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We propose a way of relating CP violation in the quark and in the lepton sectors, that as 
usual we parametrize by the CKM and PMNS phases. If the origin of the CP breaking is 
in the complex Yukawa couplings, both in the quark and lepton sectors, the previous 
relation will not be possible in general, since Yukawa couplings in the two sectors have 
independent flavour structures. We will show that both the 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 phases can 
instead be generated by a vacuum phase in a class of two Higgs doublet models, and in 
this case a connection may be established. This scenario requires, both in the quark and 
lepton sectors, the presence of scalar FCNC at tree level. The appearance of these FCNC 
is an obstacle since one has to analyse which models are able to conform to the strict 
experimental limits on FCNC, both in the quark and lepton sectors. On the contrary, this 
class of models is falsifiable since FCNC arise at a level which can be probed 
experimentally in the very near future, especially in processes like ℎ → 𝑒𝑒±𝜏𝜏∓ and 𝑡𝑡 → ℎ𝑐𝑐. 
The connection between CP violations in 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 is explicitly illustrated in 
models with Minimal Flavour Violation with very interesting predictions. 
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1. Introduction 
Our purpose in this work is to analyse the possibility of having a relation between CP 

violation in the quark and in the lepton sectors, parametrized by the corresponding complex 
phases: the Cabibbo-Kobayashi-Maskawa (CKM) phase 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 in the quark sector [1,2] and the 
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃, in the lepton sector [3,4].  
We have a very solid experimental evidence that 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 ≠ 0, corresponding to a complex CKM 
mixing matrix in the quark sector, even if one allows for the presence of New Physics contributing 
to CP violation [5,6]. Nevertheless, a complex CKM does not imply necessarily CP violation at 
the Lagrangian level through complex Yukawa couplings. Indeed, one may have a vacuum 
induced CP violation, from the Higgs potential, generating a complex CKM matrix in agreement 
with experiment [7,8]. 
In any extension of the Standard Model (SM) with non-vanishing neutrino masses and assuming 
that the origin of CP violation, in the lepton sector, is the presence of complex Yukawa couplings, 
then there is no relation between 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃. 
To obtain a relation between CKM and PMNS phases, an interesting possibility is to assume that 
the CP symmetry is spontaneously broken, with the irremovable vacuum phase generating both 
the phase in the quark and in the lepton sectors. We will follow this avenue  

2. Spontaneous CP violation and the 2HDM 
It was T.D. Lee, in 1973, that he proposed the first model of spontaneous CP violation 

(SCPV) in order to put the breaking of CP symmetry on the same footing as the breaking of the 
gauge symmetry [9]. It was achieved through the introduction of the two Higgs doublets model 
(2HDM), with vacuum expectation values having a relative phase which violates both, T and CP 
invariance. It is very important to realize that the general 2HDM [10,11] has Scalar Flavour 
Changing Neutral Couplings (SFCNC) at tree level which of course can be highly dangerous and 
therefore we need to put them under control. 

One way of eliminating right away SFCNC is by imposing Natural Flavour Conservation 
(NFC) a la Glashow-Weinberg [12] through a 𝑍𝑍2 symmetry. A way of putting SFCNC – not 
eliminating completely- under control is by using Minimal Flavour Violation (MFV) models, 
obtained from a symmetry, like is the case of the Branco-Grimus-Lavoura (BGL) models [13-
18]–in particular with a 𝑍𝑍4 symmetry-. 

But it was proven long time ago by Branco that, quite generally, SCPV and NFC generates 
a real CKM [19,20]. By different reasons, BGL models cannot present SCPV because the Z4 
symmetry is too constraining in the Higgs potential.  

Therefore, in the framework of 2HDM we need to keep the possibility of having SCPV, 
avoid NFC and maintain SFCNC under control. All these ingredients appear in the so called 
generalized BGL models (gBGL) [21] with a softly broken 𝑍𝑍2 symmetry, realized in the Yukawa 
sector in a flavor dependent way, therefore not meeting NFC criteria and at the same time with 
SFCN with a limited intensity. 

3. The gBGL model with SCPV 
In general, the gBGL model is defined by 



P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
2
8

Relating 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 Francisco J. Botella 

3 

𝛷𝛷1 → 𝛷𝛷1 ;  𝛷𝛷2 → −𝛷𝛷2
𝑄𝑄𝐿𝐿1,2 → 𝑄𝑄𝐿𝐿1,2   ;  𝑄𝑄𝐿𝐿3 → −𝑄𝑄𝐿𝐿3

𝑢𝑢𝑅𝑅 → 𝑢𝑢𝑅𝑅 ;  𝑑𝑑𝑅𝑅 → 𝑑𝑑𝑅𝑅
         (1) 

With the introduction of right handed neutrino [22] –just considering the Dirac case for simplicity- 
we have for the Yukawa sector 

𝐿𝐿𝑌𝑌 = −𝑄𝑄𝐿𝐿 �Γ1
(𝑑𝑑)Φ1 + Γ2

(𝑑𝑑)Φ2�𝑑𝑑𝑅𝑅 − 𝑄𝑄𝐿𝐿 �Γ1
(𝑢𝑢)Φ�1 + Γ2

(𝑢𝑢)Φ�2�𝑢𝑢𝑅𝑅

−𝐿𝐿𝐿𝐿 �Γ1
(𝑒𝑒)Φ1 + Γ2

(𝑒𝑒)Φ2� 𝑙𝑙𝑅𝑅 − 𝐿𝐿𝐿𝐿 �Γ1
(𝜈𝜈)Φ1 + Γ2

(𝜈𝜈)Φ2�𝜈𝜈𝑅𝑅 + ℎ. 𝑐𝑐.
          (2) 

The couplings of the gBGL model are fixed by the 𝑍𝑍2 symmetry (1) in the following way 

Γ1
(𝑑𝑑)~Γ1

(𝑢𝑢)~Γ1
(𝑒𝑒)~Γ1

(𝜈𝜈)~�
× × ×
× × ×
0 0 0

� (3) 

