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Neutrino mixing, entanglement and the gauge paradigm in quantum field theory Giuseppe Vitiello

1. Introduction

Neutrino mixing and oscillations are efficiently described in the Pontecorvo formulation in
quantum mechanics (QM) formalism [1, 2].

There are, however, few important problems left open. One is that Pontecorvo states are not
eigenstates of the flavor neutrino charges, with consequent violation of the conservation of leptonic
charge in the neutrino production vertices [3, 4]. Also, neutrinos are field operators properly
handled in the quantum field theory (QFT) formalism on which the Standard Model (SM) is based.
The study of neutrino mixing and oscillations cannot be carried on by ignoring specific features
of QFT. One of these is at very same basis of the SM formulation, namely the fact that in the SM
the physical vacuum is singled out of the set of the infinitely many vacua of the representations of
the canonical commutation (anticommutation) relations (CCR or CAR), i.e. the vacuum providing
the expectation value for the Higgs field, able to produce the experimentally observed electron and
other particle masses [5–7].

Thus, by treating neutrino field operators in their natural frame of QFT, it appears immediately
that flavor fields 𝜈𝜎 , 𝜎 = 𝑒, 𝜇, 𝜏, are properly defined on a space which is a representation of the
CAR unitarily inequivalent to the representation where the massive neutrino fields 𝜈𝑖 , 𝑖 = 1, 2, 3,
are defined [8]. In the following Sections, we shortly review this result which has been extensively
studied in a number of publications [9–30] and also extended to boson mixing [31–33]. For a recent
review see [34].

One very important ‘ingredient’ enters in our discussion, namely the fact that QFT is a
‘canonical’ theory. The canonical structure cannot be violated, it constitutes a constraint of primary
relevance in the discussion of the problem under study. We will see that it requires a non-trivial
condensate structure of the flavor vacuum state.

These general considerations are necessary in order to understand the limits and the meaning-
fulness of the QM Pontecorvo mixing formalism. It is indeed well known [35] that the von Neumann
theorem in QM states that all the representations of the CCR (or CAR) are unitarily equivalent, and
therefore physically equivalent. This theorem does not hold in QFT, where infinitely many unitarily
inequivalent representations (uir) of the CCR (or CAR) exist. It is clear that one could not even
think to formulate the SM in a QM framework where it would not be possible to make the proper
“choice” of the physical vacuum.

In this paper we also review the gauge field formalism for neutrino mixing, where the mixing
is described as resulting from the interaction of the neutrino field with a non-abelian gauge field
[28], acting as an external field. We also discuss the issue of Poincaré invariance for flavor neutrino
states.

2. Neutrino mixing transformations

For simplicity, we limit ourselves to the case of two Dirac neutrino mixing. Our considerations
can be however extended also to the case of three neutrinos. The Lagrangian density written in
terms of neutrino field operators 𝜈𝑒 (x, 𝑡) and 𝜈𝜇 (x, 𝑡) and two massive neutrino field operators
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𝜈1(x, 𝑡) and 𝜈2(x, 𝑡) is

L = �̄�𝑒 (𝑖 ̸𝜕 − 𝑚𝑒) 𝜈𝑒 + �̄�𝜇
(
𝑖 ̸𝜕 − 𝑚𝜇

)
𝜈𝜇 − 𝑚𝑒𝜇

(
�̄�𝑒 𝜈𝜇 + �̄�𝜇 𝜈𝑒

)
, (1)

= �̄�1 (𝑖 ̸𝜕 − 𝑚1) 𝜈1 + �̄�2 (𝑖 ̸𝜕 − 𝑚2) 𝜈2, (2)

respectively, where for notational simplicity we have used 𝜈𝑖 ≡ 𝜈𝑖 (x, 𝑡), 𝑖 = 1, 2, and 𝜈𝜎 ≡ 𝜈𝜎 (x, 𝑡),
𝜎 = 𝑒, 𝜇. In the usual notation, the field operators 𝜈1 and 𝜈2 are:

𝜈 𝑗 (𝑥) =
∫

𝑑3k
(2𝜋)3/2

∑︁
𝑟

[
𝑢𝑟k, 𝑗 (𝑡)𝛼

𝑟
k, 𝑗 + 𝑣

𝑟
−k, 𝑗 (𝑡)𝛽

𝑟†
−k, 𝑗

]
𝑒𝑖k·x, 𝑗 = 1, 2, (3)

where 𝑢𝑟k, 𝑗 (𝑡) = 𝑢
𝑟
k, 𝑗𝑒

−𝑖𝜔k, 𝑗 𝑡 , 𝑣𝑟−k, 𝑗 (𝑡) = 𝑣
𝑟
−k, 𝑗𝑒

𝑖𝜔k, 𝑗 𝑡 , and 𝜔k, 𝑗 =
√︃

k2 + 𝑚2
𝑗
. The CAR are:

{𝜈𝑎𝑖 (𝑥), 𝜈
𝑏†
𝑗
(𝑦)}𝑡𝑥=𝑡𝑦 = 𝛿3(x − y)𝛿𝑎𝑏𝛿𝑖 𝑗 , (4)

{𝛼𝑟k,𝑖 , 𝛼
𝑠†
q, 𝑗} = 𝛿kq𝛿𝑟𝑠𝛿𝑖 𝑗 ; {𝛽𝑟k,𝑖 , 𝛽

𝑠†
q, 𝑗} = 𝛿kq𝛿𝑟𝑠𝛿𝑖 𝑗 , 𝑖, 𝑗 = 1, 2, (5)

with 𝑎, 𝑏 = 1, . . . , 4. All other CAR are zero. The orthonormality and completeness relations are:
𝑢
𝑟†
k, 𝑗𝑢

𝑠
k, 𝑗 = 𝑣

𝑟†
k, 𝑗𝑣

𝑠
k, 𝑗 = 𝛿𝑟𝑠, 𝑢

𝑟†
k, 𝑗𝑣

𝑠
−k, 𝑗 = 𝑣

𝑟†
−k, 𝑗𝑢

𝑠
k, 𝑗 = 0,

∑
𝑟 (𝑢𝑟k, 𝑗𝑢

𝑟†
k, 𝑗 + 𝑣

𝑟
−k, 𝑗𝑣

𝑟†
−k, 𝑗) = 1.

