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Topological terms in dilaton gravity Claudio Corianò

1. Introduction

The analysis of the conformal backreaction, describing the modifications induced on a back-
ground gravitational metric by the integration of a conformal sector, could play an important role
in the physics of the early universe, setting the initial conditions for its later evolution.
The way we will address this point is within the context of semiclassical gravity, where the loop
corrections modify the metric by integrating out the quantum matter fields. The approach follows
closely Sakharov’s formulation of induced gravity, where all the gravitational terms, including the
Einstein-Hilbert one, are induced by quantum matter propagating in a curved spacetime, where the
original metric is left to "freely flap in the breeze" [1].

At a second stage, the cosmological evolution follows by adding classical matter to such a
theory of gravity, which is modified by higher powers of the curvature, in the form of a classical,
conserved stress energy tensor, as in any traditional cosmological approach.
The structure of the induced gravity action, in principle, covers all powers of R and includes di-
mensional constants, coming from the quantum corrections, generating terms of the form [1]

Se f f ∼
∫

d4x
√

g
(
Λ+ c1(g)R+ c2“R2”

)
, (1.1)

corresponding to a cosmological constant, the Einstein-Hilbert action and to generic “R2” terms.
However, if we limit ourselves only to the conformal contributions, there are drastic simplifications
in the result, since the only dimensional parameter of the theory comes from the renormalization
scale.
The ordinary steps to be followed in order to characterize such conformal contributions start from
the (Euclidean) functional integral,

Z(g) = N
∫

Dφe−S0(g,φ), Z(δ ) = 1, (1.2)

where g is the metric and φ the quantum field that is integrated out. Its logarithm, S (g), is our
definition of the effective action. S0(g,φ) is the classical action. As a reference for our discussion,
as already mentioned, we may assume that S0(φ ,g) describes, for instance, a free scalar field φ in
a generic background. The action, in this case, is given by

S0(g,φ) =
1
2

∫
ddx
√
−g
[
gµν

∇µφ∇νφ −χ Rφ
2] , (1.3)

where we have included a conformal coupling χ(d) = 1
4
(d−2)
(d−1) , and R is the scalar curvature. This

choice of χ(d) guarantees the conformal invariance of this action in d dimensions as well as intro-
duces a term of improvement for the stress-energy tensor in the flat limit, which becomes symmetric
and traceless. As usual Z(g), in the Feynman diagrammatic expansion, will contain both connected
and disconnected graphs, while S (g) collects only connected graphs. It is easy to verify that this
collection corresponds also to 1PI (1 particle irreducible) graphs only in the case of free field theo-
ries embedded in external (classical) gravity.
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It is summarized by the following picture, where we sum over the external graviton lines

S (g) =∑
n "(n-point)

11

, (n-point) (1.4)

that we expand in the form

S (g)B≡S (ḡ)B+
∞

∑
n=1

1
2nn!

∫
ddx1 . . .ddxn

√
g1 . . .

√
gn 〈T µ1ν1 . . . T µnνn〉ḡBδgµ1ν1(x1) . . .δgµnνn(xn),

(1.5)
in terms of bare (B) nT correlators, with

〈T µ1ν1(x1) . . .T µnνn(xn)〉B ≡
2
√

g1
. . .

2
√

gn

δ nSB(g)
δgµ1ν1(x1)δgµ2ν2(x2) . . .δgµnνn(xn)

, (1.6)

where
√

g1 ≡
√
|detgµ1ν1(x1) and so on. The sum of diagrams provides an exact one-loop result,

since the loop contribution is conformal if we limit ourselves to free field theory, as is here the case.
As we move down to d = 4, the series needs to be renormalized and the special property of the re-
sult is that such renormalization involves only two specific counterterms, of deep significance: the
Euler-Poincarè density (Gauss-Bonnet term) and the squared of the Weyl tensor.

2. The counterterms

In DR the divergences in the effective action appear as single poles in ε = d−4 if we couple
a conformal sector to gravity, and the expansion around d = 4, for a curved background, requires
some special care. "Extra" degrees of freedom of the higher dimensional metric survive on the
4-dimensional manifold, after we perform the limit. Most of the ambiguities associated with the
structure of the effective action are related with this aspect of the regularization, which does not
have a unique solution. We may resort to phenomenological intuition in order to appreciate the
expressions of the dilaton gravities that result from the procedure. We are going to summarize
some of the points investigated in the near past, underlying some key open issues that will be
discussed in a forthcoming work.

The two counterterms to be included are VE and VC2 , giving a regularized effective action of
the form

ZR(g)=N
∫

DΦe−S0(g,Φ)+b′ 1
ε
VE (g,d)+b 1

ε
VC2 (g,d), (2.1)

where N is a normalization constant, and

VC2(g,d)≡µ
ε

∫
ddx
√
−gC2,

VE(g,d)≡µ
ε

∫
ddx
√
−gE, (2.2)
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are the Gauss-Bonnet and the Weyl terms respectively, where µ is a renormalization scale. The two
counterterms are given in terms of the dimension-4 curvature invariants

E4 ≡ Rµναβ Rµναβ −4RµνRµν +R2, (2.3)

C(d)αβγδC(d)
αβγδ

= Rαβγδ Rαβγδ −
4

d−2
Rαβ Rαβ +

2
(d−2)(d−1)

R2. (2.4)

Much of the discussion about the structure of the effective action is related to the correct computa-
tion of such counterterms in dimensional Regularization (DR) and the possibility of performing a
further finite renormalization of the regulated theory, in order to derive two different formulations
of the effective action. The two formulations are not equivalent, since they correspond either to
a quartic or to a quadratic dilaton gravity. In the case of a quadratic theory, the dilaton can be
removed from the spectrum, thereby generating a nonlocal action, corresponding to the celebrated
Riegert’s action [2]. The nonlocal theory is entirely formulated in terms of the original metric
g, while quartic dilaton gravities are expressed in terms of a fiducial metric ḡ and of a dilaton,
according to the conformal decomposition

gµν = ḡµνe2φ . (2.5)

In the quadratic case, as already mentioned, the dilaton can be entirely removed. Notice that the
regularization process identifies a specific fiducial metric ḡ, which is uniquely singled out, modulo
the ordinary diffeomorphisms of the background manifold. The local shift symmetry

gµν → gµνe−2σ , φ → φ +σ (2.6)

which is part of the conformal decomposition above, is broken as we try to remove the divergences
of the effective action. This is quite obvious if one looks at the structure of the Wess-Zumino form
of the effective action, which is expressed as difference of a functional in the g and ḡ metrics.
In other words, the fundamental fields of the renormalized theory are the fiducial metric and the
dilaton. The dynamics, as we are going to review, is constrained by the anomaly that relates the
equations of motion of φ and ḡ.
This reformulation of the quartic effective action is also accompanied by the appearance of a new
fundamental scale f , characterising the breaking of the conformal symmetry. The scale is simply
introduced by normalizing the dilaton to be of mass dimension one: φ → φ/ f . For this reason, one
may wonder about the significance of both actions, which may cover completely different energy
regions in the dynamics of the early universe. While local actions can be expanded in the 1/ f
scale - up to quartic order - in the nonlocal formulation, the expansion variable is R�−1, which is
dimensionless and suitable for a description of the effective action close to the Planck scale. This
expansion has been compared, around flat spacetime, with the prediction coming from the ordinary
perturbative realization of the effective action, as defined by the functional integral.

