφ + J(Z Z) , (104)

W(Z, φ) = [aκ−3 +Ω(φ)]κZ , (105)

where Z is the inflaton/sgoldstino superfield, φ collectively denotes matter superfields, and J is the
inflaton Kähler potential. In the superpotential, a is a dimensionless real constant, while Ω is the
MSSM part,

Ω = ŷuūQHu − ŷd d̄QHd − ŷe ēLHd + µ̂HuHd . (106)

Here ū, d̄, ē,Q, L,Hu,Hd are chiral superfields. As usual, we denote the corresponding SM matter
fields (quarks, leptons, and Higgs fields) with the same character, while tildes will be used for their
superpartners (squarks, sleptons, and Higgsinos). The un-normalized Yukawa couplings y and the
µ-parameter are denoted by hats which will be removed after proper rescaling, once Z settles at the
minimum.

The total gauge group of the model is,

SU(3)c × SU(2)L ×U(1)Y ×U(1)R . (107)

Squarks, sleptons, and Higgs scalars are neutral under U(1)R, while Z carries the same R-charge
as the superpotential. The R-charges of the MSSM fermions are be fixed as in Table 2.

In this class of models, the Z-dependent part of the potential drives inflation, after which Z and
its auxiliary field FZ settle at non-zero vacuum expectation values (VEVs), spontaneously breaking
both supersymmetry (SUSY) and U(1)R. At the vacuum, the gravitino mass and the the auxiliary
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fields of Z and U(1)R are given by,

m3/2 = a〈eκ
2J/2 |Z |〉 ,

〈FZ〉 = −a〈eκ
2J/2JZZ̄ (κ−2 + JZZ)〉 ,

〈DR〉 = g〈κ−2 + JZZ〉 ,

(108)

where we assume that matter fields φ vanish at the minimum.
The Yukawa couplings ŷ and the parameter µ̂ in (106) are related to their properly normalized

versions as

{ ŷ, µ̂} =

〈
e−κ

2J/2

κ |Z |

〉
× {y, µ} . (109)

This is due to the overall factor of eK in the F-term potential, as well as the coupling of Ω to Z as
shown in Eq. (105). At the vacuum, Z and J(Z, Z) take non-vanishing VEVs, which leads to this
rescaling.

Here we would like to introduce a simple choice of J with finite number of perturbative
corrections, namely,

J = Z Z + ακ2(Z Z)2 + βκ4(Z Z)3 , (110)

where the parameters α and β are dimensionless. One should think of the above form as a
perturbative expansion around the canonical kinetic terms with coefficients less than unity.

Let us study the vacuum and the possibility of inflation in this model by ignoring matter fields
so that K = J is given by (110), and W = κ−2aZ . Then the scalar potential reads,

κ−4V = a2 exp
(
|κZ |2 + α |κZ |4 + β|κZ |6

) {
(1 + |κZ |2 + 2α |κZ |4 + 3β|κZ |6)2

1 + 4α |κZ |2 + 9β|κZ |4
− 3|κZ |2

}
+
g2

2

(
1 + |κZ |2 + 2α |κZ |4 + 3β|κZ |6

)2
, (111)

where we set gauge kinetic function F = 1 for now. Note that when the gauge coupling g is turned
on, the requirement of viable inflation puts an upper bound on it of around g ∼ 0.8a (no lower
bound). Concretely, the bound avoids too small ns. This freedom to choose g can be used to control
soft scalar masses to some extent.

In our model defined by (104) and (105) (with general J) soft scalar masses are universal,

m2
Q = m2

u = m2
d = m2

L = m2
e = m2

Hu
= m2

Hd
= m2

0 , (112)

where m2
0 is given by

m2
0 = κ

2〈JZZ̄FZFZ〉 − 2m2
3/2 , (113)

and for the MSSM µ-parameter we assume |µ| � |m0 | to avoid extreme fine-tuning of the Higgs
boson mass (since m0 is close to the inflationary scale). From the requirement of Minkowski
minimum, we have the relation,

〈V〉 = 〈JZZ̄FZFZ〉 − 3κ−2m2
3/2 +

1
2 〈DR〉

2 = 0 . (114)

The relation (114) allows us to rewrite m2
0 in terms of the D-term contribution,

m2
0 = m2

3/2 −
κ2

2 〈DR〉
2 , (115)
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and this leads to the requirement m3/2 > κ〈DR〉/
√

2, in order to avoid tachyonic instabilities in the
MSSM sector.

For the bilinear HuHd coupling we have

e−1L ⊃ −B0µHuHd + h.c. , (116)

where

B0 =
κ2〈JZZ̄FZFZ〉 − m2

3/2

m3/2
. (117)

The MSSM gaugino masses are generated at one loop via the Green–Schwarz mechanism of
anomaly cancellation, where the gauge anomalies due to triangle diagrams involving the fermions
(all the fermions of the model carry non-zero R-charges) are cancelled by appropriate U(1)R
transformations of the following terms depending on the imaginary part of the gauge kinetic matrix.
For more details see [27].