The operators 𝛼𝑟k, 𝑗 and 𝛽𝑟−k, 𝑗 , 𝑗 = 1, 2, 𝑟 = 1, 2 are the annihilation operators for the vacuum
state |0⟩1,2 = |0⟩1 ⊗ |0⟩2: 𝛼𝑟k, 𝑗 |0⟩1,2 = 0; 𝛽𝑟−k, 𝑗 |0⟩1,2 = 0. By operating with the creation operators
𝛼
𝑟†
k, 𝑗 and 𝛽𝑟†−k, 𝑗 , 𝑗 = 1, 2, 𝑟 = 1, 2, on the vacuum state |0⟩1,2 the full tower of many particle states is

generated and the Hilbert space H1,2 is constructed.
Of course, equations and relations among operators, e.g. the CAR, are well defined only when

it is specified the spaceH1,2 on which the field operators 𝜈1, 𝜈2, 𝛼𝑟k, 𝑗 and 𝛽𝑟−k, 𝑗 , 𝑗 = 1, 2, are defined.
This is a non-trivial condition since in QFT infinitely many unitarily non-equivalent representations
of the CAR exist. In quantum mechanics (QM) such a problem does not exist since there the von
Neumann theorem holds, stating that all the representations of the CAR are unitarily (and thus
physically) equivalent.

The Lagrangian in Eq. (1) is formally diagonalized, leading to the Lagrangian (2) for the
neutrino filed operators 𝜈1 and 𝜈2, by using the mixing transformation

𝜈𝑒 = 𝜈1 cos 𝜃 + 𝜈2 sin 𝜃 (6)

𝜈𝜇 = −𝜈1 sin 𝜃 + 𝜈2 cos 𝜃, (7)

provided that the following constraints between the mixing angle 𝜃, the masses𝑚𝑖 ,𝑚𝜎 , 𝑖 = 1, 2;𝜎 =

𝑒, 𝜇, and the ‘strenght’ of the mixing terms 𝑚𝑒𝜇 in Eq. (1) are satisfied:

sin 2𝜃 =
2𝑚𝑒𝜇

𝑚2 − 𝑚1
, cos 2𝜃 =

𝑚𝜇 − 𝑚𝑒

𝑚2 − 𝑚1
, 𝑚𝑒 + 𝑚𝜇 = 𝑚1 + 𝑚2, (8)

where 𝑚1 ≠ 𝑚2, namely, 𝑚𝑒 = 𝑚1 cos2 𝜃 + 𝑚2 sin2 𝜃, 𝑚𝜇 = 𝑚1 sin2 𝜃 + 𝑚2 cos2 𝜃, 𝑚𝑒𝜇 =

(1/2) (𝑚2 − 𝑚1) sin 2𝜃.
The mixing transformations are canonical transformations since they preserve the CAR among

the neutrino field operators. Of course, preserving the canonical formalism is essential in order
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to allow the particle description of the theory and the meaningfulness of the Lagrangian and
Hamiltonian formal apparatus.

In the following, our analysis proceeds within the standard QFT framework [6, 7, 35].
The total Hamiltonian 𝐻 and the momentum operator 𝑃𝑖 , 𝑖 = 1, 2, 3, are:

𝐻 =

∫
𝑑3x𝑇00 =

∫
𝑑3x 𝜈†1 (−𝑖𝜶 · ∇ + 𝛽𝑚1) 𝜈1 +

∫
𝑑3x 𝜈†2 (−𝑖𝜶 · ∇ + 𝛽𝑚2) 𝜈2, (9)

𝑃𝑖 =

∫
𝑑3x𝑇0𝑖 = 𝑖

∫
𝑑3x 𝜈†1𝜕

𝑖𝜈1 + 𝑖
∫

𝑑3x 𝜈†2𝜕
𝑖𝜈2, 𝑖 = 1, 2, 3, (10)

respectively. They are obtained from the canonical energy-momentum tensor 𝑇𝜌𝜎 derived from the
Lagrangian:

𝑇𝜌𝜎 = �̄�𝑒𝑖𝛾𝜌𝜕𝜎𝜈𝑒 − 𝜂𝜌𝜎 �̄�𝑒 (𝑖𝛾𝜆𝜕𝜆 − 𝑚𝑒)𝜈𝑒 + �̄�𝜇𝑖𝛾𝜌𝜕𝜎𝜈𝜇 − 𝜂𝜌𝜎 �̄�𝜇 (𝑖𝛾𝜆𝜕𝜆 − 𝑚𝜇)𝜈𝜇
+ 𝜂𝜌𝜎𝑚𝑒𝜇 (�̄�𝑒𝜈𝜇 + �̄�𝜇𝜈𝑒) (11)

= �̄�1𝑖𝛾𝜌𝜕𝜎𝜈1 − 𝜂𝜌𝜎 �̄�1(𝑖𝛾𝜆𝜕𝜆 − 𝑚1)𝜈1 + �̄�2𝑖𝛾𝜌𝜕𝜎𝜈2 − 𝜂𝜌𝜎 �̄�2(𝑖𝛾𝜆𝜕𝜆 − 𝑚2)𝜈2, (12)

with the Minkowskian metric tensor 𝜂𝜌𝜎 = diag(+1,−1,−1,−1). We see that, when expressed in
terms of 𝜈𝑖 , 𝑖 = 1, 2, the Hamiltonian and the momentum operators are the sum of the respective
contributions from these two field operators, 𝐻 = 𝐻1 + 𝐻2, and 𝑃𝑖 = 𝑃𝑖

1 + 𝑃
𝑖
2, respectively.