2.1 Consistency conditions

VE induces only a finite renormalization of the anomaly action. In general, the breaking of
Weyl invariance generates the anomalous variation

δσS =
1

(4π)2

∫
d4x
√

gσ
(
c1Rµνρσ Rµνρσ + c2RµνRµν + c3R2 + c4�R

)
(2.7)
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which is constrained by the Wess-Zumino consistency condition

[δσ1 ,δσ2 ]S = 0 (2.8)

to take the form

δσS =
1

(4π)2

∫
d4x
√

gσ

(
b1C(4)

µνρσC(4)µνρσ +b2E4 +b3�R
)
, (2.9)

in terms of the dimension-4 curvature invariants given above. Obviously, the inclusion of VE as a
counterterm in the renormalization procedure is not dictated by the need of canceling any singular-
ity, due to its evanescence at d = 4. Notice that (C(d))2 has a parametric dependence on d

C(d)
αβγδ

= Rαβγδ −
4

d−2
(gα(γ Rδ )β −gβ (γ Rδ )α)+

4
(d−1)(d−2)

gα(γ gδ )β R , (2.10)

gα(γ gδ )β ≡
1
2
(
gαγ gδβ +gαδ gγβ

)
. (2.11)

The choice of (C(d))2 ≡C2 instead of (C(4))2 in the counterterm action takes to variations which
are deprived of the total derivative (�R) term in (2.9). With such a choice of (C(d))2, one derives
the relation

δ

(d−4)δσ(x)

∫
ddx
√
−g(C(d))2 =

√
−g(C(d))2, (2.12)

which differs from an analogous one

δ

(d−4)δσ(x)

∫
ddx
√
−g(C(4−ε))2 =

√
−g

(
(C(4))2 +

2
3
�R

)
(2.13)

obtained by the replacement of (C(d))2→ (C(4−ε))2 in the integrand, followed by an expansion of
the parametric dependence on ε , inducing a finite renormalization of the effective action. Explicitly

(C(4−ε))2 = (C(4))2 + ε

(
−(Rµν)

2 +
5
18

R2
)
. (2.14)

Using the fact that both C(d) and C(4) carry the same Weyl scaling

Cλ µνρ = e2σC̄λ µνρ Cλ µνρ = e−6σC̄λ µνρ (2.15)

one obtains
δ

δσ(x)

∫
ddx
√
−g(C4))2(x) = ε

√
g(C(4))2, (2.16)

and using
δ

δσ(x)

∫
ddx
√
−g
(
−R2

µν +
5
18

R2
)
=−2

3
ε
√

g�R (2.17)

one finally derives the relation (2.13), with the inclusion of a local (scheme-dependent) term �R.
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3. The structure of the effective action from the Conformal Ward identities

The expansion of S (g) can be studied by analising the conformal Ward identities (CWI’s)
that it has to satisfy. They allow to uncover the structure of the T T , T T T - and so on - correlators,
quite generally. In particular, for 3-point functions, one can identify the tensorial structures that
emerge from the expansion of the T T T either in coordinate or in momentum space, only modulo 3
constants at d = 4, with similar results holding in other spacetime dimensions.
These results can be derived without the need to resort to a Lagrangian realization, being the CWI’s
powerful enough for this goal. In this case, free field theory provides a straightforward and com-
plete simplification of the general solution of the CWI’s. Notice that this occurs because the scaling
dimensions of the stress energy tensor are fixed by the spacetime dimensions d.
A similar result holds for the conserved currents. Correlators with T ’s and J’s have been explicitly
discussed in the previous literature, for scalars, fermions and spin-1, both in the free field theory re-
alization and by solving the corresponding CWI’s either in coordinate or in momentum space. One
could, equivalently, try to determine the structure of such correlation functions by solving directly
the CWI’s, without any reference to free field theory. However, as far as we combine 3 indepen-
dent sectors with an arbitrary number of fields of those three types (nS,nV ,nψ), we reproduce the
general solution of the CWI’s by matching the constants of such solution ci(nS,nV ,nψ) [3] with the
free field multiplicites [4].
The tensorial structures and the form factors identified by the general solution are identical to those
reproduced by the free field theory. At d = 4 this provides a remarkable simplification of the result.
This matching is pretty useful, since the generalized hypergeometric functions which appear in the
general solution can be uniquely expressed in terms of the two master integrals of the perturbative
T T T , which are the scalar self-energy B0 and the scalar 3-point function C0.
It is worth to emphasize that the conformal constraints that the correlation functions have to sat-
isfy, can be derived directly from the effective action S (g). We are briefly going to review this
point since it defines a different formalism, compared to the traditional operatorial one (see for
instance [5]) for the derivation of the CWI’s.
In general, the variation on the functional S (g) generates the relation

δS

δσ(x)
=
√

ggµν 〈T µν〉, 〈T µν〉= 2
√

g
δS

δgµν

, (3.1)

and its invariance under Weyl
δσ gµν = 2σgµν (3.2)

and diffeomorphism transformations

δεgµν =−∇µεν −∇νεµ , (3.3)

gives the conditions
δσS = 0 δεS = 0. (3.4)

These relations generate trace and conservation constraints on the quantum averages of T µν

〈T µ

µ 〉= 0 ∇µ〈T µν〉= 0. (3.5)
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Trace and conformal WI’s of the hierarchy of the nT ’s can be derived from the equations above
by functional differentiations of S (g) with respect to the metric background. At a second stage,
after renormalization, these conditions are modified by the appearance of the conformal anomaly
on the right-hand-sides, yielding anomalous CWI’s. For example, the anomalous trace WIs can be
derived by allowing for an anomaly contribution on the right-hand-side of the σ variation in (3.4)

δσS =
∫

d4x
√

gσ ¯A (x) 〈T µ

µ 〉= ¯A (x), (3.6)

that clearly violates Weyl invariance. We have denoted with
√

g ¯A (x) =
√

g(bE + b′C2) the
anomaly. Functional differentiations of this relation generates the hierarchy of trace WIs.
The identification of the special CWIs using the formalism of the effective action, can also be
addressed in this formulation, by defining currents which are associated to symmetries of S . An
example is the current

〈Jµ〉= ε
(K)
ν 〈T µν〉, (3.7)

where ε
(K)
µ (x) is a Killing vector field of the metric g, which is conserved. The proof follows

closely the classical geometric derivation of the conservation of such current. Indeed, we recall
that ε

(K)
µ (x) characterizes the isometries of g

(ds′)2 = (ds)2 ↔ ∇µε
(K)
ν +∇νε

(K)
µ = 0. (3.8)

Then, the requirement of diffeomorphism invariance of the effective action S (g), summarised by
the second condition in (3.5), implies the conservation equation

∇ · 〈J〉= 0. (3.9)

Such equation can be re-obtained by requiring the invariance of S under a specific variation respect
to Killing vectors (KVs) ε

(K)
µ of the form

δKV S = 0. (3.10)

If we require that the metric background allows conformal Killing vectors (CKVs) and the effective
action is invariant under such transformations, then we have the possibility of taking into account
the anomaly contribution to the equations.
We recall that the CKVs are solution of the equation

(ds′)2 = e2σ(x)(ds)2 ↔ ∇µε
(K)
ν +∇νε

(K)
µ = 2σδµν σ =

1
4

∇ · ε(K). (3.11)

Notice that if we introduce a conformal current Jc, defined as in (3.7) but now using the CKVs
of the background metric, if conditions (3.5) are respected by S , then Jc is conserved as in the
isometric case (3.9).
Things are slightly different if we allow for a Weyl-variant term in S as in (3.6), which takes place
in d = 4, after renormalization.
In this case the anomaly induces a nonzero trace, and modifies the semiclassical condition (3.9)
into the new form

∇ · 〈Jc〉=
1
4

∇ · ε(K)〈T µ

µ 〉+ ε
(K)
ν ∇µ〈T µν〉. (3.12)
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This relation can be imposed as a conservation equation on correlators of various forms, in order to
extract the CWI’s. For instance, these correlators can be chosen of the form JcT in d dimensions.
As far as we stay in d dimensions, there are no anomalies to modify the constraints, being them
induced only at d = 4. Notice that σ(x) in (3.6) is, at the beginning, a generic scalar function, that
can be Taylor expanded around a given point xµ , and is characterized, in principle, by an infinite and
arbitrary number of constants. Obviously, the number of such constants gets drastically reduced if
we require that the spacetime manifold allows a tangent space (a free-falling coordinate frame) at
each of its points, endowed with a flat conformal symmetry.
Indeed, in flat space, the conformal Killing equation is solved by some CKVs εµ , which are at most
quadratic in x, and are expressed in terms of the 15 parameters (aµ ,ωµν ,λs,bµ) of the conformal
group, indicated as Kµ(x)

ε
µ(x)

∣∣
f lat → Kµ(x) = aα +ω

µνxν +λsxµ +bµx2−2xµb · x. (3.13)

Using such CKVs, the derivation of the CWIs, following the approach of [6], can be performed
directly in d = 4. We are going to illustrate this derivation for 4-point functions in the next section.

