
P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
0
-
2
0
2
1
)
0
1
0

A natural mechanism for a SM-like Higgs boson in the

2HDM without decoupling

Howard E. Habera,∗

0Santa Cruz Institute for Particle Physics,

University of California, Santa Cruz, CA 95064 USA

E-mail: haber@scipp.ucsc.edu

The properties of the Higgs boson discovered at the Large Hadron Collider are very well described

by the Standard Model (SM). Thus, any theory that invokes an extended Higgs sector must explain

why the neutral scalar observed at the LHC so closely resembles the SM Higgs boson. In this

talk, I review the Higgs alignment limit, in which one neutral scalar state of the Higgs sector is

SM-like. An approximate Higgs alignment can be achieved “naturally” either via decoupling or

via an approximate symmetry. Using the two-Higgs doublet model as a prototype for an extended

Higgs sector, I examine the symmetries of the scalar potential and their soft breakings that may

be responsible for the SM-like properties of the observed Higgs boson, and I demonstrate how to

extend such (softly-broken) symmetries to the Yukawa sector of the model.

7th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2020-2021)

29th November - 3rd December 2021

Bergen, Norway

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:haber@scipp.ucsc.edu
https://pos.sissa.it/


P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
0
-
2
0
2
1
)
0
1
0

A natural mechanism for a SM-like Higgs boson in the 2HDM without decoupling Howard E. Haber

1. Introduction

Nearly ten years after the initial discovery of the Higgs boson, the LHC Higgs data have

already achieved a precision that implies that the properties of the observed neutral scalar closely

approximate those of the Standard Model (SM) Higgs boson to within an accuracy that is typically

in the range of 10%–20% depending on the observable [1, 2]. One possible conclusion is that the

scalar sector responsible for electroweak symmetry breaking is of minimal form, resulting in one

physical neutral spin-zero state that can be identified with the scalar observed at the LHC.

Nevertheless, given the current precision of the Higgs data, the possibility that the Higgs sector

contains more that one physical scalar cannot be excluded. It is noteworthy that the structure of

the Standard Model is far from being of minimal form. For example, there are three generations

of quarks and leptons whereas one generation would have been sufficient. The SM gauge group is

SU(3)×SU(2)×U(1), which is again of a non-minimal form. So why shouldn’t the scalar sector be

non-minimal as well? If a non-minimal scalar sector exists, one obvious question to ask is: why is

the observed Higgs boson SM-like?

Consider a non-minimal scalar sector in which all scalars (apart from the SM-like Higgs

boson) are very heavy, say, with masses above some heavy scale " >∼ 1 TeV. One can then formally

integrate out all the heavy scalar states from the theory. At scales below " , the scalar sector of

the resulting low energy effective theory consists of one complex Higgs doublet, which contains

the three Goldstone fields that provide the masses for the ,± and / gauge bosons and one physical

neutral scalar that coincides precisely with the SM Higgs boson. This is known as the decoupling

limit of the extended Higgs sector, and provides a natural explanation for the SM-like nature of the

observed Higgs boson [3–5].1

One disadvantage of the decoupling limit is that the additional scalar states beyond the observed

Higgs boson may be difficult (or impossible) to discover at the LHC due to insufficient energy of

the collider and/or to SM backgrounds that overwhelm any potential signal. Thus, in this talk, I

shall focus on the possible existence of a SM-like Higgs boson, where some of the additional scalar

states are not significantly heavier than the Higgs boson of mass 125 GeV and thus are potentially

accessible at the LHC in future Higgs studies.

A typical feature of an extended Higgs sector is the presence of a neutral scalar field, i, whose

tree-level interactions with the gauge bosons, fermions and its self-interactions are precisely those

of the SM Higgs field. Generically, i can mix with other neutral scalar fields of the extended Higgs

sector. The physical scalars of the model are then obtained by diagonalizing the neutral scalar

squared mass matrix. If it turns out that i is an approximate eigenstate of the squared-mass matrix

(due to suppressed mixing with other neutral scalar fields of the extended Higgs sector), then one

of the physical neutral scalar states will be SM-like [4, 7]. The limit of zero mixing is called the

Higgs alignment limit [8–12]. In this case, the other physical scalars of the model may or may not

be significantly heavier than the SM Higgs boson. In particular, the decoupling limit [in which the

mixing is suppressed by O(E2/"2)] is a special case of the Higgs alignment limit.