Γ2
(𝑑𝑑)~Γ2

(𝑢𝑢)~Γ2
(𝑒𝑒)~Γ2

(𝜈𝜈)~�
0 0 0
0 0 0
× × ×

� (4) 

with real matrix elements. So in general we have the relations 

Γ2
(𝑓𝑓) = 𝑃𝑃3Γ2

(𝑓𝑓) ;  Γ1
(𝑓𝑓) = (𝐼𝐼 − 𝑃𝑃3)Γ1

(𝑓𝑓) ; 𝑃𝑃3 = �
0 0 0
0 0 0
0 0 1

� (5) 

the Yukawa sector in the Higgs basis [23-25], with - 𝜐𝜐2 = 𝜐𝜐12+𝜐𝜐22, 𝑐𝑐𝛽𝛽 = 𝜐𝜐1/𝜐𝜐2, 𝑠𝑠𝛽𝛽 = 𝜐𝜐1/𝜐𝜐2, - 

�
𝑒𝑒−𝑖𝑖𝜃𝜃1Φ1

𝑒𝑒−𝑖𝑖𝜃𝜃2Φ2
� = �

𝑐𝑐𝛽𝛽 𝑠𝑠𝛽𝛽
𝑠𝑠𝛽𝛽 −𝑐𝑐𝛽𝛽� �

H1

H2
�                     (6) 

can be written as  

𝐿𝐿𝑌𝑌 = −
√2
𝜐𝜐
𝑄𝑄𝐿𝐿�𝑀𝑀𝑑𝑑

0H1 + 𝑁𝑁𝑑𝑑0H2�𝑑𝑑𝑅𝑅 −
√2
𝜐𝜐
𝑄𝑄𝐿𝐿�𝑀𝑀𝑢𝑢

0H�1 + 𝑁𝑁𝑢𝑢0H�2�𝑢𝑢𝑅𝑅

−
√2
𝜐𝜐
𝐿𝐿𝐿𝐿�𝑀𝑀𝑙𝑙

0H1 + 𝑁𝑁𝑙𝑙0H2�𝑙𝑙𝑅𝑅 −
√2
𝜐𝜐
𝐿𝐿𝐿𝐿�𝑀𝑀𝜈𝜈

0H�1 + 𝑁𝑁𝜈𝜈0H�2�𝜈𝜈𝑅𝑅 + ℎ. 𝑐𝑐.
          (7) 

where 

𝑀𝑀𝑑𝑑
0 =

𝜐𝜐
√2

�Γ1
(𝑑𝑑)c𝛽𝛽 + Γ1

(𝑑𝑑)s𝛽𝛽𝑒𝑒𝑖𝑖𝜃𝜃�  ;  𝑀𝑀𝑢𝑢
0 =

𝜐𝜐
√2

�Γ1
(𝑢𝑢)c𝛽𝛽 + Γ1

(𝑢𝑢)s𝛽𝛽𝑒𝑒−𝑖𝑖𝜃𝜃�

𝑀𝑀𝑙𝑙
0 =

𝜐𝜐
√2

�Γ1
(𝑒𝑒)c𝛽𝛽 + Γ1

(𝑒𝑒)s𝛽𝛽𝑒𝑒𝑖𝑖𝜃𝜃�  ;  𝑀𝑀𝜈𝜈
0 =

𝜐𝜐
√2

�Γ1
(𝜈𝜈)c𝛽𝛽 + Γ1

(𝜈𝜈)s𝛽𝛽𝑒𝑒−𝑖𝑖𝜃𝜃�
          (8) 

here 𝜃𝜃 = 𝜃𝜃2 − 𝜃𝜃1 is the irremovable and CP violating relative phase among 〈Φ1〉 and 〈Φ2〉. For 
the 𝑁𝑁𝑓𝑓0 couplings we get the simple and important result 

𝑁𝑁𝑓𝑓0= �𝑡𝑡𝛽𝛽𝐼𝐼 − �𝑡𝑡𝛽𝛽 + 𝑡𝑡𝛽𝛽−1�𝑃𝑃3�𝑀𝑀𝑓𝑓
0              (9) 

Note that even if 𝑁𝑁𝑓𝑓0 are proportional to 𝑀𝑀𝑓𝑓
0 this proportionality involves a diagonal matrix 

different from the identity. This means that in general it will not be possible to bi-diagonalize both 
matrices simultaneously. The matrices 𝑁𝑁𝑓𝑓0 control the scalar mediated flavour changing neutral 
couplings SFCNC that in general will be present in all sectors. 

The Higgs potential is the standard for 2HDM with a 𝑍𝑍2 symmetry, including a soft breaking 
term. This way the possibility of having CP violation from the vacuum is open 

𝑉𝑉 = 𝜇𝜇112 𝛷𝛷1
†𝛷𝛷1 + 𝜇𝜇222 𝛷𝛷2

†𝛷𝛷2 − 𝜇𝜇122 �𝛷𝛷1
†𝛷𝛷2 + 𝛷𝛷2

†𝛷𝛷1� 

+ �𝜆𝜆5�𝛷𝛷1
†𝛷𝛷2�

2
+ ℎ. 𝑐𝑐. � + 2𝜆𝜆3�𝛷𝛷1

†𝛷𝛷1��𝛷𝛷2
†𝛷𝛷2�

+2𝜆𝜆4�𝛷𝛷1
†𝛷𝛷2��𝛷𝛷2

†𝛷𝛷1� + 𝜆𝜆1�𝛷𝛷1
†𝛷𝛷1�

2
+ 𝜆𝜆2�𝛷𝛷2

†𝛷𝛷2�
2

   (10) 
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the relative phase 𝜃𝜃 is fixed by the relation 

cos𝜃𝜃 =
𝜇𝜇122

2𝜆𝜆5𝜐𝜐1𝜐𝜐2
                (11) 

and it signals CP violation from the vacuum provided 𝜃𝜃 ≠ 0, ± 𝜋𝜋
2

, ±𝜋𝜋. 