3.1 The anomalous CWI’s using conformal Killing vectors

The expressions of the anomalous conformal WIs can be derived in an alternative way follow-
ing the formulation of [6], that here we are going to discuss for the 4-graviton vertex (TTTT). As
just mentioned, the derivation of such identities relies uniquely on the effective action. We illustrate
it first in the TT case, and then move to the 4T.
We start from the conservation of the conformal current as derived in (3.9)∫

ddx
√

g∇
α

(
εα

2
√

g
δS

δgµα

)
=
∫

d4x
√

g∇µ 〈εαT αν〉= 0. (3.14)

In the TT case the derivation of the special CWIs is simplified, since there is no trace anomaly if the
counterterm action is defined as in (5.1). We rely on the fact that the conservation of the conformal
current Jµ

(K) implies the conservation equation

0 =
∫

ddx
√
−g ∇µ 〈Jµ

(K)(x)T µ1ν1(x1)〉 . (3.15)

By making explicit the expression Jµ(x) = Kν(x)T µν(x), with ε→ K in the flat limit, the previous
relation takes the form

0 =
∫

ddx
(

∂µKν 〈T µν(x)T µ1ν1(x1)〉+Kν ∂µ 〈T µν(x)T µ1ν1(x1)〉
)
. (3.16)

We recall that Kν satisfies the conformal Killing equation in flat space

∂µKν +∂νKµ =
2
d

δµν (∂ ·K) , (3.17)

and by using this equation (3.16) can be re-written in the form

0 =
∫

ddx
(

Kν∂µ 〈T µν(x)T µ1ν1(x1)〉+
1
d

(
∂ ·K

)
〈T (x)T µ1ν1(x1)〉

)
. (3.18)
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We can use in this previous expression the conservation and trace Ward identities for the two-point
function 〈T T 〉, that in the flat spacetime limit are explicitly given by

∂µ 〈T µν(x)T µ1ν1(x1)〉=
(

δ
(µ1
µ δ

ν1)
λ

∂
ν
δ (x− x1)−2δ

ν(µ1δ
ν1)
µ ∂λ δ (x− x1)

)
〈T λ µ(x)〉 , (3.19)

δµν 〈T µν(x)T µ1ν1(x1)〉 ≡ 〈T (x)T µ1ν1(x1)〉=−2δ (x− x1)〈T µ1ν1(x)〉 (3.20)

and the explicit expression of the Killing vector K(C)
ν for the special conformal transformations

K(C)κ

µ = 2xκ xµ − x2
δ

κ
µ

∂ ·K(C)κ = 2d xκ
(3.21)

where κ = 1, . . . ,d. By using (3.21) in the integral (3.18), we can rewrite that expression as

0 =
∫

ddx
[(

2xκ xν − x2
δ

κ
ν

)
∂µ 〈T µν(x)T µ1ν1(x1)〉+2xκ 〈T (x)T µ1ν1(x1)〉

]
, (3.22)

We need just a final integrating by parts to finally obtain the special CWI relation(
2d xκ

1 +2xκ
1 xµ

1
∂

∂xµ

1
+ x2

1
∂

∂x1κ

)
〈T µ1ν1(x1)〉

+2
(

x1λ δ
µ1κ − xµ1

1 δ
κ

λ

)
〈T λν1(x1)〉+2

(
x1λ δ

ν1κ − xν1
1 δ

κ

λ

)
〈T µ1λ (x1)〉= 0 (3.23)

for the 1-point function 〈T µ1ν1(x1)〉.

3.2 4-point functions

The derivation above can be extended to n-point functions, starting from the identity∫
ddx
√

g∇α(x)〈Jα
c (x)T

µ1ν1(x1) . . .T µnνn(xn)〉= 0. (3.24)

We have used the conservation of the conformal current in d dimensions under variations of the
metric, induced by the conformal Killing vectors.
In the absence of an anomaly, the conservation of the current Jµ

c follows from the conservation
of the stress energy tensor, plus the zero trace condition. As in the example illustrated above, we
consider (3.24) in the flat limit∫

dxd
∂ν

[
Kµ(x)〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉

]
= 0, (3.25)

where we are assuming that the surface terms vanish, due to the fast fall-off behaviour of the
correlation function at infinity. Expanding (3.25) we obtain an expression similar to (3.18)

0 =
∫

ddx
{

Kµ(x)∂ν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉+
1
d

(
∂ ·K

)
δµν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉

}
.

(3.26)
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Starting from this expression, the dilatation CWI is obtained by the choice of the CKV character-
ising the dilatations

K(D)
µ (x) = xµ , ∂ ·K(D) = d (3.27)

and (3.26) becomes

0 =
∫

ddx
{

xµ ∂ν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉+δµν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉
}
.

(3.28)

At this stage, we use the conservation and trace Ward identities in d = 4 for the 4-point function
written as

∂ν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉=

=−8
{[

Γ
µ

νλ
(x)
]µ1ν1µ2ν2µ3ν3 (x1,x2,x3)〈T λν(x)T µ4ν4(x4)〉+(14)+(24)+(34)

}
−4
{[

Γ
µ

νλ
(x)
]µ1ν1µ2ν2 (x1,x2)〈T λν(x)T µ3ν3(x3)T µ4ν4(x4)〉+(13)+(23)+(14)+(24)+(34)

}
−2
{[

Γ
µ

νλ
(x)
]µ1ν1 (x1)〈T λν(x)T µ2ν2(x2)T µ3ν3(x3)T µ4ν4(x4)〉+(12)+(13)+(14)

}
(3.29)

and

δµν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉

=−2
{

δxx1 〈T µ1ν1(x)T µ2ν2(x2) . . .T µ4ν4(x4)〉+(12)+(13)+(14)
}

+24[A (x)
]µ1ν1...µ4ν4(x1, . . . ,x4). (3.30)

to finally derive the dilatation WI from (3.28) in the form(
4d +

4

∑
j=1

xα
j

∂

∂xα
j

)
〈T µ1ν1(x1) . . .T µ4ν4(x4)〉= 24

∫
dx
[
A (x)

]µ1ν1...µ4ν4(x1, . . . ,x4), (3.31)

where d = 4. It is worth mentioning that (3.31) is valid in any even spacetime dimension if we take
into account the particular structure of the trace anomaly in that particular dimension.