1“Natural” is a loaded term. In this talk, I will not provide an explanation for why the scale of electroweak symmetry

breaking, E ≃ 246 GeV, is so much smaller than, say, the Planck scale. This requires one unnatural fine-tuning of the

Higgs sector parameters, whose origin will not be addressed in this work. (For a review of naturalness, see Ref. [6].)
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As an example, consider an extended Higgs sector with = hypercharge-one Higgs doublets Φ8

and < additional neutral singlet Higgs fields q0
9
. After minimizing the scalar potential, we assume

that only the neutral Higgs fields acquire vacuum expectation values (in order to preserve U(1)EM),
〈

Φ
0
8

〉

=
E8√
2
,

〈

q0
9

〉

= G 9 , (1)

where E2 ≡ ∑

8 |E8 |2 = 4<2
,
/62 = (246 GeV)2.

Define new linear combinations of the hypercharge-one doublet Higgs fields (the so-called

Higgs basis [13–17]). In particular,

�1 =

(

�+
1

�0
1

)

=
1

E

∑

8

E∗8Φ8 , where
〈

�0
1

〉

=
E
√

2
, (2)

and �2, �3, . . . , �= are the other linear combinations of doublet scalar fields such that
〈

�0
8

〉

= 0

for 8 = 2, 3, . . . , =). That is �0
1

is aligned in field space with the direction of the Higgs vacuum

expectation value (vev). Thus, if i ≡
√

2 Re�0
1
−E is a mass-eigenstate, then the tree-level couplings

of i to itself, to gauge bosons and to fermions are precisely those of the SM Higgs boson. This is

the exact Higgs alignment limit.

To achieve the exact Higgs alignment limit, one must explain why i does not mix with other

neutral scalar fields �0
8

(8 = 2, 3, . . . =) and q0
9
. As noted above, the mixing is naturally suppressed

in the decoupling limit. But, in the alignment limit without decoupling, the absence of mixing

appears to require a fine-tuning of the scalar potential parameters. The central question of this talk

is whether there is a natural mechanism that can produce approximate Higgs alignment without

decoupling.

2. The Higgs alignment limit of the 2HDM

Let us focus on the two-Higgs doublet model (2HDM) as a prototype for an extended Higgs

sector. Consider the 2HDM scalar potential in the Φ1–Φ2 basis (e.g., see Ref. [18]),

V =<2
11Φ

†
1
Φ1 + <2

22Φ
†
2
Φ2 − [<2

12Φ
†
1
Φ2 + h.c.] + 1

2
_1(Φ†

1
Φ1)2 + 1

2
_2(Φ†

2
Φ2)2 + _3(Φ†

1
Φ1) (Φ†

2
Φ2)

+_4(Φ†
1
Φ2) (Φ†

2
Φ1) +

{

1
2
_5(Φ†

1
Φ2)2 +

[

_6(Φ†
1
Φ1) + _7(Φ†

2
Φ2)

]

Φ
†
1
Φ2 + h.c.

}

. (3)

The scalar fields Φ8 are hypercharge one, weak isospin doublets. After minimizing the scalar

potential, 〈Φ0
8
〉 = E8/

√
2 (for 8 = 1, 2) with E ≡ (|E1 |2 + |E2 |2)1/2 = 246 GeV. One is free to rephase

the fields Φ1 and Φ2 such that E1 = E2V and E2 ≡ EBV4
8 b , where 2V ≡ cos V and BV ≡ sin V, with

0 ≤ V ≤ c/2 and 0 ≤ b < 2c.

In the Higgs basis, new scalar doublet fields are defined,

H1 =

(

H+
1

H 0
1

)

≡ 2VΦ1 + BV4
−8 b

Φ2 , H2 =

(

H+
2

H 0
2

)

≡ 48[
(

−BV48 bΦ1 + 2VΦ2

)

, (4)

such that 〈H 0
1
〉 = E/

√
2 and 〈H 0

2
〉 = 0. The Higgs basis is uniquely defined up to an overall

rephasing that is parameterized by the phase angle [ [19]). Rewriting Φ1 and Φ2 in terms of the

3
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Higgs basis fields and inserting the result into eq. (3) yields the scalar potential in the Higgs basis,

V = .1H †
1
H1 +.2H †

2
H2 + [.34

−8[H †
1
H2 + h.c.]

+1
2
/1(H †

1
H1)2 + 1

2
/2(H †

2
H2)2 + /3(H †

1
H1) (H †

2
H2) + /4(H †

1
H2) (H †

2
H1)

+
{

1
2
/54

−28[ (H †
1
H2)2 +

[

/64
−8[ (H †

1
H1) + /74

−8[ (H †
2
H2)

]

H †
1
H2 + h.c.