3. The canonical algebraic structure and the mixed field operators

The analysis of the canonical structure of the theory shows [17] that the total charge𝑄 associated
to the global 𝑈 (1) symmetry can be computed in terms of two conserved Noether charges for 𝜈𝑖 ,
𝑄 = 𝑄1 +𝑄2:

𝑄𝑖 =

∫
𝑑3x 𝜈†

𝑖
(𝑥) 𝜈𝑖 (𝑥) , 𝑖 = 1, 2. (13)

Moreover, from the Lagrangian Eq.(1) the (non conserved) time-dependent flavor charges can be
derived [17]:

𝑄𝜎 (𝑡) =

∫
𝑑3x 𝜈†𝜎 (𝑥) 𝜈𝜎 (𝑥) , 𝜎 = 𝑒, 𝜇. (14)

It is𝑄𝑒 (𝑡)+𝑄𝜇 (𝑡) = 𝑄. These flavor charges are relevant physical quantities describing the neutrino
oscillation phenomenon, as we will see in the following. 𝑄𝜎 (𝑡) are given, in terms of the charges
𝑄𝑖 and field operators 𝜈𝑖 , by

𝑄𝑒 (𝑡) = cos2 𝜃 𝑄1 + sin2 𝜃 𝑄2 +
1
2

sin 2𝜃
∫

𝑑3x
[
𝜈
†
1 (𝑥)𝜈2(𝑥) + 𝜈†2 (𝑥)𝜈1(𝑥)

]
, (15)

𝑄𝜇 (𝑡) = sin2 𝜃 𝑄1 + cos2 𝜃 𝑄2 −
1
2

sin 2𝜃
∫

𝑑3x
[
𝜈
†
1 (𝑥)𝜈2(𝑥) + 𝜈†2 (𝑥)𝜈1(𝑥)

]
, (16)

where, in the terms proportional to the mixing coefficient 𝑚𝑒𝜇 on the r.h.s. (recall that 𝑚1 ≠ 𝑚2),
the first of Eqs. (8) has been used.

The (broken) 𝑆𝑈 (2) symmetry, to which the 𝑄𝜎 (𝑡), 𝜎 = 𝑒, 𝜇, charges are associated,
can be easily recognized by denoting 2𝑆3 ≡ 𝑄1 − 𝑄2, 𝑆+ ≡

∫
𝑑3x

[
𝜈
†
1 (𝑥)𝜈2(𝑥)

]
, 𝑆− = 𝑆

†
+ ≡∫

𝑑3x
[
𝜈
†
2 (𝑥)𝜈1(𝑥)

]
. Then, use of the CAR (5) shows that the 𝑆𝑈 (2) algebra is satisfied: [𝑆+, 𝑆−] =

4
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2𝑆3, [𝑆3, 𝑆±] = ±𝑆±. The Casimir operator, which commutes with the 𝑆𝑈 (2) generators, 𝑆± and
𝑆3, is given by 𝑆0 ≡ (1/2) (𝑄1 +𝑄2) = (1/2)𝑄.

The relevance of the 𝑆𝑈 (2) algebraic structure is recognized by noticing that 𝑆+ − 𝑆− is the
generator of the mixing transformations Eqs. (6) - (7). Indeed, at finite volume, the operator

𝐺 𝜃 (𝑡) = exp
[
𝜃

∫
𝑑3x

(
𝜈
†
1 (𝑥)𝜈2(𝑥) − 𝜈†2 (𝑥)𝜈1(𝑥)

)]
, (17)

with 𝐺−1
𝜃
(𝑡) = 𝐺−𝜃 (𝑡) = 𝐺†

𝜃
(𝑡), generates the mixing transformations (6) - (7) , which thus can be

written as
𝜈𝜎 (𝑥) = 𝐺−1

𝜃 (𝑡)𝜈 𝑗 (𝑥)𝐺 𝜃 (𝑡) , (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2), (18)

as it can be shown by use of the CAR (5). The annihilation and creation operators for the mixed
𝜈𝜎 (𝑥), 𝜎 = 𝑒, 𝜇, field operators are thus derived:

𝛼𝑟k,𝜎 (𝑡) ≡ 𝐺−1
𝜃 (𝑡) 𝛼𝑟k, 𝑗 𝐺 𝜃 (𝑡), (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2), (19)

and similarly for 𝛽𝑟†−k,𝜎 and their h.c. In the reference frame where k = (0, 0, |k|), the electron
neutrino annihilation operator obtained from (19) is given by:

𝛼𝑟k,𝑒 (𝑡) = cos 𝜃 𝛼𝑟k,1 + sin 𝜃
(
𝑈k(𝑡) 𝛼𝑟k,2 + 𝜖𝑟 𝑉k(𝑡) 𝛽𝑟†−k,2

)
, (20)

and similar expressions are derived for the other (electron and muon) ladder operators [8]. Here
𝜖𝑟 = (−1)𝑟 , and the notation is

𝑈k(𝑡) ≡ 𝑢
𝑟†
k,2(𝑡)𝑢

𝑟
k,1(𝑡) = 𝑣

𝑟†
−k,1(𝑡)𝑣

𝑟
−k,2(𝑡), (21)