The special CWIs correspond to the d special conformal Killing vectors in flat space given in
(3.21), as in the T T case. Also in this case we derive the identity

0 =
∫

ddx
{(

2xκ xµ − x2
δ

κ
µ

)
∂ν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉

+2xκ
δµν 〈T µν(x)T µ1ν1(x1) . . .T µ4ν4(x4)〉

}
. (3.32)
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By using the relations (3.29) and (3.30) and performing the integration over x explicitly in the
equation above, the anomalous special CWIs for the 4-point function take the form

4

∑
j=1

[
2xκ

j

(
d + xα

j
∂

∂xα
j

)
− x2

j δ
κα ∂

∂xα
j

]
〈T µ1ν1(x1) . . .T µ4ν4(x4)〉

+2
4

∑
j=1

(
δ

κµ j x j α −δ
κ
α xµ j

j

)
〈T µ1ν1(x1) . . .T ν jα(x j) . . .T µ4ν4(x4)〉

+2
4

∑
j=1

(
δ

κν j x j α −δ
κ
α xν j

j

)
〈T µ1ν1(x1) . . .T µ jα(x j) . . .T µ4ν4(x4)〉=

= 25
∫

dxxκ
[
A (x)

]µ1ν1...µ4ν4(x1, . . . ,x4), (3.33)

where the presence of the anomaly term comes from the inclusion of the trace WI, exactly as in the
TT case.

4. Conservation Ward identities

Similar constraints are enforced from the invariance of S (g) under diffeomorphisms

(g)
∇µ 〈T µν(x)〉g = 0, i.e. δεS (g) = 0 (4.1)

Here (g)∇µ denotes the covariant derivative in the general background metric gµν(x). It can be
expressed in the form

∂ν

(
δS (g)
δgµν(x)

)
+S µ

νλ

(
δS (g)
δgλν(x)

)
= 0, (4.2)

where Γ
µ

λν
is the Christoffel connection for the general background metric gµν(x).

In order to derive the conservation WIs for higher point correlation functions, one has to con-
sider additional variations with respect to the metric of (4.1) and then move to flat space, obtaining

∂ν1 〈T µ1ν1(x1)T µ2ν2(x2)T µ3ν3(x3)T µ4ν4(x4)〉=

=−

2

(
δΓ

µ1
λν1

(x1)

δgµ2ν2(x2)

)
g=δ

〈T λν1(x1)T µ3ν3(x3)T µ4ν4(x4)〉+(23)+(24)


−

4

(
δ 2Γ

µ1
λν1

(x1)

δgµ2ν2(x2)δgµ3ν3(x3)

)
g=δ

〈T λν1(x1)T µ4ν4(x4)〉+(24)+(34)

 , (4.3)
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where (
δΓ

µ1
λν1

(x1)

δgµiνi(xi)

)
g=δ

=
1
2

(
δ

µ1(µiδ
νi)
ν1 ∂λ δx1xi +δ

µ1(µiδ
νi)
λ

∂ν1δx1xi−δ
(µi
λ

δ
νi)
ν1 ∂

µ1δx1xi

)
(4.4)(

δ 2Γ
µ1
λν1

(x1)

δgµiνi(xi)δgµ jν j(x j)

)
g=δ

=

=−δx1xi

2
δ

µ1(µiδ
νi)ε
(

δ
(µ j
ε δ

ν j)
ν1 ∂λ δx1x j +δ

(µ j
ε δ

ν j)

λ
∂ν1δx1x j −δ

(µ j

λ
δ

ν j)
ν1 ∂εδx1x j

)
+(i j),

(4.5)

are the first and second functional derivatives of the connection, in the flat limit. We have explicitly
indicated the symmetrization with respect to the relevant indices using the permutation (i j)≡ (i↔
j). We have introduced a simplified notation for the Dirac delta δxix j ≡ δ (xi−x j). All the derivative
(e.g. ∂λ ) are taken with respect to the coordinate x1 (e.g.∂/∂xλ

1 ).
We adopt the convention

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p4)〉 =
∫

d4x1d4x2d4x3e−i(p1·x1+p2·x2+p3·x3)

×〈T µ1ν1(x1)T µ2ν2(x2)T µ3ν3(x3)T µ4ν4(0)〉 (4.6)

to transform to momentum space and use the translational invariance of the correlator in flat space,
which allows to use momentum conservation to express one of the momenta (in our convention this
is p4) as combination of the remaining ones p̄4 =−p1− p2− p3. Details on the elimination of one
of the momenta in the derivation of the CWIs can be found in [5].
The conservation Ward Identity (4.3) in flat spacetime may be Fourier transformed, giving the
CWIs in momentum space

p1ν1 〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉=

=
[
4Bµ1 µ2ν2µ3ν3

λν1
(p2, p3)〈T λν1(p1 + p2 + p3)T µ4ν4(p̄4)〉+(34)+(24)

]
+
[
2C µ1 µ2ν2

λν1
(p2)〈T λν1(p1 + p2)T µ3ν3(p3)T µ4ν4(p̄4)〉+(23)+(24)

]
, (4.7)

where we have defined

Bµ1 µ2ν2µ3ν3
λν1

(p2, p3)≡−
1
2

δ
µ1(µ2δ

ν2)ε
(

δ
(µ3
ε δ

ν3)
ν1 p3λ +δ

(µ3
ε δ

ν3)
λ

p3ν1−δ
(µ3
λ

δ
ν3)
ν1 p3ε

)
+(23)

(4.8)

C µ1 µ2ν2
λν1

(p2)≡
1
2

(
δ

µ1(µ2δ
ν2)
ν1 p2λ +δ

µ1(µ2δ
ν2)
λ

p2ν1−δ
(µ2
λ

δ
ν2)
ν1 pµ1

2

)
, (4.9)

related to the second and first functional derivatives of the Christoffel connection, respectively.

5. Renormalization in momentum space around Minkowski

To investigate the renormalized correlator and the anomaly-induced effective action, one may
just focus on the counterterm action. For a generic nT correlator, the only counterterm needed for
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its renormalization, is obtained by the inclusion of a classical gravitational vertex generated by the
differentiation of the action

Sct(g) =−
1
ε
(b′VE +bVC2) (5.1)

n times.
The renormalized effective action SR is then defined by the sum of the two terms

SR(g) = S (g)+Sct(g) (5.2)

Sct =

8 counter

;
<
=

20

+

8 counter

;
<
=

20

+

8 counter

;
<
=

20

+ ... (5.3)

with Sct shown in (5.3). Both terms of SR(g) are expanded in the metric fluctuations as in (5.3).
The correlation functions obrtained from the renormalized action can be expressed as the sum of a
finite ( f ) correlator and of an anomaly term (anomaly) in the form

〈T µ1ν1T µ2ν2 . . .T µnνn〉Ren =

[
〈T µ1ν1T µ2ν2 . . .T µnνn〉bare + 〈T

µ1ν1T µ2ν2 . . .T µnνn〉count

]
d→4

=

= 〈T µ1ν1T µ2ν2 . . .T µnνn〉(d=4)
f + 〈T µ1ν1T µ2ν2 . . .T µnνn〉(d=4)

anomaly (5.4)

and satisfy anomalous CWI’s. To characterize the anomaly contribution to each correlation func-
tion, we start from the 1-point function.
In a generic background g, the 1-point function is decomposed as

〈T µν〉Ren =
2
√

g
δSRen

δgµν

= 〈T µν〉A + 〈T
µν〉 f , (5.5)

with

gµν δS

δgµν
= gµν δSA

δgµν
≡
√

g
2

gµν〈T µν〉A (5.6)

being the trace anomaly equation, and 〈T µν〉 f is the Weyl-invariant (traceless) term.
Following the discussion in (2.9), these scaling violations may be written for the 1-point function
in the form

〈T µ

µ(x)〉= A (x) (5.7)

with the finite terms on the right hand side of this equation denote the anomaly contribution

A (x) =
√
−g(x)

[
bC2(x)+b′E(x)

]
(5.8)

The extraction of the anomalous CWI’s around flat space requires several differentiation of this
functional relation, evaluated in the flat limit. This procedure generates, for the anomaly contri-
bution, expressions which are polynomial in the momenta. In general, one also finds additional
dimension-4 local invariants Li, if there are couplings to other background fields, as for instance

