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1. Introduction

The Einstein-Maxwell-dilaton action reads
1
S = / d4x\/_—gﬁ (R —2(8¢) — 2P F? - V(¢)) , (D)
K
where R is the Ricci scalar, F,, is the U(1) field strength and A the cosmological constant. Denoting

g = e?? as the gauge couplings g = e®?, then:

V(g) = z_A *(3a? - 1) (5)_2/a2 +(3-a? (5)2 + 82 (i)l_w Q)
3 (1 +a?)? 20 20 20 ’

with the asymptotic value gy = e*?° with ¢, the asymptotic value of ¢(r) for r — oco. For @ = 1:

1 g &2
Vig)= A |0+ E al. 3)
318 g

where one could associate the first, second and third terms to D-brane fluxes, one-loop effect and
tree-level cosmological constant contributions, respectively. Further dicussion of this potential can
be found in [1] .

A spherically symmetric solution describing a black hole metric is given by:

202

—(1/2
ds? = - [(1 - (1-5) el T H22 (1-%) |+q2] dr?

r

1-a? 202 -1
+(1-2)(1-%)i? FH? (1-5) MZ] dr?

r

202 “)
+r? (1 — =) 1e? dQJ,
a2
62(1/(1) — eza¢0 (1 _ r_—) 12+a2 ,
2(14)5
— 1 Qe
F = G T dr Adr.
where the parameters M and Q are related to the charge O and mass M through:
2 17 2632 2 2 172
M M M
m=tM g KO = o= )
8 32n? 0? 2 Q2

with «? = 1/M1% = 87G = 87 and G Newton’s constant. H? is the Hubble parameter H> = |A|/3.
The A = 0 corresponds to the asymptotically flat black hole solution [2, 3], upper sign to an
asymptotically dS, lower sign to AdS space-time. These solutions have only two independent
parameters r, r_ (with an appropriate choice of signs [1])

re = M+ /M2 - (1 — a?)Q2e2a%0
.= (1+02)Q262(Y¢0 (6)
- M+VM27(1702)Q262(r¢0 ’

e Whena > 1: the ry > [(a/2 - 1/(a? + 1)] r_ part of the (r,,r_) plane describes the whole
(M, Q) one. The portion r;. < [(a/2 -1)/(a? + 1)] r corresponds to the unphysical negative
masses M < 0.



Dilatonic (Anti-)de Sitter Black Holes and Weak Gravity Conjecture Karim Benakli

7~ Cauchy surface

"+ event horizon

.. Te  Cosmological horizon

Figure 1: Cauchy and horizon surfaces for de Sitter black holes with a not too large mass and a small enough
charge.

e When 0 < a < 1: M? < (1 — a?)Q%e**% is not allowed as r,r_ and the metric become
complex. Therefore, a part of the (M, Q) plane is inaccessible to the solution. Again, the
region ry < |(1 —-a?)/(1 + a2)| r_ is unphysical.

For Reissner-Nordstrom solutions with @ = 0, r; and r_ do not appear separately in the metric,
but only through the combinations r; +r_ and r,.7_ thus there is no issue of complex valued metrics.
When a # 0, r_ is the location of a singular surface while 7, is the only event horizon of the black
hole. The condition for the singularity to be shielded by the horizon is simply r, > r_, that is:

026270 < (1 + a/z) M2 %)

In this case of asymptotically flat black holes, the complex valued region is beyond the reach of the
black hole solution.

2. Dilatonic de Sitter Black Holes: A > 0

21 a=0and A >0

When a = 0, the dilaton decouples and we recover the Reissner-Nordstrom-de Sitter solution
studied in [4].

The horizons of this dS-RN black hole metric are discussed in details in [4, 9]. They are
obtained by studying the roots of the quartic polynomial:

P(r)y=—rf(r)=172r* —=r* + 2Mr - Q*. (8)
as function of the parameters M, Q,[. The condition for the existence of the black hole is
0> < M?* + M*H? + O(M°H*) )
with  M?H? < % The phase space is illustrated in Figure 2.