}

. (5)

The parameters.1,2,3 and /1,2,... ,7 can be expressed in terms of the parameters of the scalar potential

in the Φ1-Φ2 basis given in eq. (3). For example [19, 20],

.34
8 b

=
1
2
(<2

22 − <2
11)B2V − Re(<2

124
8 b )22V − 8 Im(<2

124
8 b ) , (6)

/64
8 b

= − 1
2
B2V

{

_12
2
V − _2B

2
V −

[

_3 + _4 + Re(_54
28 b )

]

22V − 8 Im(_54
28 b )

}

+2V23V Re(_64
8 b ) + BVB3V Re(_74

8 b ) + 822
V Im(_64

8 b ) + 8B2
V Im(_74

8 b ) . (7)

The scalar potential in the Higgs basis is minimized when the following two conditions are satisfied,

.1 = − 1
2
/1E

2 , .3 = − 1
2
/6E

2 . (8)

Exact Higgs alignment corresponds to the absence of H 0
1
–H 0

2
mixing, which is achieved when

/6 = 0 (and .3 = 0 via the scalar potential minimum conditions). I therefore pose the following

question: how can one achieve the condition /6 = 0 naturally? In practice, to be consistent with a

SM-like Higgs boson without decoupling, it is sufficient to demand that |/6 | ≪ 1.

The simplest way to guarantee that /6 = 0 is to introduce a Z2 symmetry in the Higgs basis

such that H2 → −H2 is the only Z2-odd field of the two Higgs doublet extended Standard Model.

In this case, /6 = 0 and the tree-level properties of ℎ ≡
√

2 ReH 0
1
− E coincide with those of the

SM Higgs boson. The Z2 symmetry is unbroken by the vacuum and thus remains exact. Note

that the fermions (which are Z2-even) can only couple to H1, so that this model possesses Type-I

Higgs-fermion interactions [21]. The model just described is known as the inert doublet mode

(IDM), since the physical scalars that reside in H2 (consisting of a charged Higgs boson �+ and two

neutral scalars � and �) cannot interact singly with the particles of the SM [22, 23]. The lightest

of the Z2-odd scalars is stable and thus is a candidate for dark matter [23–28].

In the IDM, the Higgs alignment limit is exact, and the tree-level couplings of ℎ are precisely

those of the SM Higgs boson. Deviations from SM behavior can only arise at loop level due to the

effects of pairs of inert scalars that can appear in the loop. For example, there would be a small

deviation from the SM in the prediction of Γ(ℎ → WW) mediated by a charged Higgs loop.

Suppose that experimental deviations from the SM Higgs boson properties are observed that

can be attributed to a deviation from the exact Higgs alignment limit (i.e., /6 ≠ 0). The possibility

of realizing such a scenario in future LHC running is considered in Refs. [29–34]. One can

accommodate such deviations in the IDM by perturbing the model such that .3, /6 ≠ 0 [cf. eq. (8)].

However, this would constitute a hard breaking of the Z2 symmetry that governs the IDM. That is,

in the framework of a perturbed IDM, there would be no natural explanation as to why |/6 | ≪ 1.

In the next section, I shall survey other global symmetries of the 2HDM scalar potential that yield

exact Higgs alignment but allow for the possibility of soft symmetry breaking, thereby providing

a natural mechanism for the presence of a SM-like Higgs boson [35]. Alternative approaches to

symmetry based explanations of natural Higgs alignment can be found in Refs. [36–42].
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3. Global symmetries of the 2HDM bosonic sector

Two classes of global symmetries are considered below that can be imposed on the 2HDM scalar

potential [eq. (3)] and the gauge-covariant scalar kinetic energy terms: Higgs family symmetries

and generalized CP (GCP) symmetries. Among the possible Higgs family symmetries are:

Z2 : Φ1 → Φ1, Φ2 → −Φ2

Π2 : Φ1 → Φ2, Φ2 → Φ1

U(1)PQ (Peccei-Quinn [43]): Φ1 → 4−8\Φ1, Φ2 → 48\Φ2

SO(3): Φ0 → *01Φ1 , * ∈ U(2)/U(1).
where there is an implicit sum over the index 1. Note that the largest possible global symmetry of

the bosonic sector of the 2HDM is U(2), which contains within it the gauged hypercharge U(1).

symmetry. Removing the latter leaves a global symmetry that is isomorphic to SO(3).