13
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in the QED and QCD cases, with coefficients related to the β functions of the corresponding gauge
couplings.
We recall that the counterterm vertex for the nT correlator, in DR, in momentum space takes the
form

〈T µ1ν1(p1) . . .T µnνn(p̄n)〉count =−
µ−ε

ε

(
bV µ1ν1...µnνn

C2 (p1, . . . , p̄n)+b′V µ1ν1...µnνn
E (p1, . . . , p̄n)

)
,

(5.9)
where

V µ1ν1...µnνn
C2 (p1, . . . , p̄n)≡ 2n[√−gC2]µ1ν1...µnνn(p1, . . . , p̄n)

= 2n
∫

ddx1 . . . ddxn ddx
(

δ n(
√
−gC2)(x)

δgµ1ν1(x1) . . .δgµnνn(xn)

)
g=δ

e−i(p1 x1+···+pnxn)

(5.10)

and

V µ1ν1...µnνn
E (p1, . . . , p̄n)≡ 2n[√−gE

]µ1ν1...µnνn(p1, . . . , p̄n)

(5.11)

are the expressions of the two contributions present in (5.9) in momentum space. One can also
verify the following trace relations

δµ1ν1 V µ1ν1...µnνn
C2 (p1, . . . , pn) = 2n−1(d−4)

[√
−gC2]µ2ν2...µnνn

(p2, . . . , pn)

−2
[
V µ2ν2...µnνn

C2 (p1 + p2, p3, . . . , pn)+ · · ·+V µ2ν2...µnνn
C2 (p2, p3, . . . , p1 + pn)

]
(5.12)

δµ1ν1 V µ1ν1...µnνn
E (p1, . . . , pn) = 2n−1(d−4)

[√
−gE

]µ2ν2...µnνn (p2, . . . , pn)

−2
[
V µ2ν2...µnνn

E (p1 + p2, p3, . . . , pn)+ · · ·+V µ2ν2...µnνn
E (p2, p3, . . . , p1 + pn)

]
(5.13)

that hold in general d dimensions.
Obviously, the effective action that results from the renormalization can be clearly separated in
terms of two contributions, as evident from (5.5),

SR(g) = SA(g)+S f (g), (5.14)

corresponding to an anomaly part SA[g] and to a finite, Weyl-invariant term, which can be ex-
panded in terms of fluctuations over a background ḡ as for the entire effective action S (g). This
functional collects finite correlators of the form (5.4) in d = 4, where we find the expansion for
SA, the anomaly part.
Notice that the anomaly effective action SA obtained from this analysis in momentum space is a
rational function of the external momenta, characterised by well-defined tensor structures. We refer
to the analysis of the TJJ and 3T correlators [7–9] for more details.
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5.1 Conservation WI’s for the counterterms

To illustrate the conservation WI in detail, we turn to the expression of the counterterm action
(5.1), which generates counterterm vertices of the form

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉count =

=−µ−ε

ε

(
bV µ1ν1µ2ν2µ3ν3µ4ν4

C2 (p1, p2, p3, p̄4)+b′V µ1ν1µ2ν2µ3ν3µ4ν4
E (p1, p2, p3, p̄4)

)
, (5.15)

where on the rhs of the expression above we have introduced the counterterm vertices (with P =

p1 + . . . p4)

V µ1ν1µ2ν2µ3ν3µ4ν4
C2 (p1, p2, p3, p̄4)δ

4(P)≡ 16δ
4(P)

[√
−gC2]µ1ν1µ2ν2µ3ν3µ4ν4(p1, p2, p3, p̄4)

V µ1ν1µ2ν2µ3ν3µ4ν4
E (p1, p2, p3, p̄4)δ

4(P)≡ 16 δ
4(P)

[√
−gE

]µ1ν1µ2ν2µ3ν3µ4ν4(p1, p2, p3, p̄4)

(5.16)

evaluated in the flat spacetime limit. These vertices share some properties when contracted with
flat metric tensors and the external momenta. In particular, from (5.12) and (5.13), when n = 4 and
in d dimensions we have

δµ1ν1 V µ1ν1µ2ν2µ3ν3µ4ν4
C2 (p1, p2, p3, p̄4) = 8(d−4)

[√
−gC2]µ2ν2µ3ν3µ4ν4

(p2, p3, p̄4)

−2V µ2ν2µ3ν3µ4ν4
C2 (p1 + p2, p3, p̄4)−2V µ2ν2µ3ν3µ4ν4

C2 (p2, p1 + p3, p̄4)

−2V µ2ν2µ3ν3µ4ν4
C2 (p2, p3, p1 + p̄4), (5.17)

δµ1ν1 V µ1ν1µ2ν2µ3ν3µ4ν4
E (p1, p2, p3, p̄4) = 8(d−4)

[√
−gE

]µ2ν2µ3ν3µ4ν4 (p2, p3, p̄4)

−2V µ2ν2µ3ν3µ4ν4
E (p1 + p2, p3, p̄4)−2V µ2ν2µ3ν3µ4ν4

E (p2, p1 + p3, p̄4)

−2V µ2ν2µ3ν3µ4ν4
E (p2, p3, p1 + p̄4), (5.18)

which play a key role in the renormalization procedure. Furthermore, the contraction of these
vertices with the external momenta generates conservation WIs in d dimensions, similar to (4.7),

p1ν1 V µ1ν1µ2ν2µ3ν3µ4ν4
C2 (p1, p2, p3, p̄4) =

=
[
4Bµ1 µ2ν2µ3ν3

λν1
(p2, p3)V

λν1µ4ν4
C2 (p1 + p2 + p3, p̄4)+(34)+(24)

]
+
[
2C µ1 µ2ν2

λν1
(p2)V

λν1µ3ν3µ4ν4
C2 (p1 + p2, p3, p̄4)+(23)+(24)

]
(5.19)

p1ν1 V µ1ν1µ2ν2µ3ν3µ4ν4
E (p1, p2, p3, p̄4) =

=
[
4Bµ1 µ2ν2µ3ν3

λν1
(p2, p3)V

λν1µ4ν4
E (p1 + p2 + p3, p̄4)+(34)+(24)

]
+
[
2C µ1 µ2ν2

λν1
(p2)V

λν1µ3ν3µ4ν4
E (p1 + p2, p3, p̄4)+(23)+(24)

]
, (5.20)

where C and B are given in (4.8) and (4.9). These equations can be generalized to the case of
n-point functions.
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6. Decomposition of the 4T

The analysis in momentum space allows to identify the contributions generated by the break-
ing of the conformal symmetry, after renormalization, in a direct manner. One specific feature is
the prediction of a nonlocal structure for the effective action, in the form of massless exchanges
attached to the external lines of a graviton vertex.
For this purpose we will be using the longitudinal transverse L/T decomposition of the correlator
presented in [3] for 3-point functions, extending it to the 4T. This procedure has been investigated
in detail for 3-point functions in [4] in the context of a perturbative approach [10]. The perturbative
analysis in free field theory shows how renormalization acts on the two L/T subspaces, forcing the
emergence of a trace in the longitudinal sector.
Due to the constraint imposed by the conformal symmetry (i.e. their CWI’s), the correlation func-
tions can be decomposed into a transverse-traceless and a semilocal part. The term semilocal refers
to contributions which are obtained from the conservation and trace Ward identities. Of an external
off-shell graviton only its spin-2 component will couple to transverse-traceless part.
The split of the energy momentum tensor operator in terms of a transverse traceless (tt) part and of
a longitudinal (local) part [3] is defined in the form

