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The Flavour Puzzle as a Vacuum Problem
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Symmetry principles have long been applied to the flavour puzzle. In a bottom-up approach, the
variety of possible symmetry groups and symmetry breaking sectors is huge, the predictability
is reduced and the number of allowed models diverges. A relatively well-motivated and more
constrained framework is provided by supersymmetric theories where a discrete subgroup Γ of a
non-compact Lie group G plays the role of flavour symmetry and the symmetry breaking sector
spans a coset space G/K, K being a compact subgroup of G. For a general choice of G, K, Γ

and a generic matter content, we show how to construct a minimal Kähler potential and a general
superpotential, for both rigid and local N = 1 supersymmetric theories.
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A fresh look into an old matter

Traditional (linearly realized) flavour symmetries act in generation space. In their simplest
implementation the flavour group G f commutes with both the Poincaré and the gauge groups, but
it can be also combined with CP resulting in an additional non-trivial action in flavour space. The
most important fact about this type of symmetries is that in any realistic construction they need to
be broken [1]. Broken symmetries are well understood and ubiquitous in particle physics and, at
first sight, do not represent a problem in their implementation. Why should we be worried about
them? A first unpleasant aspect is that the freedom is huge: the flavour group can be abelian or
not, continuous or discrete, global or local. There is no accepted baseline model in a bottom-up
approach and in most of the existing constructions the predictability is very limited. Usually the
symmetry breaking sector consists of a set {τα} of dimensionless, gauge-invariant fields charged
under G f . When space-time coordinates are varied, these fields span a moduli space M describing
the possible vacua of the system. We can expand a fermion mass matrix mi j(τ) in powers of τα

1:

mi j(τ) = m(0)
i j +m(1) α

i j τα +m(1) ᾱ

i j τ̄ᾱ +m(2) αβ

i j τατβ + ... (1)

A realistic model requires at least few terms in the series (1). Additional parameters are brought
in by the renormalization group evolution needed to translate the high-energy predictions into low-
energy physical parameters. If the theory is supersymmetric, extra parameters associated to su-
persymmetry breaking are needed. Most of realistic models depend on a large number of free
parameters to the detriment of predictability.

On top of that, a very unattractive feature is the need of a mechanism delivering τα with ap-
propriate size and orientation in flavour space. This alignment problem is typically solved at the
expenses of enlarging both the symmetry group, including additional “shaping” factors in G f , and
the symmetry breaking sector, including a pletora of driving fields, not directly entering the expres-
sion (1). In model building the usual path proceeds from the choice of G f and its representations
ρ( f )(g) in field space, to an ad hoc and often baroque construction of the symmetry breaking sector
{τα}. In this way the central ingredient of the whole construction is relegated to the very last step.

Can we reverse the logic? If the symmetry breaking sector is so crucial, why not look for
physically and/or mathematically motivated symmetry breaking sectors and inspect their symmetry
properties? Consider the following simple example. Imagine that the moduli space M describes
the (non-oriented) lines of the plane passing through the origin. To parametrize this set we can
choose points lying on the unit circle centered at the origin of the complex plane: M = {τ ∈C, |τ|=
1}, with the agreement that τ and γτ =−τ should be identified, since they describe the same line.
The Γ ≡ Z2 parity symmetry τ → γτ is a gauge symmetry, since it reflects the redundancy of the
adopted parametrization. The moduli space M is “too large” and a one-to-one correspondence
with the lines of the plane is obtained by considering the quotient M /Γ 2. In a putative field
theory where τ is a scalar field, we should also assign matter fields Ψ(x) to (possibly non-linear
and projective) Γ representations. By consistency, the low-energy EFT should satisfy the gauge
symmetry under Γ. Following this procedure, the flavour group Γ and its representations are derived

1Here we make no distinction between a field τα and its VEV.
2In the string terminology, the moduli space is M /Γ. Here we remain closer to the QFT dictionary: we distinguish

M and Γ, call moduli space the whole M and interprete Γ as a gauge symmetry.
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from the moduli space M , that in turns describes the allowed vacua. We also notice that the gauge
symmetry Γ is always realized in the broken phase, since there is no point on the unit circle that is
left invariant by Γ.