As a concrete example we choose the following parameter values

α = 0.139 , β = 0.6 , g/a = 0.7371 , a = 2.05 × 10−7 , (118)

which leads to the inflationary parameters

ns = 0.9543 , r = 1.72 × 10−6 , Hinf = 3.25 × 1011 GeV . (119)

5.1 Reheating

For the model we consider, the inflaton z can perturbatively decay into the MSSM scalars,
gaugini, and inflatino since their masses are smaller than mz/2. However, the inflaton mass is
smaller than two times the gravitino mass, mz < 2m3/2, which prohibits the perturbative decay of
the inflaton into gravitini [27].

Let us consider the decay channels intoMSSM scalars. In the quartic interactions the dominant
contribution comes from the stop part due to itsYukawa coupling yt = O(1) (otherYukawa couplings
are much smaller). Therefore the relevant terms for reheating are

e−1L ⊃ −Cφz
∑
|φ|2 − dφz(yt ¯̃tQ̃3Hu + h.c.) , (120)

where Q̃3 is the third-generation quark doublet.
Three-point (−σzϕ2) and four-point (−λzϕ3) decay rates for scalar particles (both z and ϕ real)

are given by [28]

Γz→ϕϕ =
σ2

8πmz
, Γz→ϕϕϕ =

λ2mz

3!64(2π)3
, (121)

ignoring the masses of the final-state particles (which can be justified in our case since the MSSM
scalars are lighter than the inflaton roughly by a factor of ten).

After including both real degrees of freedom canonically normalized as φ = (φ1 + iφ2)/
√

2 (z
is already real canonical), the total decay rate into two MSSM scalars is

Γ
tot
z→φφ =

C2
φ

16πmz
· 49 = 5.77 × 10−3 GeV , (122)
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where 49 is the number of species.
The decay rate into three scalars comes from the second term of (120), which expands into three

color and two weak components. In general, the product of three complex scalars plus its Hermitian
conjugate reads, in terms of their real and imaginary parts, for example A = (A1 + iA2)/

√
2,

ABC + c.c. =
1
√

2
(A1B1C1 − A1B2C2 − A2B1C2 − A2B2C1) , (123)

i.e. each individual quartic interaction of (120) contains four terms. Taking all of this into account,
the total decay rate of z into three MSSM scalars (six relevant species) is given by

Γ
tot
z→φφφ =

d2
φy

2
t mz

192(2π)3
· 6 = 3.04 × 10−4 GeV , (124)

where we take yt = 1 for simplicity.
For the coupling with two fermions of the form 1

2Cλzλ2 + h.c., the decay rate is given by

Γz→λλ =
C2
λmz

8π
. (125)

The values of the individual decay rates into gaugini and inflatino are shown in Table ?? where it
can be seen that the decay into gaugini is negligible in comparison to the decay into inflatino. The
total decay rate into fermions is then

Γ
tot
z→λλ ≈ Γz→ζζ = 4.65 × 10−4 GeV . (126)

From the total decay rate

Γtot = Γ
tot
z→φφ + Γ

tot
z→φφφ + Γ

tot
z→λλ = 6.54 × 10−3 GeV , (127)

we can estimate the reheating temperature as,

Treh '
√

MPΓtot = 1.26 × 108 GeV . (128)

6. Conclusions

In summary, in this reviewwe discussed the possibility that inflation is driven by supersymmetry
breaking with the scalar component of the goldstino superfield playing the role of the inflaton.
Imposing a gauged R-symmetry allows to satisfy easily the slow-roll conditions, leading to an
interesting class of small field inflation models, characterised by an inflationary plateau around the
maximum of the scalar potential near the origin, where R-symmetry is restored with the inflaton
rolling down to a minimum with an infinitesimal tuneable positive vacuum energy. Inflation can be
driven by either an F- or a new FI D-term. The corresponding effective field theory can be derived
by a microscopic model based on a generalised Fayet-Iliopoulos model of a U(1) R-symmetry
coupled to supergravity. Going to the Higgs phase in the limit of small supersymmetry breaking
scale compared to the U(1) mass, the massive vector multiplet can be integrated out leading to an
effective field theory for the goldstino chiral multiplet characterised by a linear superpotential and an
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effective Kähler potential. By implementing the theory with an additional gauged U(1)R-symmetry
that remains spectator (and unbroken) we were able to provide a microscopic model of inflation by
supersymmetry breaking. The above models are in agreement with cosmological observations and
in the simplest case predict a rather small tensor-to-scalar ratio of primordial perturbations.

We described theMSSM-inflaton couplings, and estimated the reheating temperature, generally
Treh ∼ 108 GeV, from perturbative decay channels of the inflaton. In our example the inflaton can
decay into all the MSSM sparticles. The inflaton mass is smaller than two times the gravitino mass,
which prohibits perturbative decay of the former into two gravitini. The full picture of reheating,
however, requires further investigation after taking into account non-perturbative effects such as
Bose condensation and possible resonant production of fermions. Finally, as explained in [27], our
minimal models do not allow for thermal LSP dark matter, but superheavy LSP dark matter (e.g.
neutralino) is possible depending on the parameter choice.
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