𝑉k(𝑡) ≡ 𝜖𝑟 𝑢
𝑟†
k,1(𝑡)𝑣

𝑟
−k,2(𝑡) = −𝜖𝑟 𝑢𝑟†k,2(𝑡)𝑣

𝑟
−k,1(𝑡), (22)

where𝑈𝑘 (𝑡) = |𝑈𝑘 | 𝑒𝑖 (𝜔𝑘,2−𝜔𝑘,1 )𝑡 , 𝑉𝑘 (𝑡) = |𝑉𝑘 | 𝑒𝑖 (𝜔𝑘,2+𝜔𝑘,1 )𝑡 , with |𝑈𝑘 |2 + |𝑉𝑘 |2 = 1.
We remark that both the linearly independent oscillating frequency terms appear in (20), i.e.

the (𝜔𝑘,2 − 𝜔𝑘,1) and (𝜔𝑘,2 + 𝜔𝑘,1) terms, consistently with mathematical completeness.
The 𝜈𝜎 (𝑥), 𝜎 = 𝑒, 𝜇, mixed (flavor) field operators, expanded in the same {𝑢𝑟k,𝑖 (𝑡), 𝑣

𝑟
−k,𝑖 (𝑡)}

bases as the fields 𝜈𝑖 , are thus:

𝜈𝜎 (𝑥) =
∫

𝑑3k
(2𝜋)3/2

∑︁
𝑟

[
𝑢𝑟k, 𝑗 (𝑡)𝛼

𝑟
k,𝜎 (𝑡) + 𝑣

𝑟
−k, 𝑗 (𝑡)𝛽

𝑟†
−k,𝜎 (𝑡)

]
𝑒𝑖k·x, (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2), (23)

In the following we show that expansions in different bases are also possible.
We notice that Eq. (20) describes a rotation transformation nested with a Bogoliubov

transformation; e.g. in (20) the ‘Bogoliubov transformation’ is the one in the round brackets
(𝑈k(𝑡) 𝛼𝑟k,2 + 𝜖𝑟 𝑉k(𝑡) 𝛽𝑟†−k,2) (see [8, 29] for details). We also observe that |𝑈k |2 → 1 and
|𝑉k |2 → 0 for |k| ≫ √

𝑚1𝑚2 (the relativistic limit). In such a limit, Eq. (20) reduces to the
“rotation” of the 𝛼𝑟k,1 operator (and similarly for the other ladder operators). One then obtains the
usual “Pontecorvo formalism” (and oscillation formula).
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4. The vacuum for the flavor fields operators

Clearly, the operator 𝛼𝑟k,𝑒 (𝑡) in (20) does not annihilate the vacuum |0⟩1,2, due to the presence
of the creation operator 𝛽𝑟†−k,2, in the 𝑉k(𝑡)-term. Such a term appears there because the mixing
transformations are canonical transformations, i.e. they preseve the CAR for the 𝜈𝜎 , 𝜎 = 𝑒, 𝜇,
operator fields and for their annihilation and creation operators (the equal time CAR for 𝜈𝜎 operators
are immediately obtained by use of (6), (7) and (4)). As already observed, canonicity cannot be
violated since it expresses the physical meaningfulness of the theory.

For example, by using Eq. (20) (and its hermitian conjugate), the equal time CAR for 𝛼𝑟k,𝑒 (𝑡)
and 𝛼𝑟†k,𝑒 (𝑡) is {𝛼𝑟k,𝑒 (𝑡), 𝛼

𝑟†
k,𝑒 (𝑡)} = cos2 𝜃 + |𝑈k |2 sin2 𝜃 + |𝑉k |2 sin2 𝜃 = 1, in agreement with the

canonical structure of the mixing transformations.
In the case of the 𝑉-term dropped out, the result is {𝛼𝑟k,𝑒 (𝑡), 𝛼

𝑟†
k,𝑒 (𝑡)} = cos2 𝜃 + |𝑈k |2 sin2 𝜃 =

1 − |𝑉k |2 sin2 𝜃 ≠ 1, in violation of the mixing transformations (6) and (7) one starts with. In order
to recover the correct canonical result, one must add the quantity +|𝑉k |2 sin2 𝜃, which comes in fact
from the omitted 𝛽-anticommutator term (i.e. +|𝑉k |2 sin2 𝜃).

As a further example, compute 1,2⟨𝛼𝑟k,𝑒 (𝑡) |𝛼
𝑟
k,𝑒 (𝑡)⟩1,2, which at initial time 𝑡 = 0 must be of

course 1. Use (20), the implied CAR {𝛼𝑟k,𝑒 (𝑡), 𝛼
𝑟†
k,𝑒 (𝑡)} = 1 and put 𝛼𝑟†k,𝑒 (𝑡) |0⟩1,2 = |𝛼𝑟k,𝑒 (𝑡)⟩1,2.

Since from (20) we have 1,2⟨0|𝛼𝑟†k,𝑒 (𝑡)𝛼
𝑟
k,𝑒 (𝑡) |0⟩1,2 = |𝑉k |2 sin2 𝜃, then, 1,2⟨0|𝛼𝑟k,𝑒 (𝑡)𝛼

𝑟†
k,𝑒 (𝑡) |0⟩1,2 =

−1,2⟨0|𝛼𝑟†k,𝑒 (𝑡)𝛼
𝑟
k,𝑒 (𝑡) |0⟩1,2 + 1,2⟨0|{𝛼𝑟k,𝑒 (𝑡), 𝛼

𝑟†
k,𝑒 (𝑡)}|0⟩1,2 = −|𝑉k |2 sin2 𝜃 + 1, which is not accept-

able since, as said, the computed probability amplitude must be 1 at the initial time 𝑡 = 0.
In this case, the unwanted result (≠ 1 at time 𝑡 = 0) is due to the fact that the vacuum |0⟩1,2

has been used and the 𝑉-terms with the 𝛽𝛽† operator on the vacuum |0⟩1,2 has contributed with
the quantity |𝑉k |2 sin2 𝜃. In the following we will see that such a quantity has a precise physical
meaning.