22 a=1land A >0

For @ # 0, one needs to distinguish between several cases, corresponding to different be-
haviours of ggg. Here, r does not determine the location of the horizon anymore, while r_ still
indicates the coordinate of a singular surface.
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The metric in the @ = 1 case is simple enough to allow for explicit expressions of the black
hole horizons
-1

2M 2M
ds?=—{1-=——H?r(r - 21))) dr* + (1———H2r(r —-2D)| dr? + r(r - 2D)dQ2, (10)
r r
where the scalar charge D is given by D = Q;fj;)o and r = r— = 2D is a singular surface. The

horizons correspond to the roots of the polynomial P(r) located in the region r > 2D outside the
singularity, where:
P(r) = H*r* = 2DH*/* —r +2M (11)

We are interested only in solutions of P(r) = 0 in the region r > 2D outside the singularity. As
P(r) — +oo,there can be 0,1 or 2 roots, depending on the sign of P at the minimum R, of P(r)
r—+00

and that of P(2D) = 2(M — D) (R, > 2D). When M < D, P only has one root. If M > D, there
can be 0,1 or 2 roots, depending on the sign of P at the minimum R,:

[ 3 (8 2 16 2
P(R.)=U(D) — +[4D%2+ — [ —=D?H? + = |, with U(D) = ——D*H* - =D +2M 12
(Ry)=U(D) H2(27 9) with U(D) > 3 (12)

We denote D, the zero of U(D). For D > D; — U(D) < 0, P(R,) is negative and P(r) has two
roots. In the region D < Dj, where U(D) is positive, one reformulates the zeros of P(R,) as the
zeros of a simpler function:

3
P(R) =0 - (g) H*MQ(D) = 0,

where
1 9 2TM 1
D)=D’+ D? + D - + , 13
o) 16H2M 8H? 16H?> 16H*M (13
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Figure 2: @ = 0 and A > 0 black holes. Starting with a not too large mass and a small enough charge,
one has three horizons (the blue area), then changing the mass and the charge, one can describe the different
parts of the diagram. On the right, the relative location of the would-be horizon surfaces are represented.
The no-go sign corresponds to naked singularity while in the crossed figure the black hole has "eaten" the de
Sitter space patch.



Dilatonic (Anti-)de Sitter Black Holes and Weak Gravity Conjecture Karim Benakli

thus P(R;) < 0 when Q(D) > 0. If Q(0) > 0, Q(D) > 0 for all D. If Q(0) < 0, then there exist a
value D = Dy such that Q(Dg) = 0:

D<Dy— Q(D)<0= P(R,)>0= P(r)#0, Vr e R*
D=Dy— Q(D)=0
D > Dy — Q(D) > 0= P(R,) <0.

Imposing the necessary condition D>H? < %, we shall now group all cases. There are three
possibilities corresponding to 0, 1 or 2 roots.

* P has two roots: D < M and D > Dj. Otherwise if D < M and D < Dy, then M*H* < &

or M*H? > 5 and Q(D) > 0 & D > D,

* P has one root: D > M (one of the two roots above is behind the singularity) or D < M and
P(R,) =0, D = Dy with D < D;(the two horizons discussed above coincide).

e Phasnoroot: D < M, D < Dy, D < Dy and M*H? > %

The results are represented in figure 3:
* The green curve corresponds to D = Dy,

* The yellow oneto M = D. Below, the metric describs a naked singularity with a cosmological
horizon.

* In the region between the green and the yellow curves, gives the region where black hole

solutions have two horizons. For Q = 0, M = —=—, limits the regions with two and zero

i V27H’
horizons.

* The dashed blue curve the function Dy, is below M = D for D*H? < %, is only there for
comparison with the flat space-time case.

* The red curve is defined by 2DH = 1. On its right, the singularity radius is bigger than the
Hubble radius.

1
2.3 a>%andA>0

The case @ = 1 could have been solved explicitly. Instead, it was treated with a method that
can be generalized to other values of @ # 1 where the equations can not be solved analytically.
First, note that in the @« — oo limit of (4), the Schwarzschild-de Sitter solution can be recovered:

the sign of M — \/%H separates between metrics describing naked and shielded singularities.

Second, for generic value of @, we construct a function F(r) = A(r) + B(r) that vanishes for
the same values of r than ggp and that can be split in two parts that are easy to study graphically:
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Figure 3: @ = 1 and A > 0 black holes. Starting with a not too large mass and a small enough charge,
one has three horizons (the blue area), then changing the mass and the charge, one can describe the different
parts of the diagram. On the right, the relative location of the would-be horizon surfaces are represented.
The no-go sign corresponds to naked singularity while in the crossed figure the black hole has "eaten" the de
Sitter space patch.