Among the possible GCP symmetries are [44–47]:

GCP1 : Φ1 → Φ∗
1
, Φ2 → Φ∗

2

GCP2 : Φ1 → Φ∗
2
, Φ2 → −Φ∗

1

GCP3 : Φ1 → Φ∗
1
2\ +Φ∗

2
B\ , Φ2 → −Φ∗

1
B\ +Φ∗

2
2\ , for 0 < \ < 1

2
c

where 2\ ≡ cos \ and B\ ≡ sin \. Imposing the symmetries above constrains the parameters of

eq. (3) as shown in Table 1.

Table 1: Higgs family and GCP symmetries of the 2HDM scalar potential and the gauge-covariant scalar

kinetic energy terms. Constraints on the scalar potential parameters in the Φ1–Φ2 basis are shown [44–47].

symmetry <2
22

<2
12

_2 _4 Re_5 Im_5 _6 _7

Z2 0 0 0

Π2 <2
11

real _1 0 _∗
6

Z2 ⊗ Π2 <2
11

0 _1 0 0 0

U(1)PQ 0 0 0 0 0

U(1)PQ ⊗ Π2 <2
11

0 _1 0 0 0 0

SO(3) <2
11

0 _1 _1 − _3 0 0 0 0

GCP1 real 0 real real

GCP2 <2
11

0 _1 −_6

GCP3 <2
11

0 _1 _1 − _3 − _4 0 0 0

Not all the symmetries shown in shown in Table 1 are inequivalent. In particular, the Π2

symmetry in the Φ1–Φ2 basis is equivalent to the Z2 symmetry in another scalar field basis.

Likewise Z2 ⊗Π2 is equivalent to GCP2 in another scalar field basis, and U(1)PQ ⊗Π2 is equivalent

to GCP3 in another scalar field basis [35, 45, 46]. That is, there are precisely six inequivalent global

symmetries among the symmetries listed in Table 1. One can prove that any global symmetry of the

2HDM bosonic sector (under the assumption of a scalar potential consisting of terms of dimension

four or less) is equivalent to one of the six inequivalent global symmetries mentioned above [44, 45].

Finally, we note the following exceptional region of the 2HDM parameter space first introduced

in Ref. [20] and subsequently designated by the acronym ERPS in Ref. [45], in which <2
11

= <2
22

,

_1 = _2 and _7 = −_6. The ERPS exhibits one of the following symmetries: Z2 ⊗Π2, U(1)PQ ⊗Π2

(or equivalently, GCP2, GCP3), or SO(3), manifestly realized in some scalar field basis.

5
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The ERPS has a number of remarkable properties. One of these results is exhibited by the

theorem below (for which a simple proof is given in Ref. [35]):

Theorem: If _1 = _2 and _7 = −_6, then these conditions hold in any scalar field basis.

Moreover, a basis of scalar fields (which is not unique) exists such that _6 = _7 = 0 and _5 ∈ R.

4. Symmetry origin for (approximate) Higgs alignment in the 2HDM

Consider the 2HDM scalar potential in the Φ1–Φ2 basis [eq. (3)]. If <2
11

= <2
22

and <2
12

= 0,

then eq. (6) yields .3 = 0. By virtue of the scalar potential minimum conditions [eq. (8)], it follows

that /6 = 0, which corresponds to the exact Higgs alignment limit. A perusal of Table 1 then shows

that exact Higgs alignment arises if any one of the symmetries of the ERPS is satisfied. Moreover,

by virtue of the theorem quoted above, /6 = 0 in the ERPS implies that /7 = 0. That is, the inert

limit of .3 = /6 = /7 = 0 is satisfied. However, it is remarkable that in many cases, exact Higgs

alignment is preserved even if the ERPS symmetries are softly broken. In all such cases, exact

Higgs alignment is achieved in the inert limit where .3 = /6 = /7 = 0.

The complete classification of 2HDM scalar potentials with exact Higgs alignment due to a

symmetry was obtained in Ref. [35] and includes the IDM as well as scalar potentials that exhibit one

of the ERPS symmetries. However, additional models of exact Higgs alignment can be constructed

based on ERPS symmetries that are softly broken, where a residual symmetry remains unbroken

by the vacuum. As an example, consider a Z2 ⊗ Π2-symmetric scalar potential that is softly broken

by setting Re<2
12

≠ 0 (whereas, <2
11

= <2
22

and Im<2
12

= 0). In this case, the minimization of

the scalar potential yields cos 2V = sin b = 0. Note that in the Φ1–Φ2 basis, the Z2 symmetry is

broken but the Π2 symmetry remains intact. Indeed, the residual Π2 symmetry in the Φ1–Φ2 basis

is equivalent to a Z2 symmetry in the Higgs basis. Consequently, it follows that .3 = /6 = /7 = 0

[which can be checked in light of eqs. (6)–(8)] and exact Higgs alignment is preserved.