4. Generation of CP violating CKM and PMNS matrices 
CP invariance of the Lagrangian imposes 

Γ𝑖𝑖
(𝑓𝑓) = Γ𝑖𝑖

(𝑓𝑓)∗                 (12) 
From the structure of equations (5,8) it becomes evident that  

𝑀𝑀𝑓𝑓
0 = �

1 0 0
0 1 0
0 0 𝑒𝑒𝑖𝑖𝜎𝜎𝑓𝑓

�𝑀𝑀�𝑓𝑓0 ≡ Φ3�𝜎𝜎𝑓𝑓�𝑀𝑀�𝑓𝑓0                 (13) 

with 𝑀𝑀�𝑓𝑓0 an arbitrary real mass matrix and with 𝜎𝜎𝑓𝑓 taking the values +𝜃𝜃 for 𝑓𝑓 = 𝑑𝑑, 𝑒𝑒 and –𝜃𝜃 for 
𝑓𝑓 = 𝑢𝑢, 𝜈𝜈. 
Obviously 

𝑀𝑀𝑓𝑓
0𝑀𝑀𝑓𝑓

0† = Φ3�𝜎𝜎𝑓𝑓�𝑀𝑀�𝑓𝑓0𝑀𝑀�𝑓𝑓0𝑇𝑇Φ3�−𝜎𝜎𝑓𝑓�

𝑀𝑀𝑓𝑓
0†𝑀𝑀𝑙𝑙

0 = 𝑀𝑀�𝑓𝑓0𝑇𝑇 𝑀𝑀�𝑓𝑓0 
          (14) 

therefore 𝑀𝑀𝑓𝑓
0†𝑀𝑀𝑙𝑙

0 will be diagonalized by a real orthogonal matrix 𝑂𝑂𝑓𝑓𝑅𝑅  

𝑂𝑂𝑓𝑓𝑅𝑅
𝑇𝑇 𝑀𝑀𝑓𝑓

0†𝑀𝑀𝑓𝑓
0𝑂𝑂𝑓𝑓𝑅𝑅 = �

𝑚𝑚𝑓𝑓1
2 0 0

0 𝑚𝑚𝑓𝑓2
2 0

0 0 𝑚𝑚𝑓𝑓3
2
�                 (15) 

and in a similar way we get 

𝑈𝑈𝑓𝑓𝐿𝐿
† 𝑀𝑀𝑓𝑓

0𝑀𝑀𝑓𝑓
0†𝑈𝑈𝑓𝑓𝐿𝐿 = �

𝑚𝑚𝑓𝑓1
2 0 0

0 𝑚𝑚𝑓𝑓2
2 0

0 0 𝑚𝑚𝑓𝑓3
2
�  ;  𝑈𝑈𝑓𝑓𝐿𝐿 = Φ3�𝜎𝜎𝑓𝑓�𝑂𝑂𝑓𝑓𝐿𝐿                 (16) 

where 𝑂𝑂𝑓𝑓𝐿𝐿will be a real orthogonal matrix, in such a way that the bi-diagonalization becomes 

𝑀𝑀𝑓𝑓 = 𝑈𝑈𝑓𝑓𝐿𝐿
† 𝑀𝑀𝑓𝑓

0𝑂𝑂𝑓𝑓𝑅𝑅 = �
𝑚𝑚𝑓𝑓1 0 0

0 𝑚𝑚𝑓𝑓2 0
0 0 𝑚𝑚𝑓𝑓3

�                 (17) 

Therefore, because de CKM and PMNS matrices are defined by 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑈𝑈𝑢𝑢𝐿𝐿
† 𝑈𝑈𝑑𝑑𝐿𝐿 and 𝑈𝑈𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 =

𝑈𝑈𝑒𝑒𝐿𝐿
† 𝑈𝑈𝜈𝜈𝐿𝐿 respectively we will have 

𝑉𝑉 ≡ 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑢𝑢𝐿𝐿
𝑇𝑇 Φ3(2𝜃𝜃)𝑂𝑂𝑑𝑑𝐿𝐿

𝑈𝑈 ≡ 𝑈𝑈𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 = 𝑂𝑂𝑒𝑒𝐿𝐿
𝑇𝑇 Φ3(−2𝜃𝜃)𝑂𝑂𝜈𝜈𝐿𝐿

          (18) 

Since 𝑂𝑂𝑓𝑓𝐿𝐿  are arbitrary real rotations, it is evident that there is enough freedom to obtain arbitrary 
V and U, except for the fact that any CP violating observable in the quark sector and any CP 
violating observable in the lepton sector, must vanish with 𝜃𝜃 → 0. 
It is thus interesting to scrutinize in detail the relation that must exist among the CP violating 
phases in V and U, 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 respectively. Where 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 will simply correspond 
to the CP phases in a standard parametrization. 

5. CP violation in the Charged Currents and the presence of SFCNC 
To present the relation among 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 the simplest approach would be to impose that 
SFCNC are absent, since there is no evidence yet of the existence of SFCNC beyond the SM. But 
this, as we will see, leads to a real CKM, contrary to evidence, and thus SFCNC are necessary.  
The appearance of SFCNC is encoded in the 𝑁𝑁𝑓𝑓0 matrices which control the Yukawa couplings to 
𝐻𝐻2. In the fermion mass basis, where one can fully appreciate SFCNC, 𝑁𝑁𝑓𝑓0 becomes 𝑁𝑁𝑓𝑓: 
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𝑁𝑁𝑓𝑓 = 𝑈𝑈𝑓𝑓𝐿𝐿
† 𝑀𝑀𝑓𝑓

0𝑂𝑂𝑓𝑓𝑅𝑅 = �𝑡𝑡𝛽𝛽𝐼𝐼 − �𝑡𝑡𝛽𝛽 + 𝑡𝑡𝛽𝛽−1�𝑃𝑃3
𝑓𝑓�𝑀𝑀𝑓𝑓

= �𝑡𝑡𝛽𝛽𝐼𝐼 − �𝑡𝑡𝛽𝛽 + 𝑡𝑡𝛽𝛽−1�𝑃𝑃3
𝑓𝑓��

𝑚𝑚𝑓𝑓1 0 0
0 𝑚𝑚𝑓𝑓2 0
0 0 𝑚𝑚𝑓𝑓3

�
          (19) 

where we have introduced the projector operators 
 𝑃𝑃3
𝑓𝑓 ≡ 𝑈𝑈𝑓𝑓𝐿𝐿

† 𝑃𝑃3 𝑈𝑈𝑓𝑓𝐿𝐿 = 𝑂𝑂𝑓𝑓𝐿𝐿
𝑇𝑇 𝑃𝑃3𝑂𝑂𝑓𝑓𝐿𝐿                (20) 

therefore SFCNC are controlled by the real projectors 𝑃𝑃3
𝑓𝑓, in particular by the off-diagonal entries 

of 𝑃𝑃3
𝑓𝑓, which are controlled by the 𝑂𝑂𝑓𝑓𝐿𝐿  matrices, which also give the CKM and PMNS mixing 