A less trivial example is that of a theory where the physically inequivalent vacua are in a
one-to-one correspondence with classes of conformally equivalent metrics on the torus [2]. The
moduli space is the upper half-plane M = SL(2,R)/SO(2) = {τ| ℑ(τ)> 0}. Since tori related by
a transformation γ of Γ = SL(2,Z) are conformally equivalent, we can adopt as candidate flavour
symmetry SL(2,Z). Indeed the most general transformation of matter fields under this group is:

Ψ(x)
γ−→ (cτ +d)kΨρΨ(γ)Ψ(x) , (2)

where ρΨ(γ) is a unitary representation of a finite modular group SL(2,ZN)
3, kΨ is the weight and

N is the level of the representation. When non-vanishing weights are present, Yukawa couplings
should be functions of the modulus τ with the appropriate transformation property to enforce in-
variance under Γ. In a supersymmetric construction Yukawa couplings Y (τ) are modular forms of
given weight kY and level NY . Since such forms span a finite-dimensional linear space, we have a
limited number of allowed couplings and mass/mixing parameters are sharply constrained.

In this approach we can consistently incorporate CP as a nontrivial automorphism of the group
SL(2,Z) [3, 4, 5]. In CP and modular invariant models, CP violation is spontaneous, arising from
values of the modulus away from the boundary of the fundamental domain and from the imaginary
τ axis. Also in this case the flavour symmetry is always realized in the broken phase, since there
is no point of the upper half-plane that is left invariant by the action of the group SL(2,Z). There
are however points enjoying residual invariance under finite subgroups of SL(2,Z), which can be
responsible for degeneracies or hierarchies in the fermion mass spectrum. A small departure of
τ from one of these points can explain the observed fermion mass hierarchies [6, 7, 8]. Finally,
modular invariance can also be interpreted as the outer automorphism of an ordinary flavour group,
leaving the modulus invariant, thus enhancing the whole set of transformations acting nontrivillay
in flavour space to an eclectic group [9].

Symplectic modular invariance

To generalize the above framework we can adopt an Hermitian Symmetric Space (HSS) as
moduli space M [10]. HSS have several attractive features. They have been completely classified
[11, 12]. They are Kähler and therefore support supersymmetric realizations. Non-compact HSS
naturally arise as moduli space in supergravity and string compactifications. They are nicely related
to the theory of automorphic forms, a generalization of modular forms, that are the building blocks
of Yukawa couplings. Every HSS is a coset space of the type M = G/K for some connected Lie
group G and a compact subgroup K of G 4. The generic element τ of M can be obtained by

3The group SL(2,ZN), N being an integer, can be view as an unfaithful finite copy of SL(2,Z). While the latter
is infinite and does not possess finite unitary representations, the former is finite and its representations are unitary and
finite dimensional.

4The Lie algebra G of G decomposes as G = V ⊕A , V being the Lie algebra of K. The algebra G is invariant
under V +A→ V −A and satisfies [V ,V ] ⊂ V , [V ,A ] ⊂A and [A ,A ] ⊂ V . An hermitian symmetric space M can

2
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performing a generic G transformation on an element τ0 left invariant by K:

τ = g τ0 g ∈ G & h τ0 = τ0 for any h ∈ K. (3)

We choose as flavour symmetry group a discrete subgroup Γ of G, whose action on τ is given by

τ
γ−→ γτ ≡ (γg)τ0 γ ∈ Γ . (4)

To build a (supersymmetric) model incorporating a local symmetry under Γ and possessing physi-
cally inequivalent vacua described by M /Γ, we need the transformation laws of the matter fields
Ψ(x) under Γ. To this purpose we introduce an automorphic factor j(g,τ) (g ∈ G) with the prop-
erty:

j(g1g2,τ) = j(g1,g2τ) j(g2,τ) . (5)

In general Γ is an infinite group and does not admit finite unitary representations. These can be
recovered by building an unfaithful finite copy of Γ. Given a normal subgroup Gn of Γ with finite
index, we define the finite group Γn = Γ/Gn. A general transformation law for matter fields under
Γ reads: {

τ
γ−→ γτ

Ψ(I)(x)
γ−→ j(γ,τ)kI ρ(I)(γ)Ψ(I)(x) ,

(6)

where we have separated the matter fields {Ψ(I)(x)} in subsets with a common weight kI and
ρ(I)(γ) is a unitary representation of Γn. The property (5) guarantees that the transformation is a
(non-linear) realization of Γ.