In the terminology employed in this talk, natural Higgs alignment corresponds to the existence

of a scalar whose tree-level properties coincide with the SM Higgs boson as a consequence of a

symmetry (which is unbroken by the vacuum) rather than an artificial fine-tuning of the model

parameters. If the symmetry responsible for Higgs alignment is subsequently broken by soft

symmetry-breaking terms, then the deviation from exact Higgs alignment can be naturally small.

This is in keeping with the definition of naturally small parameters in the sense of ‘t Hooft, who

argued that a small parameter is naturally small if the symmetry of the theory is enlarged in the

limit where the soft symmetry-breaking parameter is set to zero [48].

In Refs. [36, 37], “natural alignment” is defined by requiring that .3 = /6 = 0 is satisfied

independently of the scalar potential minimum conditions. In particular, .3 = /6 = 0 given in

eqs. (6) and (7) must be satisfied independently of the values of V and b. In light of this stricter

definition of “natural,” it follows that “natural alignment” implies that <2
11

= <2
22

, <2
12

= 0,

_1 = _2 = _3 + _4, and _5 = _6 = _7 = 0, which are the conditions for the SO(3) symmetry2

exhibited in Table 1 (and corresponds to the so-called maximally symmetric 2HDM of Ref. [36]).

2If one assumes real scalar potential parameters and b = 0, then .3 = /6 = 0 independently of V yields <2
11

= <2
22

,

<2
12

= 0, _1 = _2 = _3 +_4 +_5, and _6 = _7 = 0, which are the conditions for the GCP3 symmetry exhibited in Table 1.

However, this is a basis-dependent result, since the same criteria applied to a U(1)PQ ⊗ Π2-symmetric scalar potential

(which is equivalent to GCP3 in another scalar field basis) would not yield “natural alignment.”

6
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In this talk, I will not employ the stricter version of natural Higgs alignment advocated in

Refs. [36, 37]. Since I am interested in scenarios where the deviation from exact Higgs alignment

is naturally small in the sense of ’t Hooft [48], it is a useful exercise to classify the softly-broken

symmetries of the ERPS in which /6 ≠ 0. A complete list of possible softly broken symmetries

with /6 ≠ 0 (after imposing the scalar potential minimum conditions) can be found in Tables 2,

3 and 4. The cases shown below where <2
�
= 0 arise when the vacuum breaks a residual U(1)PQ

symmetry (thereby generating a massless Goldstone boson). Such cases are phenomenologically

untenable and can be excluded from further consideration.

Table 2: Scalar potentials in the Φ1–Φ2 basis with a softly-broken Z2 ⊗ Π2 symmetry, where _ ≡ _1 = _2,

' ≡ (_3 +_4 +_5)/_, Im_5 = _6 = _7 = 0 and /6 = − 1
2
B2V4

−8 b {

[_(1−') +2_5 sin2 b]22V − 8_5 sin 2b
}

≠ 0

[after making use of eq. (7)].

V sin 2b <2
11

, <2
22

<2
12

CP-violation? comment

B2V ≠ 0 ≠ 0 <2
11

≠ <2
22

complex explicit Im
[

<2
12

]2
≠ 0

B2V ≠ 0 ≠ 0 <2
11

≠ <2
22

Im
[

<2
12

]2
= 0 spontaneous 0 < |<2

12
| < 1

2
_5E

2B2V

B2V ≠ 0 ≠ 0 <2
11

≠ <2
22

Im
[

<2
12

]2
= 0 no |<2

12
| > 1

2
_5E

2B2V

22V = 0 ≠ 0 <2
11

= <2
22

complex no <2
12

≠ 0

B2V22V ≠ 0 0 <2
11

≠ <2
22

Im
[

<2
12

]2
= 0 no

Table 3: Scalar potentials in theΦ1–Φ2 basis with a softly-brokenU(1)PQ⊗Π2 symmetry, where_ ≡ _1 = _2,

_5 = _6 = _7 = 0, ' ≡ (_3 + _4)/_, Im(<2
12
48 b ) = 0, and /6 = − 1

2
_B2V22V4

−8 b (1 − ') ≠ 0 [after making

use of eq. (7)]. Note that <2
�
= 2 Re(<2

12
48 b )/B2V ≥ 0. The scalar potential and vacuum are CP-conserving.