In conclusion, in order to get the correct result, either one needs to violate the CAR, by putting
{𝛼𝑟k,𝑒 (𝑡), 𝛼

𝑟†
k,𝑒 (𝑡)} = +|𝑉k |2 sin2 𝜃 + 1 ≠ 1, or the vacuum |0⟩1,2 must not be used, changing it to a

‘different’ vacuum. This last option, however, would not be allowed in QM since, as mentioned,
the Stone-von Neumann theorem states that in QM all the representations of the CAR are unitarily
equivalent (so there are no ‘different’ vacua in QM). The option is instead possible in QFT where
infinitely many unitarily inequivalent representations do exist.

As a matter of fact, Eq. (19) shows that the state (the vacuum state) annihilated by 𝛼𝑟k,𝜎 (𝑡),
𝜎 = 𝑒, 𝜇, is 𝐺−1

𝜃
(𝑡) 0⟩1,2, which, at finite volume 𝑉 , is denoted by

|0(𝜃, 𝑡)⟩𝑒,𝜇 = 𝐺−1
𝜃 (𝑡) |0⟩1,2 . (24)

Thus, |0(𝜃, 𝑡)⟩𝑒,𝜇 is the vacuum for the Hilbert space H𝑒,𝜇 at time 𝑡, which we will refer to as the
flavor vacuum and the flavor Hilbert space, respectively. In the infinite volume limit, at each time
𝑡, Eq. (24) gives that |0(𝑡)⟩𝑒,𝜇 is orthogonal to the vacuum |0⟩1,2 [8, 19, 20]:

lim
𝑉→∞ 1,2 ⟨0|0(𝜃, 𝑡)⟩𝑒,𝜇 = lim

𝑉→∞
𝑒
𝑉

∫
𝑑3k
(2𝜋)3

ln (1−sin2 𝜃 |𝑉k |2)2

= 0 (25)

and
lim
𝑉→∞ 𝑒,𝜇⟨0(𝜃, 𝑡′) |0(𝜃, 𝑡)⟩𝑒,𝜇 = 0, 𝑡 ≠ 𝑡′. (26)
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This shows that H𝑒,𝜇 and H1,2, are unitarily inequivalent representations of the CAR at each time
𝑡 and that at each 𝑡 ≠ 𝑡′ the corresponding flavor Hilbert spaces are also unitarily inequivalent. We
will come back to this point in the following.

The vacuum |0(𝜃, 𝑡)⟩𝑒,𝜇 is normalized to 1, 𝑒,𝜇⟨0(𝜃, 𝑡) |0(𝜃, 𝑡)⟩𝑒,𝜇 = 1, and turns out to be a
generalized 𝑆𝑈 (2) coherent state [8]. Explicitly, it is given by

|0(𝜃, 𝑡)⟩𝑒,𝜇 =
∏
k,𝑟

[
(1 − sin2 𝜃 |𝑉k |2) − 𝜖𝑟 sin 𝜃 cos 𝜃 𝑉k(𝑡)

(
𝛼
𝑟†
k,1𝛽

𝑟†
−k,2 + 𝛼

𝑟†
k,2𝛽

𝑟†
−k,1

)
(27)

+ 𝜖𝑟 sin2 𝜃 𝑉k(𝑡)
(
𝑈∗

k(𝑡)𝛼
𝑟†
k,1𝛽

𝑟†
−k,1 −𝑈k(𝑡)𝛼𝑟†k,2𝛽

𝑟†
−k,2

)
+ sin2 𝜃 𝑉2

k (𝑡) 𝛼
𝑟†
k,1𝛽

𝑟†
−k,2𝛼

𝑟†
k,2𝛽

𝑟†
−k,1

]
|0⟩1,2 ,

which shows its condensate structure in terms of zero momentum pairs of operators 𝛼𝑟k,𝑖 and 𝛽𝑟−k,𝑖 ,
𝑖 = 1, 2, for any k. Note that such a condensate structure is generated by the Bogoliubov part of
the 𝐺−1

𝜃
transformation (cf. e.g. Eq. (20) ) characterized by the coefficients 𝑈k and 𝑉k, for any k.

Eq. (25) shows the nonperturbative character of the flavor vacuum, i.e. that the expansion (27) of
|0(𝜃, 𝑡)⟩𝑒,𝜇 in terms of states of H1,2 is meaningless in the infinite volume limit; thus, Eq. (27) has
to be understood as a formal relation, holding at finite volume. The infinite volume limit has to be
taken after the computations have been done.

Use of |0(𝜃, 𝑡)⟩𝑒,𝜇 in the amplitude discussed above leads to correct result. Since now
𝛼𝑟k,𝑒 (𝑡) |0(𝜃, 𝑡)⟩𝑒,𝜇 = 0, we have 𝑒,𝜇⟨0(𝜃, 𝑡) |𝛼𝑟k,𝑒 (𝑡)𝛼

𝑟†
k,𝑒 (𝑡) |0(𝜃, 𝑡)⟩𝑒,𝜇 = 1.

Note that the quantity |𝑉k |2 sin2 𝜃 which in our previous discussion was giving us problems, is
nothing but the massive neutrino condensate content of the flavor vacuum. In fact we have:

𝑒,𝜇⟨0(𝜃, 𝑡) |𝛼𝑟†k,𝑖𝛼
𝑟
k,𝑖 |0(𝜃, 𝑡)⟩𝑒,𝜇 = |𝑉k |2 sin2 𝜃, 𝑖 = 1, 2, (28)

and similar expressions for the 𝛽𝑟k,𝑖 number operators.
In Appendix A the computation of the propagator functions for the 𝜈𝑒 → 𝜈𝑒 transition amplitude

P𝑒𝑒 (k, 𝑡) (and for other processes 𝜈𝜎 → 𝜈𝜏 , with 𝜎, 𝜏 = 𝑒, 𝜇) is briefly summarized. There, the
flavor charge conservation in the production vertex is also commented and it is shown that the use
of the flavor vacuum Eq. (27) avoids wrong results obtained by using the vacuum |0⟩1,2.