We consider the case of rigid N = 1 supersymmetry and collect all chiral superfields in a
multiplet Φ = (τ,Ψ(I)). The action S describing the Yukawa interactions is defined in terms of a
Kähler potential K(Φ,Φ̄) and a superpotential w(Φ):

S =
∫

d4xd2
θd2

θ̄ K(Φ,Φ̄)+
[∫

d4xd2
θ w(Φ)+h.c.

]
, (7)

where the Kähler potential K(Φ,Φ̄), is a real gauge-invariant function of the chiral superfields Φ

and their conjugates and the superpotential w(Φ) is a holomorphic gauge-invariant function of the
chiral superfields Φ. The invariance of the action S under eq. (6) requires the invariance of the
superpotential w(Φ) and the invariance of the Kahler potential up to a Kahler transformation 5{

w(Φ)→ w(Φ)

K(Φ,Φ̄)→ K(Φ,Φ̄)+ f (Φ)+ f (Φ̄)
. (8)

be of compact type, of noncompact type or of euclidean type. In general none of these cases applies and M decomposes
as a product M = Mc ×Mnc ×Me, where the three factors are hermitian symmetric spaces of compact, noncompact
and euclidean type, respectively. A hermitian symmetric space is irreducible if it is not the product of two hermitian
symmetric spaces of lower dimension. Irreducible hermitian symmetric spaces of compact type can be obtained from
the noncompact ones, by means of a transformation on the generators of the Lie algebra G : (V,A)→ (V, iA).

5In N = 1 local supersymmetry these requirements are relaxed and replaced by the invariance of the real gauge-
invariant function G = K + log |w|2. The superpotential is not necessarily invariant and its variation under Γ can be
compensated by the transformation of K [10].

3



P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
0
-
2
0
2
1
)
0
0
7

The Flavour Puzzle as a Vacuum Problem Ferruccio Feruglio

A candidate minimal Kähler potential is given by:

Kmin(Φ,Φ̄) =−c logZ(τ, τ̄)+∑
I

Z(τ, τ̄)kI |Ψ(I)|2 . (9)

Here

Z(τ, τ̄)≡ [ j†(g,τ0) j(g,τ0)]
−1 , (10)

where the dependence on τ is through the element g via the correspondence in eq. (3) and c is a
real constant whose sign is chosen to guarantee local positivity of the metric for the moduli τ . By
construction, the above potential is invariant under Γ up to a Kähler transformation for a general
choice of G, K, Γ, Gn and j(g,τ). This is not the most general Kähler potential invariant under Γ.
Invariance under Γ allows to add to Kmin(Φ,Φ̄) other terms, that cannot be excluded or constrained
in a pure bottom-up approach. In general these terms can modify the flavour properties of the
theory such as physical fermion masses and mixing angles. Additional assumptions or inputs from
a top-down approach are needed in order to reduce the arbitrariness of the predictions [13].

The conditions for the invariance of the superpotential under Γ can be deduced by expanding
w(Φ) in powers of the supermultiplets Ψ(I):

w(Φ) = ∑
p

YI1...Ip(τ) Ψ
(I1) · · ·Ψ(Ip) . (11)

The p-th order term is invariant provided the functions YI1...Ip(τ) obey:

YI1...Ip(γτ) = j(γ,τ)kY (p)
ρ
(Y )(γ) YI1...Ip(τ) , (12)

with kY (p) and ρ(Y ) such that:

i) The weight kY (p) compensates the total weight of the product Ψ(I1) · · ·Ψ(Ip):

kY (p)+ kI1 + ....+ kIp = 0 . (13)

ii) The product ρ(Y )×ρ(I1)× ...×ρ(Ip) contains an invariant singlet.

The field-dependent Yukawa couplings YI1...In(τ) are closely related to automorphic forms.
Indeed when we restrict to transformations γ of the group Gn in eq. (12), we obtain:

YI1...In(γτ) = j(γ,τ)kY (n) YI1...In(τ) , γ ∈ Gn , (14)

Thus the function

A (g)≡ j(g,τ0)
−kY (n)YI1...In(gτ0) (15)

is an automorphic form for G, K and Gn: a smooth complex function A (g) that is invariant under
the action of the discrete group Gn:

A (γg) = A (g), γ ∈ Gn , (16)

4
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and that under K transforms as

A (gh) = j(h,τ0)
−1 A (g) , h ∈ K . (17)

Moreover A (g) is required to be an eigenfunction of the algebra D of invariant differential oper-
ators on G, that is an eigenfunction of all the Casimir operators of G. The definition is completed
by suitable growth conditions [14].