matrices. 
It is important to notice, that by construction 

𝑃𝑃3𝑢𝑢 = 𝑉𝑉𝑃𝑃3𝑑𝑑𝑉𝑉† ;   𝑃𝑃3𝑒𝑒 = 𝑈𝑈𝑃𝑃3𝜈𝜈𝑉𝑉𝑈𝑈†

�𝑂𝑂𝑢𝑢𝐿𝐿
𝑇𝑇 𝑃𝑃3𝑂𝑂𝑢𝑢𝐿𝐿� = �𝑂𝑂𝑢𝑢𝐿𝐿

𝑇𝑇 Φ3(2𝜃𝜃)𝑂𝑂𝑑𝑑𝐿𝐿��𝑂𝑂𝑑𝑑𝐿𝐿
𝑇𝑇 𝑃𝑃3𝑂𝑂𝑑𝑑𝐿𝐿��𝑂𝑂𝑑𝑑𝐿𝐿

𝑇𝑇 𝛷𝛷3(−2𝜃𝜃)𝑂𝑂𝑢𝑢𝐿𝐿�
          (21) 

that means that SFCNC in the up and down quark sectors are not independent, they are related 
through the CKM matrix. This fact will be particularly relevant in order to address appropriately 
the counting and the election of the independent parameters. 
The elements of the matrices 𝑃𝑃3

𝑓𝑓are 
 �𝑃𝑃3

𝑓𝑓�𝑖𝑖𝑖𝑖 ≡ �𝑂𝑂𝑓𝑓𝐿𝐿
𝑇𝑇 𝑃𝑃3𝑂𝑂𝑓𝑓𝐿𝐿�𝑖𝑖𝑖𝑖 =  �𝑂𝑂𝑓𝑓𝐿𝐿

𝑇𝑇 �
𝑖𝑖3
�𝑂𝑂𝑓𝑓𝐿𝐿�3𝑖𝑖 ≡  �̂�𝑟[𝑓𝑓]𝑖𝑖�̂�𝑟[𝑓𝑓]𝑖𝑖          (22) 

where �̂�𝑟[𝑓𝑓]𝑖𝑖 ≡ �𝑂𝑂𝑓𝑓𝐿𝐿
𝑇𝑇 �

𝑖𝑖3
are the components of real, unit vectors in three dimensions �̂�𝑟[𝑓𝑓]: the third 

rows of the orthogonal matrices 𝑂𝑂𝑓𝑓𝐿𝐿  

 𝑂𝑂𝑓𝑓𝐿𝐿 = �
× × ×
× × ×
�̂�𝑟[𝑓𝑓]1 �̂�𝑟[𝑓𝑓]2 �̂�𝑟[𝑓𝑓]3

�                (23) 

In principle each �̂�𝑟[𝑓𝑓] would require two independent parameters but because the relations in 
equation (21) we only need two parameters to control SFCNC in the quark sector in addition to 
VCKM: these make a total of six parameters. Similar should be in the lepton sector. 
Coming back to our objective of relating SFCNC and CP violation in the mixing matrix we can 
ask for the consequences of eliminating SFCNC in some sector [26]. It is clear from equations 
(19) and (22) that to have 𝑁𝑁𝑓𝑓 diagonal we need to have 𝑃𝑃3

𝑓𝑓 diagonal and this can only be achieved 
by imposing one of its components equal to 1 and therefore vanishing the others: 

 �𝑃𝑃3
𝑓𝑓�𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 ≡ (𝑃𝑃𝑖𝑖)𝑖𝑖𝑖𝑖         (24) 

Under this condition we will show that the corresponding mixing matrix does not violate CP. For 
definiteness we work in the lepton sector: 

𝑈𝑈 = 𝑂𝑂𝑒𝑒𝐿𝐿
𝑇𝑇 Φ3(−2𝜃𝜃)𝑂𝑂𝜈𝜈𝐿𝐿 = 𝑂𝑂𝑒𝑒𝐿𝐿

𝑇𝑇 �𝐼𝐼 + �𝑒𝑒−2𝑖𝑖𝜃𝜃�𝑃𝑃3�𝑂𝑂𝜈𝜈𝐿𝐿  
= 𝑂𝑂𝑒𝑒𝐿𝐿

𝑇𝑇 𝑂𝑂𝜈𝜈𝐿𝐿𝑂𝑂𝜈𝜈𝐿𝐿
𝑇𝑇 �𝐼𝐼 + �𝑒𝑒−2𝑖𝑖𝜃𝜃�𝑃𝑃3�𝑂𝑂𝜈𝜈𝐿𝐿 = 𝑂𝑂𝑒𝑒𝐿𝐿

𝑇𝑇 𝑂𝑂𝜈𝜈𝐿𝐿�𝐼𝐼 + �𝑒𝑒−2𝑖𝑖𝜃𝜃�𝑃𝑃3𝜈𝜈�
          (25) 

and from this result it is clear that if 𝑃𝑃3𝜈𝜈 = 𝑃𝑃𝑖𝑖 it turns out that the matrix �𝐼𝐼 + �𝑒𝑒−2𝑖𝑖𝜃𝜃�𝑃𝑃3𝜈𝜈� is a 
diagonal of phases and therefore in this case equation 25 represents an orthogonal matrix times a 
real of phases that can be reabsorbed in the neutrino field phases and therefore 𝑈𝑈𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 can be 
chosen as a real orthogonal matrix conserving CP. The argument in equation (25) can be extended 
to the charged lepton sector or to both quark sectors concluding that in the 2HDM with SCPV of 
the type gBGL: 
1) To have CP violation in the CKM matrix, there must be tree level SFCNC both in the up and 
in the down quark sectors. 
2) To have a non-vanishing CP violating phase in the PMNS matrix, there must be tree level 
SFCNC both in the neutrino and in the charged lepton sectors. 