The expectation values of the flavor charges on the flavor state give the flavor oscillation formu-
las. We have 𝑒,𝜇⟨0(𝜃, 0) | :: 𝑄𝜎 (𝑡) :: |0(𝜃, 0)⟩𝑒,𝜇 = 0. The symbol :: ... :: denotes normal ordering
with respect to the flavor vacuum |0(𝜃, 0)⟩𝑒,𝜇, namely :: 𝐴 ::≡ 𝐴 − 𝑒,𝜇⟨0(𝜃, 0) |𝐴|0(𝜃, 0)⟩𝑒,𝜇 for
a generic operator 𝐴. We obtain [14]:

Qk
𝜈𝑒→𝜈𝑒

(𝑡) = ⟨𝜈𝑟k,𝑒 | :: 𝑄𝑒 (𝑡) :: |𝜈𝑟k,𝑒⟩

= 1 − sin2(2𝜃)
[
|𝑈k |2 sin2

(𝜔𝑘,2 − 𝜔𝑘,1

2
𝑡

)
+ |𝑉k |2 sin2

(𝜔𝑘,2 + 𝜔𝑘,1

2
𝑡

)]
, (29)

Qk
𝜈𝑒→𝜈𝜇

(𝑡) = ⟨𝜈𝑟k,𝑒 | :: 𝑄𝜇 (𝑡) :: |𝜈𝑟k,𝑒⟩ = 1 − Qk
𝜈𝑒→𝜈𝑒

(𝑡). (30)

Here, the state |𝜈𝑟k,𝑒⟩ denotes the flavored neutrino state at 𝑡 = 0

|𝜈𝑟k,𝑒⟩ = 𝛼
𝑟†
k,𝑒 (0) |0(𝜃, 0)⟩𝑒,𝜇, at 𝑡 = 0. (31)

The Pontecorvo oscillation formulas are recovered in the relativistic limit: |k| ≫ √
𝑚1𝑚2, |𝑈k |2 → 1

and |𝑉k |2 → 0.
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The flavor vacuum |0(𝜃, 𝑡)⟩𝑒,𝜇 is an entangled state of the neutrino pairs (𝛼𝑟k,𝑖 , 𝛽
𝑟
−k, 𝑗) condensed

in it. The linear correlation coefficient 𝐽 (𝑁𝑎, 𝑁𝑏) [36] provides a measure of such an entanglement:

𝐽 (𝑁𝑎, 𝑁𝑏) =
𝑐𝑜𝑣(𝑁𝑎, 𝑁𝑏)√︁

⟨(Δ𝑁𝑎)2⟩ ⟨(Δ𝑁𝑏)2⟩
, (32)

where 𝑎 and 𝑏 denote 𝛼 and/or 𝛽 quanta. 𝑁𝑎, 𝑁𝑏 are number operators; the symbol ⟨. . .⟩
denotes expectation value in |0⟩𝑒,𝜇; ⟨(Δ𝑁)2⟩ ≡ ⟨(𝑁 − ⟨𝑁⟩)2⟩ = ⟨𝑁2⟩ − ⟨𝑁⟩2 is the variance and
𝑐𝑜𝑣 (𝑁𝑎, 𝑁𝑏) ≡ ⟨𝑁𝑎𝑁𝑏⟩ − ⟨𝑁𝑎⟩ ⟨𝑁𝑏⟩ is the covariance.

The definition (32) implies that values of 𝜃 and |𝑉k |2 such that ⟨(Δ𝑁𝑎)2⟩ and/or ⟨(Δ𝑁𝑏)2⟩
are zero, are excluded, for any k, from the existence domain of 𝐽 (𝑁𝑎, 𝑁𝑏). Since ⟨(Δ𝑁𝛼𝑟

k,𝑖
)2⟩ =

sin2 𝜃 |𝑉k |2(1 − sin2 𝜃 |𝑉k |2) (and a similar expression is found for ⟨(Δ𝑁𝛽𝑟
k,𝑖
)2⟩), 𝑖 = 1, 2, one must

exclude the values 𝜃 = 0 and |𝑉k |2 = 0 (|𝑈k |2 = 1), solutions of sin2 𝜃 |𝑉k |2 = 0. Solutions of
1 − sin2 𝜃 |𝑉k |2 = 0 have to be also excluded, namely 𝜃 = 𝜋/2 and |𝑉k |2 = 1 (|𝑈k |2 = 0). Note that
otherwise sin2 𝜃 = 1/|𝑉k |2 is never satisfied since for |𝑉k |2 ≠ 1 it is |𝑉k |2 < 1 .

Note that 𝐽 = 0 for non-correlated modes, since in such a case ⟨𝑁𝑎𝑁𝑏⟩ = ⟨𝑁𝑎⟩ ⟨𝑁𝑏⟩, and
𝑐𝑜𝑣 (𝑁𝑎, 𝑁𝑏) is zero. Also, 𝐽 = 1 in the case 𝑎 = 𝑏, since then 𝑐𝑜𝑣(𝑁𝑎, 𝑁𝑎) = ⟨(Δ𝑁𝑎)2⟩.