302-1
A(r) =r —ry,and B(r) = H*r? (1 — =) «?1 . The intersection points of the two curves defined by

A and B give the zeros of F.

We find that for @ > 1, the parameter space can be split following the relative values of r; and

* Forrp, < r_, A(r-) > 0 and F(r) has only one zero, corresponding to the cosmological

horizon.

e Forr, > r_, A(r_) < 0,here can be two, one or zero solutions for F(r) = 0.

The detailed analysis is given in [1] where we have chosen for the purpose a value @ = 2..

1
24 0<a<7§andA>0

This is probably the case with the newest, unexpected, feature: the extremal case is not reached.

To reach the extremal case, for a fixed mass, one needs to increase the black hole charge. But as
; 2,2 M?

one tries to go beyond Q?e*¥%0 = (-ad)’

Consider two particles, approximative description of two black holes very far away of each

other with the same mass (m(¢) = M) and charge (¢ = Q). The overall force is proportional to

M? + aMD — 2*? Q2. The force between these two states can be obtained from the approximate

the metric becomes complex.

non-relativistic potential Veg(r):
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Figure 4: & > L and A > 0 black holes. Starting with a not too large mass and a small enough charge,
one has three horizons (the blue area), then changing the mass and the charge, one can describe the different
parts of the diagram. On the right, the relative location of the would-be horizon surfaces are represented.
The no-go sign corresponds to naked singularity while in the crossed figure the black hole has "eaten" the de
Sitter space patch.

moM +m{D — ¢***qQ

Verr(r) = -
r
1 e4a¢0q2 5 ) e 1E2 m”’ 2
o bremrg oo b2 _ 2) _ LET2Mo
p7 R O°-(l-«a )(e °0“ - D ) 2m2D i (14)
0 0 0

E>1+a® ,m] E my  E* L, (m\? 1
Ity e Lop 04 p? (—0) +0 (—3) .
my @ m my my my mg mo r

This force vanishes for M? = % and M? = (1 - afz)ez“";Qz. The latter is the limit where

the metric will become complex. Moreover, the amplitude for emission of a pair of dilatons by the
point-like particle diverges at this point fora < 1.

3. Dilatonic Anti-de Sitter Black Holes

In the AdS case, we study of the zeros of the much simpler function:

2|

3a2-1 1-0?
Faas(r)=r—ry + H*3 (1 - r__) R E—— (1 - r__) t+a? goo(r). (15)
r r

Forry < r_,Fags > Oforallr € [r_, oo|. Again, we split Fags = Aaas+Bads WithAAds(r) =r—ry,
2

and Bays(r) = —H?*r3 (1- rT’) 1+ which is always negative. In this way, the problem is again
recast in terms of the intersection points of A4g4s and Bags. We split the discussion into three parts
depending on the value of a.
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Figure 5: @ = & and A > 0 black holes. Starting with a not too large mass and a small enough charge,
one has three horizons (the blue area), then changing the mass and the charge, one can describe the different
parts of the diagram. On the right, the relative location of the would-be horizon surfaces are represented.
The no-go sign corresponds to naked singularity while in the crossed figure the black hole has "eaten" the de
Sitter space patch.

a* > %: the discriminant between the black hole regime and the naked singularity is given by
re =r_ie. Q%e?% = (1 + o®)M>.

a? = %: Fpaas(r)=r—-r . +H 213 and the condition of absence of a naked singularity is given
in[l].

a? < %: Instead of the complex metric issue, the new feature now is the presence of black
holes with two horizons.

The extremality condition can be written now for H — 0 as

2 2 2 2

_2 _ 3—a  ltaZ 3—a”  ltaZ
0%e2%% = (1 + @)M? + &*(1 + @®) =2 ¢ M1=a? H1-a2 + o(M 1-a? H1-a?). (16)
We see that fora = 1/ V3, it reduces to
2 sage _ 4y A 4pp2
Qe :gM —3—4MH +0(MH) (17)

It is the same equation as for the dS case, with a difference of sign. For @ — 0, the power of H
tends to 1, but the coefficient in front vanishes. This is coherent with [9], since there is no linear
term in the expansion for small H.
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One (event) horizon Two horizons

Figure 6: Phase space of black hole in the asymptotically Anti-de Sitter space case.
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