As an example of the general framework outlined above, we analyze the case G = Sp(2m,R),
K = U(m) and Γ = Sp(2m,Z). The related automorphic forms are provided by Siegel modular
forms. The elements of the symplectic group Sp(2m,R) are 2m×2m real matrices of the type:

g =

(
A B
C D

)
gT J g = J J ≡

(
0 1m

−1m 0

)
. (18)

The symplectic group Sp(2m,R) has a maximal compact subgroup, K = U(m). An element g of
Sp(2m,R) can be uniquely decomposed as:

g =

(√
Y X
√

Y−1

0
√

Y−1

)
h , (19)

where X and Y are real symmetric m×m matrices, Y is positive definite (Y > 0) and h is an
element of K. We see that the moduli space M = G/K, of complex dimension m(m+ 1)/2, can
be parametrized by a symmetric complex m×m matrix τ with positive definite imaginary part,
τ = X + iY . This space is called Siegel upper half-plane, Hm, a natural generalization of the
complex upper half-plane. The integer m is the genus. The action of Sp(2m,R) on τ is given by:

τ → gτ = (Aτ +B)(Cτ +D)−1 . (20)

As automorphy factor, satysfying the cocycle condition of eq. (5), we can choose:

j(g,τ) = [det(Cτ +D)] . (21)

A natural candidate for the discrete gauge group is the Siegel modular group Γm = Sp(2m,Z).
Other discrete subgroups of G = Sp(2m,R) relevant to our purposes are the principal congruence
subgroups Γm(n) of level n, defined as:

Γm(n) =
{

γ ∈ Γm

∣∣∣ γ ≡ 12mmodn
}
, (22)

where n is a generic positive integer, and Γm(1) = Γm. The group Γm(n) is a normal subgroup of
Γm, and the quotient group Γm,n = Γm/Γm(n), which is known as finite Siegel modular group, has
finite order [15]. By keeping both the genus m and the level n fixed throughout our construction,
the supermultiplets Ψ(I) of each sector I are assumed to transform in a representation ρ(I)(γ) of the
finite Siegel modular group Γm,n, with a weight kI . Under a discrete gauge transformation γ ∈ Γm

we have:  τ
γ−→ γτ = (Aτ +B)(Cτ +D)−1 ,

Ψ(I) γ−→ [det(Cτ +D)]kI ρ(I)(γ) Ψ(I) ,
γ =

(
A B
C D

)
∈ Γm . (23)

5
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Due to the cocycle condition in eq. (5) and the properties of ρ(I)(γ), the above definition satisfies
the group law. A minimal Kähler potential is given by:

K =−c Λ
2 logdet(−iτ + iτ†)+∑

I
[det(−iτ + iτ†)]kI |Ψ(I)|2 c > 0. (24)

For the p-th order term of the expansion (11) to be modular invariant, the functions YI1...Ip(τ)

should transform as Siegel modular forms with weight kY (p) in the representation ρ(Y )(γ) of Γm,n:

YI1...Ip(γτ) = [det(Cτ +D)]kY (p)
ρ
(Y )(γ) YI1...Ip(τ) , (25)

with kY (p) and ρ(Y )(γ) satisfying the conditions i) and ii) of the previous section.
This general construction encompasses the special case where the moduli space is the direct

product of upper half-planes, ∏
N
k=1 SL(2,R)/SO(2), and the flavour group is the direct product of

SL(2,Z) factors [16]. Symplectic modular invariance and/or modular invariance arise also in orb-
ifold compactification of heterotic string theory [17, 18, 19], where strong restrictions on bottom-up
flavor model building can guide the search of realistic models [20].

In a generic point τ of the moduli space Hm the discrete symmetry Γm is completely broken
(i.e. γτ = γ has no solution for γ ∈ Γm), but there can be regions where a part of Γm is preserved.
The invariant locus ΩH is a region of Hm whose points τ are individually left invariant by some
subgroup H of Γm. The group that, as a whole, leaves the region ΩH invariant is the normalizer
N(H) of H, whose elements γN satisfy γ

−1
N HγN = H. As a consequence, in our supersymmetric ac-

tion we can restrict the moduli τ to the region ΩH , which supersedes the full moduli space Hm, and
replace the group Γm with N(H). Consistent CP transformations can be defined on moduli, matter
multiplets and modular forms [21]. These tools allow the construction of viable and predictive
models of lepton masses and mixing angles.
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