V <2
11

, <2
22

Re(<2
12
48 b ) ' comment

B2V22V ≠ 0 <2
11

≠ <2
22

> 0 ' ≠ 1

B2V22V ≠ 0 <2
11

= <2
22

> 0 ' > 1 <2
�
=

1
2
_E2 (' − 1)

B2V22V ≠ 0 <2
11

≠ <2
22

0 |' | < 1 <2
�
= 0

Table 4: Scalar potentials in the Φ′
1
–Φ′

2
basis with a softly-broken GCP3 symmetry, with _′ ≡ _′

1
= _′

2
,

Re_′
5
= _′

1
− _′

3
− _′

4
, Im_′

5
= _′

6
= _′

7
= 0, and /6 = 8_′

5
B2V′ sin b′4−8 b

′ (cos b′ + 822V′ sin b′) ≠ 0 [after

making use of eq. (7)]. In all cases, the scalar potential and vacuum are CP-conserving.

V′ b′ <′ 2
11

, <′2
22

<′2
12

comment

B2V′22V′ ≠ 0 sin 2b′ ≠ 0 <′ 2
11

≠ <′ 2
22

complex (≠ 0)

B2V′22V′ ≠ 0 sin 2b′ ≠ 0 <′ 2
11

≠ <′ 2
22

real (≠ 0) <2
�
= _′

5
E2

B2V′22V′ ≠ 0 cos b′ = 0 <′ 2
11

≠ <′ 2
22

pure imaginary (≠ 0)

B2V′22V′ ≠ 0 cos b′ = 0 <′ 2
11

≠ <′ 2
22

0 <2
�
= _′

5
E2

B2V′22V′ ≠ 0 sin b′ ≠ 0 <′ 2
11

= <′ 2
22

pure imaginary (≠ 0) <2
�
= 0

22V′ = 0 sin 2b′ ≠ 0 <′ 2
11

= <′ 2
22

pure imaginary (≠ 0) <2
�
= 0

22V′ = 0 sin 2b′ ≠ 0 <′ 2
11

= <′ 2
22

real (≠ 0) <2
�
= _′

5
E2

22V′ = 0 sin 2b′ ≠ 0 <′ 2
11

= <′ 2
22

complex (≠ 0) <2
�
≠ 0, _′

5
E2

7
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In light of the results exhibited in the three tables above, we have successfully achieved natural

approximate Higgs alignment in the bosonic sector of the 2HDM. Of course, for a truly successful

model of natural approximate Higgs alignment, one must extend the symmetries of the ERPS to

the Yukawa interactions. First, consider a model with one generation of quarks and leptons. One

can quickly conclude that the Yukawa sector of a one generation model does not respect any of the

symmetries of the ERPS. That is, the Yukawa interactions (which involve dimension-four interaction

terms) constitute a hard breaking of the ERPS symmetries, which necessarily spoils the naturalness

of approximate Higgs alignment as one cannot maintain small symmetry breaking squared-mass

parameters without fine tuning.

In a model with three generations of quarks and leptons, one can extend the ERPS symmetries

to the Yukawa sector by making use of the quark and lepton flavor degrees of freedom in defining

the symmetry transformations of the fermion fields. A comprehensive attempt to construct Yukawa

interactions that respect a GCP2 or GCP3 symmetry was presented in Ref. [49]. Unfortunately,

none of the resulting models were phenomenologically viable, either due to the presence of a

massless fermion or (in one case) due to insufficient CP violation, with a corresponding Jarlskog

invariant [50, 51] that was nearly three orders of magnitude below the experimental data.

In Ref. [52], a different strategy was employed. To extend the GCP2 and GCP3 symmetries to

the Yukawa sector, vector-like top (and bottom) quark partners were added to the Standard Model.

These symmetries are then broken softly by vector-like quark mass parameters, thereby providing

a mechanism for generating the soft symmetry breaking, <2
11

≠ <2
22

and <2
12

≠ 0, exhibited in

Tables 2, 3 and 4. A simple model that illustrates this strategy is briefly treated in the next section.

5. A softly-broken U(1)PQ ⊗ �2-symmetric 2HDM with vector-like fermions

The 2HDM with a GCP3-symmetric scalar potential can be realized in another scalar field

basis as a U(1)PQ ⊗ Π2 symmetry, where [cf. Table 1]

<2
11 = <2

22 , _1 = _2 , <2
12 = _5 = _6 = _7 = 0 . (9)

To extend this symmetry to the Yukawa sector, we introduce vector-like fermions * and* [52, 53].