T µiνi(pi)≡ tµiνi(pi)+ tµiνi
loc (pi), (6.1)

with

tµiνi(pi) = Π
µiνi
αiβi

(p)T αiβi(pi) (6.2)

tµiνi
loc (pi) = Σ

µiνi
αiβi

(p)T αiβi(pi). (6.3)

We have introduced the transverse-traceless (Π), transverse-trace (τ) and longitudinal (I ) projec-
tors, given respectively by

π
µ

α = δ
µ

α −
pµ pα

p2 , π̃
µ

α =
1

d−1
π

µ

α (6.4)

Π
µν

αβ
=

1
2

(
π

µ

α π
ν

β
+π

µ

β
π

ν
α

)
− 1

d−1
π

µν
παβ , (6.5)

J µν

αβ
=

1
p2 pβ

(
pµ

δ
ν
α + pν

δ
µ

α −
pα

d−1
(δ µν +(d−2)

pµ pν

p2 )

)
(6.6)

I µν

αβ
=

1
2

(
J µν

αβ
+J µν

βα

)
τ

µν

αβ
= π̃

µν
δαβ (6.7)

I µν

α =
1
p2

(
pµ

δ
ν
α + pν

δ
µ

α −
pα

d−1
(δ µν +(d−2)

pµ pν

p2

)
(6.8)

I µν

αβ
=

1
2

(
pβ I µν

α + pαI µν

β

)
(6.9)

with

δ
(µ
α δ

ν)
β

= Π
µν

αβ
+Σ

µν

αβ
(6.10)

Σ
µiνi
αiβi
≡I µiνi

αiβi
+ τ

µiνi
αiβi

=
1
p2

i

[
2δ

(νi
(αi

pµi)
i piβi)−

piαi piβi

(d−1)

(
δ

µiνi +(d−2)
pµi

i pνi
i

p2
i

)]
+

1
(d−1)

π
µiνi(pi)δαiβi . (6.11)
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Notice that we have combined together the operators I and τ into a projector Σ which defines the
local components of a given tensor T , according to (6.2), which are proportional both to a given
momentum p (the longitudinal contribution) and to the trace parts. Both Π and τ are transverse by
construction, while I is longitudinal and of zero trace.

The projectors induce a decomposition respect to a specific momentum pi. By using (6.1), the
entire correlator is written as

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉=
= 〈tµ1ν1(p1)tµ2ν2(p2)tµ3ν3(p3)tµ4ν4(p̄4)〉+ 〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉loc (6.12)

where the first contribution is the transverse-traceless part which satisfies by construction the con-
ditions

pi µi 〈tµ1ν1(p1)tµ2ν2(p2)tµ3ν3(p3)tµ4ν4(p̄4)〉= 0, i = 1,2,3,4 ,

δµiνi 〈tµ1ν1(p1)tµ2ν2(p2)tµ3ν3(p3)tµ4ν4(p̄4)〉= 0, i = 1,2,3,4.
(6.13)

It is clear now that only the second term in (6.12) contributes entirely to the conservation WIs. Thus,
the proper new information on the form factors of the 4-point function is entirely encoded in its
transverse-traceless (tt) part, since the remaining longitudinal + trace contributions, corresponding
to the local term, are related to lower point functions.
The derivation of the anomaly part of the correlator in the 4T has been worked out in [11]. One can
show that its structure can be summarized in the form

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉(d=4)
anomaly =

= 〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉poles

+ 〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉0−residue (6.14)

where the first contribution is anomalous (Weyl-variant) and the second one is traceless

δµiνi 〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉0−residue = 0, i = 1,2,3,4. (6.15)

We call it the "zero residue" or the "zero trace" (0T) part, since the operation of tracing the anoma-
lous part removes the anomaly pole in the bilinear mixing terms, leaving a residue which is pro-
portional to the anomaly and is given in [11]. This part carries no pole. On the other hand, the
anomaly part is then explicitly given as

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉poles =

=
πµ1ν1(p1)

3
〈T (p1)T µ2ν2(p2)T µ3ν3(p3)T µ4ν4(p̄4)〉anomaly +(perm.)

− πµ1ν1(p1)

3
πµ2ν2(p2)

3
〈T (p1)T (p2)T µ3ν3(p3)T µ4ν4(p̄4)〉anomaly +(perm.)

+
πµ1ν1(p1)

3
πµ2ν2(p2)

3
πµ3ν3(p2)

3
〈T (p1)T (p2)T (p3)T µ4ν4(p̄4)〉anomaly +(perm.)

− πµ1ν1(p1)

3
πµ2ν2(p2)

3
πµ3ν3(p3)

3
πµ4ν4(p4)

3
〈T (p1)T (p2)T (p3)T (p̄4)〉anomaly . (6.16)
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Figure 1: The Weyl-variant contributions from SA to the renormalized vertex for the 4T with the corre-
sponding bilinear mixings in d = 4

The result is exemplified in Fig. (1). The dashed lines in this figure correspond to nonlocal
exchanges identified by the CWI’s in the anomaly part of the correlator in the form of anomaly
poles around flat space. In the case of the T T T the pattern is similar and it is reproduced by the
nonlocal action that we will describe next. Our result for the anomaly action, as predicted by the
CWIs, in an expansion in terms of the fluctuations h, can then be collected into the form

SA =
∫

d4x1d4x2〈T ·h(x1)T ·h(x2)〉+
∫

d4x1d4x2d4x3〈T ·h(x1)T ·h(x2)T ·h(x3)〉pole

+
∫

d4x1d4x2d4x3d4x4
(
〈T ·h(x1)T ·h(x2)T ·h(x3)T ·h(x4)〉pole+

+〈T ·h(x1)T ·h(x2)T ·h(x3)T ·h(x4)〉0T ) , (6.17)

where we have also included the (complete) T T , plus the extra traceless (0T) term appearing in the
4T. More details can be found in [11]. It is then clear that around Minkowski space there is no sign
of a local dilaton interaction, rather, the theory is characterised by the exchange of what appears
to be a sequence of anomaly poles. The role of the 0T term is a new component that appears at
quartic order in the gravitational fluctuations and needs a separate analysis in the context of nonlo-
cal actions, which is underway. Notice that in coordinate space, these contributions to the effective
action are equivalent to repeated insertions of the R�−1 operator.

7. Evading Lovelock’s theorem with VE

The action described in the previous section is well constrained by the CWI’s and can be ex-
plicitly computed around flat space. Perturbative tests and general solutions of the CWI’s provide
a consistent picture of an expansion identified by a decomposition of the form given in Fig.(1).
Notice that, apart from the Weyl invariant terms contained in the renormalized action SR(g), the
rest of this action is entirely fixed by the two conterterms VE and VC2 introduced in (2.2). If we
neglect the C2 part and consider only the Gauss Bonnet term, it is clear that the anomaly contribu-
tion is, in this specific case, only associated with the presence of a topological term evaluated in d
dimensions, accompanied by an extra 1/ε factor needed for the regularization of S (g).
Recently, the possibility of evading Lovelock’s theorem at d = 4, via a singular redefinition of
the dimensionless coupling of the Gauss-Bonnet term, has been widely discussed in the area of
cosmology and general relativity. The term is added as a quadratic contribution of the curvature
tensor to the Einstein-Hilbert action, defining a theory of "Einstein Gauss-Bonnet" (EGB) type.
The procedure shares close similarities with the one that we have discussed above for the confor-
mal anomaly action, since the use of the 1/εVE counterterm is identical in both types of theories.
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Obviously, the context in which such EGB theories are defined is purely classical and essentially
exploit the fact that a counterterm of the form 1/εVE correspond to a finite renormalization rather
than to an ordinary singular one. This point has been addressed in the recent literature [12]. In
this respect, the use of such term in dimensional regularization opens up the way for new forms of
dilaton gravities, which can be of cosmological interest, for generating equations of motion of the
second order. Such theories are not unique, in a way, since the "regularization" procedure involved
in order to induce a nonvanishing topological term at d = 4 from non integer dimensions, is not
unique. We refer to [12] for a discussion of many of the points that we are going to summarize.