6. The general relation between 𝜹𝜹𝑪𝑪𝑪𝑪𝑪𝑪 and 𝜹𝜹𝑷𝑷𝑪𝑪𝑷𝑷𝑷𝑷 
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Before arriving to the relation among 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 we need to clarify the parameter counting 
in these models. Let us introduce the usual rotations (𝑠𝑠𝑥𝑥 ≡ sin 𝑥𝑥 , 𝑐𝑐𝑥𝑥 ≡ cos 𝑥𝑥) 

𝑅𝑅12(𝑥𝑥) = �
𝑐𝑐𝑥𝑥 𝑠𝑠𝑥𝑥 0
−𝑠𝑠𝑥𝑥 𝑐𝑐𝑥𝑥 0

0 0 1
�  ;  𝑅𝑅13(𝑥𝑥) = �

𝑐𝑐𝑥𝑥 0 𝑠𝑠𝑥𝑥
0 1 0
−𝑠𝑠𝑥𝑥 0 𝑐𝑐𝑥𝑥

� 

𝑅𝑅13(𝑥𝑥) = �
1 0 0
0 𝑐𝑐𝑥𝑥 𝑠𝑠𝑥𝑥
0 −𝑠𝑠𝑥𝑥 𝑐𝑐𝑥𝑥

�

          (26) 

If for definiteness we analyse the quark sector, we can choose as a completely general 
parametrization  

𝑉𝑉 = 𝑂𝑂𝑢𝑢𝐿𝐿
𝑇𝑇 𝛷𝛷3(2𝜃𝜃)𝑂𝑂𝑑𝑑𝐿𝐿

𝑂𝑂𝑢𝑢𝐿𝐿 = 𝑅𝑅12(𝑝𝑝1𝑢𝑢)𝑅𝑅23(𝑝𝑝2𝑢𝑢)𝑅𝑅13(𝑝𝑝3𝑢𝑢)
𝑂𝑂𝑑𝑑𝐿𝐿 = 𝑅𝑅12�𝑝𝑝1𝑑𝑑 = 0�𝑅𝑅23�𝑝𝑝2𝑑𝑑�𝑅𝑅13�𝑝𝑝3𝑑𝑑�

         (27) 

Note that 𝑉𝑉 will depend on 𝑅𝑅12𝑇𝑇 (𝑝𝑝1𝑢𝑢)𝑅𝑅12�𝑝𝑝1𝑑𝑑� = 𝑅𝑅12𝑇𝑇 �𝑝𝑝1𝑢𝑢 − 𝑝𝑝1𝑑𝑑� therefore, without loss of 
generality, we can chose 𝑝𝑝1𝑑𝑑 = 0 in such a way that the number of independent parameters in the 
quark sector are six �𝑝𝑝1𝑢𝑢,𝑝𝑝2𝑢𝑢,𝑝𝑝3𝑢𝑢,𝑝𝑝2𝑑𝑑 ,𝑝𝑝3𝑑𝑑 ,𝜃𝜃� matching the four standard CKM �𝜃𝜃12

𝑞𝑞 ,𝜃𝜃13
𝑞𝑞 ,𝜃𝜃23

𝑞𝑞 ,𝛿𝛿𝑞𝑞� 
and two from SFCNC ��̂�𝑟[𝑢𝑢]1, �̂�𝑟[𝑢𝑢]2� or equivalently, two independent �̂�𝑟[𝑢𝑢]𝑖𝑖, �̂�𝑟[𝑑𝑑]𝑖𝑖. 
The same happens in the lepton sector, six independent parameters in our PMNS matrix U, 
{𝑝𝑝1𝑒𝑒 ,𝑝𝑝2𝑒𝑒 ,𝑝𝑝3𝑒𝑒 ,𝑝𝑝2𝜈𝜈 ,𝑝𝑝3𝜈𝜈 ,𝜃𝜃} should match the four standard PMNS parameters �𝜃𝜃12𝑙𝑙 ,𝜃𝜃13𝑙𝑙 ,𝜃𝜃23𝑙𝑙 , 𝛿𝛿𝑙𝑙� and two 
from the SFCNC ��̂�𝑟[𝑒𝑒]1, �̂�𝑟[𝑒𝑒]2� for example. 
In summary, the experimental information constrains �𝜃𝜃12

𝑞𝑞 ,𝜃𝜃13
𝑞𝑞 ,𝜃𝜃23

𝑞𝑞 ,𝛿𝛿𝑞𝑞 , �̂�𝑟[𝑢𝑢]1, �̂�𝑟[𝑢𝑢]2� and could fix 
the model parameters �𝑝𝑝1𝑢𝑢,𝑝𝑝2𝑢𝑢,𝑝𝑝3𝑢𝑢,𝑝𝑝2𝑑𝑑 ,𝑝𝑝3𝑑𝑑 ,𝜃𝜃�. A full analysis along these lines was presented in 
reference [7]. The most important aspect to be emphasized here is that, ideally, one can fix 𝜃𝜃 with 
this procedure, since CP violation is well established in the quark sector. Finally with the well-
known PMNS mixing angles �𝜃𝜃12𝑙𝑙 ,𝜃𝜃13𝑙𝑙 ,𝜃𝜃23𝑙𝑙 � together with the knowledge of ��̂�𝑟[𝑒𝑒]1, �̂�𝑟[𝑒𝑒]2� (from 
for example, ℎ → 𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖 or other processes changing flavor lepton number), and incorporating 𝜃𝜃 we 
should be able to predict 𝛿𝛿𝑙𝑙. This is the precise way the connection between 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 
operates. 

7. Quark sector analysis results 
In the Higgs basis the components of the scalar doublets are 

 𝐻𝐻1 = � 𝐺𝐺+
(𝜐𝜐 + 𝐻𝐻0 + 𝑖𝑖𝐺𝐺0)/√2�  ;   𝐻𝐻2 = � 𝐻𝐻+

(𝑅𝑅0 + 𝑖𝑖𝐼𝐼0)/√2�         (28) 

where 𝐺𝐺+,𝐺𝐺0 are the would-be Goldstone bosons, 𝐻𝐻+correspond to the charged scalars and the 
neutral one mass eigenstates ℎ,𝐻𝐻 and 𝐴𝐴, are in general combinations of 𝐻𝐻0,𝑅𝑅0 and 𝐼𝐼0, fixed by 
the Higgs potential in equation (10) and determined by the orthogonal matrix 𝑅𝑅: 

 �
ℎ
𝐻𝐻
𝐴𝐴
� =  𝑅𝑅𝑇𝑇 �

𝐻𝐻0
𝑅𝑅0
𝐼𝐼0
�        (29) 