Two-component SM fermions [54] are denoted by lower case letters (e.g. doublet fields @ = (D, 3)
with hypercharge . = 1/3 and singlet fields D̄ with hypercharge .D̄ = −4/3), and vector-like singlet

two-component fermions are denoted by upper case letters. Note that .D̄ = .
*

= −.*. Under the

U(1)PQ and Π2 symmetries, the fields transform as shown in Table 5 below.3

Table 5: Transformation of the scalar and fermion fields under the U(1) ⊗ Π2 symmetry.

symmetry Φ1 Φ2 @ D̄ * *

Π2 Φ2 Φ1 @ * D̄ *

U(1)PQ 4−8\Φ1 48\Φ2 @ 4−8\ D̄ 4−8\* 4±8\*

3The down-type quarks and leptons can also be included by introducing the corresponding vector-like fermion

partners [52], in which case the Type-I, II, X or Y Higgs-fermion Yukawa couplings [21, 55, 56] can be realized.
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Φ2 Φ2

@

D̄

Φ1 Φ1

@

*

Figure 1: One-loop contributions to Δ<2 ≡ <2
11
− <2

22
.

The Yukawa couplings consistent with the U(1)PQ ⊗Π2 symmetry and the SU(2)×U(1)Y gauge

symmetry are

LYuk ⊃ HC

(

@Φ2D̄ + @Φ1*
)

+ h.c. (10)

However, this model is not phenomenologically viable due to the experimental limits on vector-

like fermion masses and the existence of a massless Goldstone scalar if the U(1)PQ symmetry is

spontaneously broken. These problems are easily avoided by introducing SU(2)×U(1)Y preserving

mass terms,

Lmass ⊃ "*** + "DD̄* + h.c. (11)

The U(1)PQ symmetry is explicitly broken if "*"D ≠ 0, whereas the Π2 discrete symmetry is

explicitly broken if "* ≠ "D. Note that the symmetry breaking is soft, so that corrections to the

scalar potential squared-mass parameters are protected from quadratic sensitivity to the cutoff scale

Λ of the theory.

The mass terms introduced in eq. (11) are also responsible for mixing between the top quark

and its vector-like top partners. It is convenient to introduce the following two parameters:

") ≡ ("2
* + "2

D)1/2 , tan W ≡ "D/"* . (12)

After electroweak symmetry breaking, the resulting fermion mass matrices can be diagonalized.

Ultimately, the top sector mixing is governed by the parameters W, tan V, HC and ") [52, 57].

One can estimate the contributions to Δ<2 ≡ <2
22

− <2
11

and <2
12

due to the presence of the

U(1)PQ×Π2 symmetry breaking mass terms given in eq. (11). For example, corrections to Δ<2 = 0

arise at one-loop from the diagrams exhibited in Fig. 1. An explicit computation yields [52],

Δ<2 ≡ <2
22 − <2

11 ∼ ^("2
* − "2

D) −
3H2

C ("2
*
− "2

D)
4c2

ln(Λ/")) . (13)

The above result includes a finite threshold correction proportional to ^. Due to the soft nature of

the U(1)PQ×Π2 symmetry breaking, we see that Δ<2 depends logarithmically on the cutoff scale Λ.

Moreover, if "* = "D, then the Π2 symmetry is unbroken and the relation <2
11

= <2
22

is protected.

Likewise, a similar analysis of one-loop induced Φ1–Φ2 mixing yields [52],

<2
12 ∼ ^12"*"D +

3H2
C "*"D

4c2
ln(Λ/")) , (14)

which includes a finite threshold correction proportional to ^12. Once again, <2
12

depends logarith-

mically on the cutoff scale Λ. Moreover, if "*"D = 0, then the U(1)PQ symmetry is unbroken and

the relation <2
12

= 0 is protected.
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Figure 2: Regions allowed by experimental bounds and tuning constraints for different values of ' ≡ (_3 +_4)/_, with

an <2
12

and Δ<2 tuning of at most 5% [assuming that ln(Λ/") ) = 3]. The two panels show three different ' curves;

the white regions of the parameter space are ruled out. The ruled out areas expand somewhat as ' decreases, with the

borders of the allowed shaded regions indicated by the corresponding contours. For ' = −0.5, the area enclosed by the

closed dashed blue contour in panel (a) is also ruled out. Type-I Yukawa couplings are employed and, two choices for W

are shown. The shrinking of the allowed parameter space as W increases is due primarily to the behavior of the measure

of fine-tuning of the parameter <2
12

. Taken from Ref. [52].