8. Towards a nonlocal EGB theory

As mentioned in our introduction, corrections to the Einstein-Hilbert action, in the form of
higher powers of the Riemann curvature Rµναβ and of its contractions, have been extensively
discussed in the cosmological context. The goal of such modifications is to deepen our insight into
the problem of the dark energy dominance in the evolution of our universe, providing an answer to
the hierarchy problem, implicit in the current fits of the cosmological constant, within the ΛCDM
(Λ-Cold Dark Matter) model [13].
One of the fundamental issue that higher derivative gravity theories have to face, is due to the
presence of ghost states in their spectra, at quantum level. In general corrections in the form of
terms in the Lagrangian of dimension-4, quadratic in the Riemann tensor, may appear in the form
of Weyl-invariant densities, multiplied by dimensionless couplings. Some of these invariants may
generate equations of motion of the second order, and are classified by Lovelock’s theorem [14] (see
also [15]). The theorem guarantees, that the Einstein Hilbert action with a cosmological constant
Λ

SEH =
∫

ddx
√

g(M2
PR+Λ) (8.1)

is the only one that provides equations of motion of the second order at d = 4. Example of topolog-
ical actions are, for instance, the EH action d = 2, which is metric independent. This action shares
similar characteristics to other actions that also include topological terms (E4,E6 etc) quadratic and
cubic in Rµναβ as, for example, in d = 4 and 6. The inclusion of such topological corrections via
a singular coupling limit - from d 6= 4 to d = 4 - essentially extends the known "regularization"
procedure at d = 2 for the EH term, to the 4-dimensional invariant

√
gE [16]. However, for the

procedure to be consistent, it has to be correctly framed in the context of dimensional regularization
(DR) [17], with significant modifications of the original proposal.
In a consistent formulation, the limit generates, in this way, a 0/0 term in the action which is finite,
but that includes also a dilaton in the spectrum [18, 19] and is therefore equivalent to a theory of
dilaton gravity. The action takes the counterterm form

αVE(d) = α

∫
ddx
√

gE, (8.2)

where E ≡ E4 is the Euler-Poincarè topological density (2.3) and VE , as just mentioned, is added
to the Einstein-Hilbert action (EH),

SEGB = SEH +αVE , (8.3)
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while α is a dimensionless coupling constant. The addition of this term, in general, generates
equations of motion of the form

1
κ

(
Rµν −

1
2

gµνR+Λ0gµν

)
+α(VE(d))µν = 0, (8.4)

with (VE(d))µν = δVE(d)/δgµν . However, due to the topological nature of (8.2) at d = 4, the vari-
ation (δg) of the integrand in (8.2) with respect to the metric, is an ordinary boundary contribution

δg(
√

gE) =
√

g∇σ δgXσ , δgXσ = ε
µναβ

ε
σλγτ

δgΓ
η

νλ
gµηRαβγτ , (8.5)

where εµναβ = εµναβ/
√

g, and Γ is the Christoffel connection in the metric gµν . The term
(VE(d))µν is therefore an evanescent term at d = 4

(VE(4))µν = 4Rµαβσ R αβσ

ν −8Rµανβ Rαβ −8RµαR α
ν +4RRµν −gµνE = 0, (d = 4)

if we assume asymptotic flatness and strictly d = 4.
In performing the d→ 4 limit, the extra components of the metric appear in d = 4 as in any ordinary
compactification of metrics with extra dimensions. The natural approach is to re-express the metric
in terms of a fiducial metric and of a dilaton factor as in (2.5).
The result is the derivation of a quartic dilaton gravity that differs from the expression of S (g) by a
Weyl-invariant part coming from the quantum corrections and by the inclusion of two - rather than
one - counterterms. Here we are going to provide a summary of these developments, reviewing such
recent proposal and considering the possibility of performing an additional finite renormalization
of such term VE , in order to regulate such theories in a nonlocal form. For related discussion of the
local theory we refer to [18–20]. We remark that the evanescent character of VE(d) at d = 4 is what
renders this procedure interesting. As already pointed out, the Gauss-Bonnet term is necessary in
order for the effective action to satisfy the WZ consistency condition (2.8) but corresponds to a
finite renormalization of the effective action rather than to an infinite one: the singularities of the
loop corrections in S (g) are canceled only by the inclusion of the Weyl term VC2 .

9. Conformal decompositions and Wess-Zumino actions

The role of VE and its extensions can be investigated by enlarging the integration region of VE

from 4 to d dimensions, as in (8.2), and the corresponding limiting action

SEGB = SEH +SGB(d) SGB(d) =
α

ε
VE(d) (9.1)

naively appears to be finite at d = 4, and modifies (8.2). If we set aside the problem of consistency
of the 0/0 limit, the theory that results appears to be purely gravitational and quadratic in Rµνρσ .
The claim of the existence of a purely gravitation theory ghost-free, beyond Einstein’s formulation,
is based on this interesting observations.
Such singular limit seem to provide a theory that violates Lovelock’s theorem. We recall that
Lovelock’s theorem states that at d = 4 only the EH action plus a cosmological constant generate
equations of motion of second order involving only the metric. However, as already mentioned, the
tensorial limit of the equations is not well defined [17]. In fact, V µν

E computed around flat space,
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once it is extrapolated from generic d to d = 4 [18–20], does not exhibit a compensating factor
O(ε), which is necessary in order to erase the singular behaviour of the coupling. One needs a
more general approach in order to define a consistent theory.
A modified procedure that can be applied to this case, well-known in the case of the d = 2 EH
action, which is also topological, is to regulate the singular action by a method based on the Weyl-
gauging of the metric. The symmetry (2.6) is going to be broken after we complete the regulariza-
tion of the new action [12]. The outcome is the emergence of a constraint between the equations
of motion of ḡµν and φ . The appearance of such constraint is not surprising, since its origin is, in
a way, anomaly related. In fact, as we are going to show below, the regulated action is an ordinary
WZ action, and the constraint is generated quite naturally by acting with a conformal variation on
its finite expression. We proceed by illustrating this point in more detail.
The WZ action of the GB term VE(gµν ,d) is defined as the difference

S
(WZ)

GB ≡ α

ε

(
VE(ḡµνe2φ ,d)−VE(ḡµν ,d)

)
(9.2)

where
1
ε

δVE(ḡµνe2φ ,d)
δφ

=
√

gE(g) (9.3)

while the expansion in ε around d = 4 for VE(ḡµνe2φ ,d)

1
ε

VE(ḡµνe2φ ,d) =
1
ε

VE(ḡµν ,d = 4)+V ′E(ḡµν ,φ ,d = 4)

(9.4)

and a similar one for VE(ḡµν ,d), in the limit ε → 0, combined give

S
(WZ)

GB = αV ′E(ḡµν ,φ ,d = 4), (9.5)

having dropped a Weyl-invariant terms V ′E(ḡµν ,d = 4) in the dimensional expansion around d = 4.
The dimensional reduction that generates (9.5) requires some care, due to the presence of cutoffs
in the extra dimensions. They identify Weyl-invariant terms that are dropped while performing the
regularization, and are discussed in [12].