The first important result in the quark sector is that the model is viable after surmounting flavour 
constraints, Higgs constraints, electroweak constraints and overall that, as we have shown, in spite 
of the fact that SFCNC cannot be eliminated to produce a correct 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 [7]. 
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If we plot the allowed regions for the minimal and medium components of �̂�𝑟[𝑞𝑞] we get  

 
In the figure to the left it is plotted the minimum and medium components of �̂�𝑟[𝑑𝑑], named as 
��̂�𝑟[𝑑𝑑]𝐶𝐶𝑖𝑖𝑀𝑀� and ��̂�𝑟[𝑑𝑑]𝐶𝐶𝑖𝑖𝑑𝑑� and the same for �̂�𝑟[𝑢𝑢] to the right of the figure. The main existence of a 
minimum for ��̂�𝑟[𝑑𝑑]𝐶𝐶𝑖𝑖𝑑𝑑� and for ��̂�𝑟[𝑢𝑢]𝐶𝐶𝑖𝑖𝑑𝑑� is a consequence of the necessity of having SFCNC in 
each sector in order to reproduce 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶. 
A much more surprising result is the one represented in the following figures 

 
Here one can read out the ranges of tan𝛽𝛽 , |𝑅𝑅11|, |𝑅𝑅31| and |sin 2𝜃𝜃|. A minimum value for |𝑅𝑅31| 
is a consequence of the CP violation in the Higgs potential after spontaneous CP breaking. One 
also sees that we cannot have neither very large nor very small tan𝛽𝛽. The most surprising result 
is the large range allowed for |sin 2𝜃𝜃| between a few per cent up to almost one. This result is 
telling us that contrary to 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 the determination of 𝜃𝜃 is much more poor. 
Therefore, generalizing the full analysis to include the leptonic sector does not look the more 
promising way to begin with, especially if we are trying to show how it works the connection 
among 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 in this kind of models, and as we have seen we have a very poor 
determination of 𝜃𝜃 implying that we will get a very poor determination of 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 or 𝛿𝛿𝑙𝑙. 
We need more simplified models were 𝜃𝜃 get fixed in a similar way how 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 is fixed by 
experimental data in the Standard Model. 

8. Simplified model to show the 𝜹𝜹𝑪𝑪𝑪𝑪𝑪𝑪 𝜹𝜹𝑷𝑷𝑪𝑪𝑷𝑷𝑷𝑷 connection 
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Therefore, the idea to show how can work the connection among 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 will be to go 
to more restricted scenarios where, instead of using just the bare experimental constraints, we 
will make simplifying assumptions about the SFCNC sector. It is well-known that there is not 
any confirmed experimental evidence of the existence of SFCNC, therefore the idea will be to 
assumes as much as possible constraints in all the SFCNC sectors. 
 

8.1 Simplified model: the quark sector 

Once we have shown that we cannot assume the absence of SFCNC, the next level of simplicity 
will be to eliminate as much as possible SFCNC in the up and in the down quarks. If we remember 
that we have 6 parameters in the quark flavour sector, the idea will be to assume two 
experimentally guided constraints in the SFCNC sector in order to work with a parametrization 
consistent with the 4 parameters of the CKM matrix. But note that the way of eliminating as much 
as possible SFCNC –keeping a complex CKM- is to impose a zero in one of the components of 
the vector �̂�𝑟[𝑢𝑢] and a zero in another of the components of the vector �̂�𝑟[𝑑𝑑]: 

�̂�𝑟[𝑢𝑢] (0,×,×) (× ,0,×) (×,× ,0) 
(30) �̂�𝑟[𝑑𝑑] (0,×,×) (× ,0,×) (×,× ,0) 

in this way there will be just SFCNC in the 𝑑𝑑𝑖𝑖 ↔ 𝑑𝑑𝑖𝑖 transitions if the zero is in the �̂�𝑟[𝑑𝑑]𝑖𝑖 component 
with 𝑘𝑘 ≠ 𝑖𝑖, 𝑗𝑗 and also just in the 𝑢𝑢𝑙𝑙 ↔ 𝑢𝑢𝑚𝑚 if the zero is in the �̂�𝑟[𝑢𝑢]𝑀𝑀 component with 𝑛𝑛 ≠ 𝑙𝑙,𝑚𝑚. 
Note that these models should incorporate automatically the Minimal Flavour Violation (MFV) 
ansatz, because we will have as many parameters in the flavour sector as the four CKM one. In 
fact the still allowed SFCNC, in each sector, will be fixed by one of the 3 mixing angles of the 
𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 matrix, what certainly will be a very strong prediction. 
Because the simplified models we considered are fixed by the shape we chose for the vectors �̂�𝑟[𝑢𝑢] 
and �̂�𝑟[𝑑𝑑] following the previous table, we have 9 models in the quark sector times 9 models in the 
lepton sector. 81 simplified models in total that has been analysed. A very important result [8] is 
that only one of these models survives all experimental data in the quark and in the lepton sectors. 
From now one we will present this model in the quark sector. 
The surviving model in the quark sector is defined by 

�̂�𝑟[𝑢𝑢]= (0,−𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝2𝑢𝑢, 𝑐𝑐𝑜𝑜𝑠𝑠 𝑝𝑝2𝑢𝑢) ; �̂�𝑟[𝑑𝑑] = �− 𝑠𝑠𝑖𝑖𝑛𝑛 𝑝𝑝2𝑑𝑑 , 0, 𝑐𝑐𝑜𝑜𝑠𝑠 𝑝𝑝2𝑑𝑑  �             (31) 
and since �̂�𝑟[𝑓𝑓]𝑖𝑖 ≡ �𝑂𝑂𝑓𝑓𝐿𝐿

𝑇𝑇 �
𝑖𝑖3

 , that is the third row of 𝑂𝑂𝑓𝑓𝐿𝐿 , it is clear that 

𝑂𝑂𝑢𝑢𝐿𝐿 = 𝑅𝑅12(𝑝𝑝1𝑢𝑢)𝑅𝑅23(𝑝𝑝2𝑢𝑢)~�
× × ×
× × ×
0 × ×

�               (32) 

and also 

𝑂𝑂𝑑𝑑𝐿𝐿 = 𝑅𝑅13�𝑝𝑝2𝑑𝑑�~�
× × ×
× × ×
× 0 ×

�               (33) 