We proceed to scan over the parameter space to see whether regions of approximate Higgs

alignment without decoupling survive [52]. In our numerical scans we chose ln(Λ/")) = 3 and

") = 1.5 TeV, and two benchmark points, W = 0.1 and W = 0.3, were examined subject to the

following phenomenological constraints:

• Existence of a SM-like Higgs boson with mass <ℎ ≃ 125 GeV, consistent with LHC Higgs

data [1, 2].

• Heavier Higgs bosons in the parameter regime of Higgs alignment without decoupling should

have so far evaded LHC detection [58–63].

• Constraints on the charged Higgs mass from flavor constraints in the Type-I 2HDM [64].

• Constraints on the vector-like top quark masses bounds and mixing parameters based on

nonobservation of vector-like top quarks in LHC searches [65–68].

Finally, note that although there is only logarithmic sensitivity to the cutoff scale Λ, one cannot

take it arbitrarily large without an excessively large fine-tuning of the parameters required to keep the

corrections to Δ<2 and <2
12

small (such that the Higgs alignment limit is approximately realized).

For the same reason, one cannot take the vector-like top mass parameters too large. This provided

motivation for our choice of cutoff scale of Λ ≃ 30 TeV and ") = 1.5 TeV as noted above.

In Fig. 2, two results from the parameter scans of Ref. [52] are exhibited. These results

show that regions of approximate Higgs alignment without decoupling remain phenomenologically

viable. In particular, new scalars beyond the SM Higgs boson with masses below 500 GeV can be

present with opportunities for future discovery at the LHC. Moreover, if the framework presented

here is realized in nature, then vector-like top partners must exist with masses that are not much

larger than a few TeV, which again presents opportunities for discovery in future runs at the LHC.

10
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6. Discussion and Conclusions

In this talk, I have presented a framework for realizing an approximate Higgs alignment without

decoupling. This framework relies on first finding a symmetry in which the Higgs alignment is

exact and then breaking the symmetry softly to generate small deviations in the tree-level couplings

of a SM-like Higgs boson from their Standard Model values. In Section 5, a low-energy effective

theory (valid up to a cutoff scale of roughly 30 TeV) was exhibited in which soft-symmetry breaking

terms in the Yukawa sector provide the source for the symmetry-breaking squared mass terms of

the scalar potential, which are necessary for the generation of small deviations from SM-like Higgs

behavior. It would be an interesting exercise to find an ultraviolet completion of the model, which

could provide insight into the origin of the ERPS symmetries and their soft breakings.

In contrast to the approach taken in this talk, there is a different strategy for achieving ap-

proximate Higgs alignment naturally, which has been advocated in Refs. [36–38, 69–72]. In this

approach, one imposes the relevant symmetries of the scalar potential at a very high energy scale "-

(e.g., the Planck scale). However, in this approach one must accept the presence of hard symmetry

breaking terms arising from the Yukawa sector. The effect of these hard symmetry breaking terms is

to modify the parameters of the scalar potential at the electroweak scale due to the contributions of

the Yukawa couplings to the renormalization group running. In this way, the size of the deviations

from the exact Higgs alignment limit is controlled. (Custodial symmetries [73, 74], which are not

respected by the gauge covariant scalar kinetic energy terms, can be similarly treated [75, 76].)

This program provides a viable alternative for generating approximate Higgs alignment without

decoupling. Of course, an ultraviolet completion of the model is still necessary to explain the origin

of the symmetry constraints on the scalar potential parameters that were imposed at the scale "-.

If an extended Higgs sector with additional scalars exists with masses not significantly larger

than the scale of electroweak symmetry breaking, then one needs to understand why the observed

Higgs boson ℎ is SM-like. The inert doublet model (IDM) provides an example in which the tree-

level properties of ℎ are exactly those of the SM, with deviations entering only via very small loop

corrections. If additional Higgs scalars are found and/or deviations of ℎ from its anticipated SM

behavior (which are too large to be compatible with the IDM) are confirmed in future experiments,

then a symmetry-based explanation for why the Higgs boson is SM-like could be suggesting new

physics in the Yukawa sector that involves vector-like partners to the quarks (and leptons).

Ultimately, one of the top priorities of future collider experimentation is to answer the question

of whether the Higgs sector is minimal or non-minimal, and if the latter, whether the mass scale

associated with the new scalars lies significantly beyond the scale of electroweak symmetry breaking.

The answer to this question will have a profound effect on addressing the fundamental nature of the

Higgs boson and the origin of the hierarchy of scales from the electroweak to the Planck scale.
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