Neglecting some Weyl-invariant terms, V ′E can be given in the form derived in [18–20]

S
(WZ)

GB = α

∫
d4x
√

ḡ
[

φ Ē−
(

4Ḡµν(∇̄µφ ∇̄νφ)+2(∇̄λ φ ∇̄
λ

φ)2 +4�̄φ ∇̄λ φ ∇̄
λ

φ

)]
, (9.6)

where Ḡµν is the Einstein tensor in the fiducial metric ḡµν . Counterexamples to such procedure,
where the action is not properly regulated, are those in which the d−4 extra space components of
ḡµν are flat, as discussed in [17]. Such cases need to be excluded, for consistency. Notice that the
WZ action is clearly dependent separately on ḡ and φ , and this explains why the original invariance
under the conformal decomposition (2.6) is broken. The equations of motion for the metric, from
ḡµν and φ are constrained by the relations(

2gµν

δ

δµν

− δ

δφ

)
S

(WZ)
GB =−α

√
ḡĒ, (9.7)
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2gµν

δS
(WZ)

GB
δgµν

=
√

gE−
√

ḡĒ, (9.8)

δS
(WZ)

GB
δφ

=
√

gE. (9.9)

One may recognize the similarity between these relations and those typical of the WZ actions
derived from the analysis of the conformal anomaly. The difference between those theories and the
current case lays in the absence of Weyl invariant terms in the EGB, which are, instead, naturally
present in the case in which the same action is obtained as a conformal backreaction. Beside, the
C2 term is clearly absent in a EGB theory.

10. Conformal Symmetry breaking

WZ actions have been identified in the past either by the Weyl gauging procedure, as shown
above, or, equivalently, by the Noether method. Both methods stop at order d in the dilaton field,
if we are in a d-dimensional spacetime, and generate anomaly actions which are not purely grav-
itational. The actions obtained are local, since they include the dilaton field. If we were able to
solve the equations of motion for φ , then the actions would become nonlocal, in agreement with
the general result that anomalies are not related to local actions.
One immediately realizes that the separation of the conformal factor from the fiducial metric has
necessarily to be associated with the breaking of the conformal symmetry. In these formulations,
the dilaton φ can either be part of the regulated action, as discussed in [18–20], or can be elimi-
nated, by solving for this field in terms of the background metric.
In the Lagrangians of the first class (dilaton gravities), φ is generally interpreted as a physical
particle. In this case it is convenient to introduce the parameterization

eφ = 1− χ

f
(10.1)

where f is a conformal breaking scale, which breaks the symmetry in both the first and the second
term of (9.2). The action can be expanded around the field value φ = φ0 = 0 (i.e. χ = χ0 = 0), but
it is quite obvious that the selection of such values for φ or, equivalently, χ , should be induced by
an extra potential which is clearly not part of in S(GB)

WZ . A mechanism of spontaneous breaking of
the local conformal symmetry needs to be invoked in order to stabilize the dilaton. Notice that SWZ

already breaks the symmetry (9.2) by the anomaly since

δS(GB)
WZ

δσ
=−
√

ḡĒ. (10.2)

Actions belonging to this class, quartic in the field φ , obviously depend on the choice of the form
of ḡµν in DR and may differ, therefore, by finite φ -dependent terms.
This is well-known in the case of ordinary Kaluza-Klein theories, whose Lagrangians depend on
the manifold of compactification. A discussion of these issues has been presented in [12]. Actions
in which the dilaton cannot be eliminated are suitable for a description of the spontaneous breaking
of the conformal symmetry. The second class of actions, where the dilaton is removed, exhibit
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the R�−1 terms that we have identified in the previous sections from the analysis of the conformal
Ward identities satisfied by the quantum effective action.

As we are going to show, also in the EGB case, a specific finite renormalization of VE generates
an action which is only quadratic in φ , and may capture consistently the UV behaviour of the
anomaly. It can be written in a nonlocal form. In this case the expansion is in terms of R�−1,
as discussed in [11] [6]. Also in this case, the procedure does not allow to identify some Weyl-
invariant contributions which are only part of an exact computation of the functional expansion.
Direct computations of 3- and 4-point functions, in specific backgrounds, from flat to Weyl-flat,
are the only possibility in order to work out the complete expression of such actions.

11. Nonlocal EGB theories

If EGB theories can be formulated as dilaton gravities, quite close to ordinary anomaly actions,
nonlocal versions of such actions are also possible. Indeed, a modification of the GB term at O(ε),
generates anomaly actions quite different from those presneted in [18–20]. We have the possibility
of performing a finite renormalization of the GB term in DR, as already discussed in [21] in the
context of conformal anomaly actions, to end up with a very different theory.

For this reason, one can simply modify by a finite renormalization the structure of the GB term
away from d = 4 in the form

Eext = E +
ε

2(d−1)2 R2, ṼE =
∫

ddx
√

gEext , (11.1)

with VE → ṼE in (9.2), obtaining

S
(WZ)

GB =
α

ε

(
ṼE(ḡµνe2φ ,d)−ṼE(ḡµν ,d

)
. (11.2)

At this stage we perform the d→ 4 limit and an expansion similar to (9.4), to derive the regulated
GB action

S
(WZ)

GB = α

∫
d4x
√
−ḡ
{(

E4−
2
3
�̄R
)

φ +2φ ∆̄4φ

}
, (11.3)

where ∆̄4 is the quartic conformally covariant operator [22]

∆4 ≡�2 +2Rµν
∇µ∇ν +

1
3
(∇µR)∇µ −

2
3

R�, (11.4)

evaluated with respect to the fiducial metric ḡµν .
Clearly, Eq. (11.3) shows that it is possible to define a quadratic - and not only a quartic action in
φ , as before, for the regularized GB term. If add the resulting action to the EH action, we end up
with a version of the EGB theory which is purely gravitational, since φ can be eliminated. In order
to to derive such nonlocal expression, we can use the relation

δ

δφ

1
ε

ṼE(gµν ,d) =
√

g
(

E− 2
3
�R+ ε

R2

2(d−1)2

)
(11.5)
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in (11.2), giving

δS
(WZ)

GB
δφ

= α
√

g
(

E− 2
3
�R
)

= α
√

ḡ
(

Ē− 2
3
�̄R̄+4∆̄4φ

)
. (11.6)

Using the relation
√

ḡ ∆̄4 =
√

g∆4, valid on conformal scalars, and introducing the Green function
D4(x,y) of ∆4

√
g∆4D4(x,y) = δ

4(x,y), (11.7)

we can solve for φ in (11.6). Inserting its expression back into (11.3) we obtain the nonlocal action

S
(WZ)

GB =
α

8

∫
d4x
√
−g

∫
d4x′

√
−g′

(
E4−

2
3
�R
)

x

×D4(x,x′)
(

E4−
2
3
�R
)

x′
, (11.8)

that coincides with the result provided in [21] by Mazur and Mottola.
As clear from (11.6), we have removed the dilaton φ by solving that equation by the Green function
of ∆4. Athough the operator is quartic, however, as discussed in recent analysis, the functional
expansion of nonlocal actions of this type in the background metric can be organized in terms of
operatorial insertions of the form R�−1 for each external leg, at least around flat space [6, 11].
This is in agreement with the discussion introduced in the previous sections, at least up to 3-point
functions (TTT).

12. Conclusions

We have reviewed recent work on the relation between traditional anomaly actions, in the
form of dilaton gravity theories, and compared them against recent proposals of EGB theories, in-
troduced by an infinite regularization of the coupling of the topological Gauss-Bonnet term. Topo-
logical terms in gravity, introduced in a purely classical context, share a significant overlap with
former analysis of the anomaly actions of Wess-Zumino forms, widely discussed in the related lit-
erature. This has sparked a wide interest in the General Relativity community, for providing a way
to bypass Lovelock’s theorem, that clearly is not framed in a context of dimensional regularization.
As we have seen, a finite renormalization of the GB density, which is perfectly allowed in DR,
gives the possibility of generating an EGB theory which is nonlocal. A final comment concerns
the important role that these class of actions play in the study of topological materials through
effecctive field theory descriptions [23, 24]. Work in this direction is underway.
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