We have therefore for the CKM matrix: 
𝑉𝑉 = 𝑅𝑅23𝑇𝑇 (𝑝𝑝2𝑢𝑢)𝛷𝛷3(2𝜃𝜃)𝑅𝑅12𝑇𝑇 (𝑝𝑝1𝑢𝑢)𝑅𝑅13�𝑝𝑝2𝑑𝑑�               (34) 

And the result of the fit of V to the experimental data (to the known VCKM) gives 
2𝜃𝜃 𝑝𝑝1𝑢𝑢 𝑝𝑝2𝑢𝑢 𝑝𝑝2𝑑𝑑 (35) 1.077−0.031
+0.039 0.2269 ± 0.0005 (4.235 ± 0.059) × 10−2 (3.77 ± 0.10) × 10−3 

In order to relate 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 it is especially relevant that the quark sector fixes 𝜃𝜃 with an 
important precision at the few per cent level. Obviously  �̂�𝑟[𝑢𝑢] and �̂�𝑟[𝑑𝑑] get fixed by 

�̂�𝑟[𝑢𝑢] ≡ (0, 𝑟𝑟𝑐𝑐 , 𝑟𝑟𝑡𝑡) = (0,−0.0423,0.9991) 
�̂�𝑟[𝑑𝑑] ≡ (𝑟𝑟𝑑𝑑 , 0, 𝑟𝑟𝑏𝑏) = (−0.0038,0,0.9999)           (36) 

A non-trivial result is that these values are within the allowed regions of the previous figures. 
Even if we have fixed the intensity of the SFCNC the precise effects in specific processes depend 
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on other parameters like 𝑡𝑡𝛽𝛽 and 𝑅𝑅𝑖𝑖𝑖𝑖 -the Higgs mixing matrix-. From the previous figures and 
taking, from the obtained 𝜃𝜃 value, |𝑠𝑠𝑖𝑖𝑛𝑛 2𝜃𝜃| = 0.88 we get the ranges 

𝑅𝑅11 ∈ (0.82,0.90)   ;     𝑡𝑡𝛽𝛽 ∈ (0.5,1.8)               (37) 
The most relevant prediction of this model in the SFCNC sector concerns the transition 𝑡𝑡 → 𝑐𝑐ℎ 

𝐵𝐵𝑟𝑟(𝑡𝑡 → 𝑐𝑐ℎ) = 0.1306(1− 𝑅𝑅112 )�𝑡𝑡𝛽𝛽 + 𝑡𝑡𝛽𝛽−1�
2𝑟𝑟𝑐𝑐2𝑟𝑟𝑡𝑡2 

2.7 × 10−4 ≤ 𝐵𝐵𝑟𝑟(𝑡𝑡 → 𝑐𝑐ℎ) ≤ 4.3 × 10−4
          (38) 

In the down sector we get a much more less interesting prediction: 𝐵𝐵𝑟𝑟�ℎ → 𝑏𝑏�̅�𝑑 + 𝑑𝑑𝑏𝑏��~10−6. 

8.2 Simplified model: the lepton sector 

In this sector the most stringent constraint comes from 𝜇𝜇 → 𝑒𝑒 + 𝛾𝛾. If we allowed just SFCNC in 
this sector the intensity of the couplings will be controlled by �𝑈𝑈𝜇𝜇𝑖𝑖𝑈𝑈𝑒𝑒𝑖𝑖�

2 and being nonhierarchical 
the PMNS matrix, we estimate [18] that to avoid the actual upper bound of 𝐵𝐵𝑟𝑟(𝜇𝜇 → 𝑒𝑒 + 𝛾𝛾) ≤
4.2 × 10−13[27], we need a cancellation or fine tuning at the level of 10−4 − 10−5 among the 
neutral scalar and pseudoscalar contributions in the 2 loop Barr-Zee contribution [28-29]. 
Therefore, it is mandatory to eliminate these kind of transitions. This in turn means that we have 
to put a zero in �̂�𝑟[𝑒𝑒]1 or in �̂�𝑟[𝑒𝑒]2. Still in the neutrino sector we have three possibilities of putting 
the zero in each one of the components of �̂�𝑟[𝜈𝜈]. Therefore, we are left with 6 different models in 
the lepton sector. 
Out of these six cases the only one allowed experimentally is: 

�̂�𝑟[𝑒𝑒]= (−𝑠𝑠𝑖𝑖𝑛𝑛 𝑝𝑝2𝑒𝑒 , 0, 𝑐𝑐𝑜𝑜𝑠𝑠 𝑝𝑝2𝑒𝑒) ; �̂�𝑟[𝜈𝜈] = (−𝑠𝑠𝑖𝑖𝑛𝑛 𝑝𝑝2𝜈𝜈 , 𝑐𝑐𝑜𝑜𝑠𝑠 𝑝𝑝2𝜈𝜈 , 0 )             (39) 
and again, because �̂�𝑟[𝑓𝑓]𝑖𝑖 ≡ �𝑂𝑂𝑓𝑓𝐿𝐿

𝑇𝑇 �
𝑖𝑖3

, we must have: 

𝑂𝑂𝑒𝑒𝐿𝐿 = 𝑅𝑅12(𝑝𝑝1𝑒𝑒)𝑅𝑅13(𝑝𝑝2𝑒𝑒)~�
× × ×
× × ×
× 0 ×

�               (40) 

together with 

𝑂𝑂𝜈𝜈𝐿𝐿 = 𝑃𝑃23𝑅𝑅12(𝑝𝑝2𝜈𝜈) ≡ �
1 0 0
0 1 1
0 1 0

��
× × 0
× × 0
0 0 1

�               (41) 

therefore, the PMNS matrix will be 
𝑈𝑈 = 𝑅𝑅13𝑇𝑇 �𝑝𝑝2𝑙𝑙 �𝛷𝛷3(−2𝜃𝜃)𝑅𝑅12𝑇𝑇 �𝑝𝑝1𝑙𝑙 �𝑃𝑃23𝑅𝑅12(𝑝𝑝2𝜈𝜈)               (42) 

At this point we must stress that the PMNS matrix is fully fixed by three mixing angles and the 
CP violating phase 𝜃𝜃 already fixed by the quark sector. Now we can fit U to the experimental 
information on PMNS encoded in �𝜃𝜃12𝑙𝑙 ,𝜃𝜃13𝑙𝑙 ,𝜃𝜃23𝑙𝑙 �. In this fit we fix the quark fit result 2𝜃𝜃 =
1.077−0.031

+0.039. Although different PMNS analyses show some sensitivity to the phase 𝛿𝛿𝑙𝑙 , we do not 
include that information in the fit since we are precisely interested in its prediction. The fit gives 
the following two solutions: 
 

Solution 1 𝑝𝑝1𝑒𝑒 = 0.7496 𝑝𝑝2𝑒𝑒 = 1.3541 𝑝𝑝2𝜈𝜈 = 0.8974 (43) Solution 2 𝑝𝑝1𝑒𝑒 = 2.3889 𝑝𝑝2𝑒𝑒 = 1.3541 𝑝𝑝2𝜈𝜈 = 1.0542 
The relevant SFCNC are controlled by 

�̂�𝑟[𝑒𝑒]= (𝑟𝑟𝑒𝑒 , 0, 𝑟𝑟𝜏𝜏) = (−0.9765,0,0.2156)              (44) 
and also very important is the fact that the two solutions differ in the values of the (unique) CP 
violating imaginary part of an invariant quartet: 

𝐽𝐽𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 = 𝐼𝐼𝑚𝑚�𝑈𝑈𝑒𝑒1𝑈𝑈𝜇𝜇2𝑈𝑈𝑒𝑒2∗ 𝑈𝑈𝜇𝜇1∗ �               (45) 
and the phase 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 = 𝛿𝛿𝑙𝑙. 

Case  𝐽𝐽𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 = 𝛿𝛿𝑙𝑙 Δ𝜒𝜒𝑃𝑃𝑁𝑁2  Δ𝜒𝜒𝐼𝐼𝑁𝑁2   
Solution 1 −0.0316 1.629𝜋𝜋 �293°� 5 0 

(46) Solution 2 0.0282 0.679𝜋𝜋 �126°� 13 > 20 
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The values of 𝛥𝛥𝜒𝜒𝑃𝑃𝑁𝑁2  and 𝛥𝛥𝜒𝜒𝐼𝐼𝑁𝑁2  show the contribution that corresponds to 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 attending to the 
𝛥𝛥𝜒𝜒2 profiles for 𝛿𝛿𝑙𝑙 obtained for normal and inverted neutrino mass ordering. 
We stress that using the information on CP violation in the quark sector, we have been able to 
predict the phase in PMNS using the connection that SCPV provides in this model; in particular, 
Solution 1 has 𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 = 1.629𝜋𝜋, which is in good agreement with the most likely values in PMNS 
analyses. 
We have also the parameters that control the SFCNC in the 𝜏𝜏 ↔ 𝑒𝑒 sector, 𝑟𝑟𝑒𝑒 = 0.9765 and 𝑟𝑟𝜏𝜏 =
0.2156: These figures give rise again to a definite prediction for𝐵𝐵𝑟𝑟(ℎ → 𝜏𝜏�̅�𝑒 + 𝑒𝑒�̅�𝜏), through the 
equation 

𝐵𝐵𝑟𝑟(ℎ → 𝑒𝑒𝜏𝜏) = (1 − 𝑅𝑅112 )�𝑡𝑡𝛽𝛽 + 𝑡𝑡𝛽𝛽−1�
2𝑟𝑟𝑒𝑒2𝑟𝑟𝜏𝜏2 �

Γ𝑃𝑃𝐶𝐶(ℎ)
Γ(ℎ) �              (47) 

If we take into account the allowed variation of 𝑅𝑅11 and 𝑡𝑡𝛽𝛽; we end up with the sharp prediction 

3 × 10−3 ≤ �
𝛤𝛤(ℎ)
𝛤𝛤𝑃𝑃𝐶𝐶(ℎ)�𝐵𝐵𝑟𝑟(ℎ → 𝑒𝑒𝜏𝜏) ≤ 5 × 10−3              (48) 

Note that this result should be seen or disproved soon because the actual experimental bound [30-
33] is 𝐵𝐵𝑟𝑟(ℎ → 𝑒𝑒𝜏𝜏) ≤ 4.7 × 10−3 (CMS has recently [34] announced 𝐵𝐵𝑟𝑟(ℎ → 𝑒𝑒𝜏𝜏) ≤ 2.2 × 10−3). 

9. Conclusions  
We have discussed the possibility of having a framework where there is a connection between the 
CP violations in the quark and in the lepton sectors. The natural place is in models with 
spontaneous breaking of CP symmetry, and in particular we have worked with two Higgs doublet 
models with a softly broken flavour dependent 𝑍𝑍2 symmetry realized in the way of the so-called 
generalized BGL models (gBGL). 
In this framework it has been shown that in order to generate a complex CKM matrix, one has to 
have scalar flavour changing neutral couplings both in the up and down quark sectors. In the 
lepton sector it is also needed to have SFCNC both in the charged lepton sector and in the neutrino 
one. 
We have shown that within those gBGL models, there is a connection between 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 and 
𝛿𝛿𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃.The interplay among CPV and the existence of SFCNC makes these relations quite 
involved implying connections or predictions for processes mediated by SFCNC in all the sectors: 
up, down quarks and charged leptons and even neutrinos. To clarify all these relations, we have 
worked out different models that have the minimal amount of SFCNC needed to keep SCPV 
generating complex mixing matrices. These simplified models verify the Minimal Flavour 
Violation ansatz. Because they are controlled by the four unit vectors �̂�𝑟[𝑢𝑢], �̂�𝑟[𝑑𝑑], �̂�𝑟[𝑒𝑒] and �̂�𝑟[𝜈𝜈] having 
a zero in some of the three entries, there are 34 = 81 possible models of this type. There is only 
one of this models surviving experimental constraints. There are two possible solutions for the 
PDG CP violating phase in the lepton sector 𝛿𝛿𝑙𝑙: either 293°or 126°. Those solutions goes together 
with the following predictions in the SFCNC sector 2.7 × 10−4 ≤ 𝐵𝐵𝑟𝑟(𝑡𝑡 → 𝑐𝑐ℎ) ≤ 4.3 × 10−4 and 
3 × 10−3 ≤ �𝛤𝛤(ℎ)/𝛤𝛤𝑃𝑃𝐶𝐶(ℎ)�𝐵𝐵𝑟𝑟(ℎ → 𝑒𝑒𝜏𝜏) ≤ 5 × 10−3. 
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