For any k, and 𝑖, 𝑗 = 1, 2, within its existence domain, we find [34]

𝐽

(
𝑁𝛼𝑟

k,𝑖
, 𝑁𝛽𝑟

−k, 𝑗

)
=

1
1 + tan2 𝜃 |𝑈k |2

, 𝑖 ≠ 𝑗 , (33)

and for the pairs (𝛼𝑟k,𝑖 , 𝛽
𝑟
−k,𝑖), 𝑖 = 1, 2,

𝐽

(
𝑁𝛼𝑟

k,𝑖
, 𝑁𝛽𝑟

−k,𝑖

)
=

|𝑈k |2 tan2 𝜃

1 + tan2 𝜃 |𝑈k |2
. (34)

We obtain 𝐽 = 0 for the pairs (𝛼𝑟k,𝑖 , 𝛼
𝑟
k, 𝑗) since then the covariance is zero because ⟨𝑁𝛼𝑟

k,𝑖
𝑁𝛼𝑟

k, 𝑗
⟩ =

sin4 𝜃 |𝑉k |4 = ⟨𝑁𝛼𝑟
k,𝑖
⟩ ⟨𝑁𝛼𝑟

k, 𝑗
⟩, and similarly for (𝛽𝑟k,𝑖 , 𝛽

𝑟
k, 𝑗) pairs, for 𝑖 ≠ 𝑗 ; 𝑖, 𝑗 = 1, 2.

In Appendix B, we shortly review the static and dynamic entanglement for single particle states
associated to the variances of the flavor charges (see [37–44]).

5. Non-abelian gauge theory and neutrino mixing

The Euler–Lagrange equations derived from the Lagrangian (1) are

𝑖𝜕0𝜈𝑒 = (−𝑖𝜶 · ∇ + 𝛽𝑚𝑒)𝜈𝑒 + 𝛽𝑚𝑒𝜇𝜈𝜇 (35)

𝑖𝜕0𝜈𝜇 = (−𝑖𝜶 · ∇ + 𝛽𝑚𝜇)𝜈𝜇 + 𝛽𝑚𝑒𝜇𝜈𝑒 . (36)

We choose the following representation for the 𝛼𝑖 , 𝑖 = 1, 2, 3 and 𝛽 Dirac matrices:

𝛼𝑖 =

(
0 𝜎𝑖

𝜎𝑖 0

)
, 𝛽 =

(
1I 0
0 −1I

)
, (37)

with 𝜎𝑖 denoting the Pauli matrices. 1I is the 2 × 2 identity matrix and we will also use 𝛾0 = 𝛾0 =

𝛽; (𝛾0)2 = 1; 𝛾𝑖 = 𝛾0𝛼𝑖 , {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈1I. 𝜈 𝑓 = (𝜈𝑒, 𝜈𝜇)𝑇 denotes the flavor doublet and 𝑀𝑑
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the diagonal mass matrix 𝑀𝑑 = diag(𝑚𝑒, 𝑚𝜇). Eqs. (35) and (36) are written in the compact form
[28]:

𝑖𝛾0𝐷0𝜈 𝑓 = (−𝑖𝜸 · ∇ + 𝑀𝑑)𝜈 𝑓 , (38)

where the (non-abelian) covariant derivative 𝐷0 has been defined as:

𝐷0 = 𝜕0 + 𝑖 𝛾0𝑚𝑒𝜇 𝜎1, (39)

with 𝑚𝑒𝜇 = (1/2) tan 2𝜃 𝛿𝑚 = (1/2) 𝑔 𝛿𝑚, putting 𝑔 = tan 2𝜃, 𝛿𝑚 = 𝑚𝜇 − 𝑚𝑒 (cf. Eq. (8)). The
covariant derivative is then

𝐷𝜇 = 𝜕𝜇 + 𝑖 𝑔 𝐴𝜇, (40)

with 𝐷𝑖 = 𝜕𝑖 ; 𝑖 = 1, 2, 3, and 𝐷0 = 𝜕0 + 𝑖 𝑔𝐴0 = 𝜕0 + 𝑖 𝑔𝛾0𝛿𝑚𝜎1/2. Note that 𝑔 = tan 2𝜃 plays the
role of the “charge”, i.e. the coupling constant of the neutrino field operators with the gauge field.

Eqs. (38) and (39) formally express the flavor mixing contribution in terms of the coupling of
the flavor field operators with the 𝑆𝑈 (2) gauge field:

𝐴𝜇 = 𝐴𝑎
𝜇𝜏𝑎 , (41)

with 𝜏𝑎 = 𝜎𝑎/2, 𝐴𝑎
𝜇 = (𝐴1

0 = 𝛾0𝛿𝑚, 0, 0, 0), whose only non-zero component, 𝐴1
0 = 𝛾0𝛿𝑚, is the

temporal component in space-time and the first component in the 𝑆𝑈 (2) space.
Consider the transformation 𝑈 (𝑡)𝜈 𝑓 = 𝑒𝑖𝑔𝜆1 (𝑡 ) 𝜏1𝜈 𝑓 = 𝜈′

𝑓
, with time dependent parameter

𝜆1(𝑡), we have
𝑈 (𝑡)𝐷𝜇𝜈 𝑓 = 𝐷

′
𝜇𝑈 (𝑡)𝜈 𝑓 = 𝐷′

𝜇𝜈
′
𝑓 , (42)

with 𝐷′
𝑖
= 𝑈 (𝑡)𝐷𝑖𝑈

−1(𝑡) = 𝐷𝑖 and 𝐷′
0 = 𝑈 (𝑡)𝐷0𝑈

−1(𝑡) = 𝜕𝑡 + 𝑖 𝑔 (𝐴1
0 + 𝜕𝑡𝜆1(𝑡))𝜏1 as required for

a covariant derivative [45]. In conclusion, the Lagrangian density (1) may be written in the form

L = �̄� 𝑓 (𝑖𝛾𝜇𝐷𝜇 − 𝑀𝑑)𝜈 𝑓 , (43)

describing a doublet of Dirac field operators in interaction with an external Yang-Mills field. The
field equations have the manifestly covariant form:

(𝑖𝛾𝜇𝐷𝜇 − 𝑀𝑑)𝜈 𝑓 = 0. (44)

The Lagrangian (43) is not invariant under the 𝑆𝑈 (2) transformation

𝜈′𝑓 = 𝑒
𝑖 𝜃1𝜏1𝜈 𝑓 . (45)

The current

𝑗
𝜌

𝑓 ,1 = �̄� 𝑓 𝛾
𝜌𝜏1𝜈 𝑓 =

1
2
(�̄�𝑒𝛾𝜌𝜈𝜇 + �̄�𝜇𝛾𝜌𝜈𝑒), (46)

associated to the L variation 𝛿L = −𝜃1 𝜕𝜇 𝑗
𝜇

𝑓 ,1 [17], has only one component in group space.
Since 𝐴1

0 is constant and is the only non-zero component of 𝐴𝑎
𝜇, the field strength 𝐹𝑎

𝜇𝜈 vanishes
identically for any 𝜇, 𝜈 and 𝑎:

𝐹𝑎
𝜇𝜈 = 𝜖𝑎𝑏𝑐𝐴𝑏

𝜇𝐴
𝑐
𝜈 = 0, (47)
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with 𝑎, 𝑏, 𝑐 = 1, 2, 3. Remarkably, although 𝐹𝑎
𝜇𝜈 is identically zero, the gauge field has physical

effect.
The energy momentum tensor associated with the flavor neutrino fields in interaction with the

external gauge field can be obtained [45] as

𝑇𝜌𝜎 = �̄� 𝑓 𝑖𝛾𝜌𝐷𝜎𝜈 𝑓 − 𝜂𝜌𝜎 �̄� 𝑓 (𝑖𝛾𝜆𝐷𝜆 − 𝑀𝑑)𝜈 𝑓 . (48)

Comparison with the canonical energy momentum tensor (12) shows that they differ just for the
mixing terms in the 00 component, i.e. 𝑇00 − 𝑇00 = 𝑚𝑒𝜇 (�̄�𝑒𝜈𝜇 + �̄�𝜇𝜈𝑒). We also have 𝑇0𝑖 = 𝑇0𝑖 ,
𝑇𝑖 𝑗 = 𝑇𝑖 𝑗 , and

𝜕𝜌𝑇𝜌𝑖 = 0, 𝜕𝜌𝑇𝜌0 ≠ 0. (49)

Non-conservation is due to [𝛾𝜇, 𝐷0] ≠ 0, which in turn follows from the presence of the 𝛾0 matrix
in 𝐷0. The conserved 3−momentum operator is:

𝑃𝑖 =

∫
𝑑3x𝑇0𝑖 = 𝑖

∫
𝑑3x 𝜈†

𝑓
𝜕𝑖𝜈 𝑓

= 𝑖

∫
𝑑3x 𝜈†𝑒𝜕𝑖𝜈𝑒 + 𝑖

∫
𝑑3x 𝜈†𝜇𝜕𝑖𝜈𝜇

≡ 𝑃𝑖
𝑒 (𝑡) + 𝑃𝑖

𝜇 (𝑡), 𝑖 = 1, 2, 3 (50)

and the Hamiltonian operator:

𝑃0(𝑡) ≡ 𝐻 (𝑡) =

∫
𝑑3x𝑇00 =

∫
𝑑3x �̄� 𝑓

(
𝑖𝛾0𝐷0 − 𝑖𝛾𝜇𝐷𝜇 + 𝑀𝑑

)
𝜈 𝑓

=

∫
𝑑3x 𝜈†𝑒 (−𝑖𝜶 · ∇ + 𝛾0𝑚𝑒) 𝜈𝑒 +

∫
𝑑3x 𝜈†𝜇

(
−𝑖𝜶 · ∇ + 𝛾0𝑚𝜇

)
𝜈𝜇

≡ 𝐻𝑒 (𝑡) + 𝐻𝜇 (𝑡), (51)

which is not conserved and does not generate time translations. These are generated by 𝐻 =∫
𝑑3x𝑇00, i.e. the Hamiltonian including the interaction term. Eqs. (50) and (51) provide the

momentum and the Hamiltonian operators, respectively, for each flavor field. They split in two
contributions, for the electron and the muon flavor separately.

6. On the Poincaré structure and flavor states

We have seen in Eq. (23) that flavor field operators 𝜈𝜎 , 𝜎 = 𝑒, 𝜇, may be expanded in the
same basis as the 𝜈𝑖 , 𝑖 = 1, 2, field operators [8]. The flavor states, |𝜈𝑟k,𝜎⟩ = 𝛼

𝑟†
k,𝜎 |0(𝜃, 0)⟩𝑒,𝜇, are

eigenstates of the momentum operators 𝑃𝑖 =
∫
𝑑3x𝑇0𝑖 and of the flavor charge operators 𝑄𝜎 , at a

given time. These states do not have, however, definite energy since the 𝑄𝜎 do not commute with
the Hamiltonian operator 𝐻 [17, 24].

Time-dependence of the flavor vacuum breaks the Lorentz invariance, so that flavor states do
not belong to irreducible representations of the Poincaré group[30, 46]. The problem has attracted
much attention and has been also studied in the frame of nonlinear realizations of the Poincaré
group [47–50] and of its spontaneous symmetry breaking in the flavor vacuum [46].

10
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In such a connection, it is interesting to show that, within the frame of the mixing as a gauge
theory, it possible to expand the 𝜈𝜎 field operators in a different spinors basis. Consider the
Bogoliubov transformation [10](

�̃�𝑟k,𝜎 (𝑡)
𝛽
𝑟†
−k,𝜎 (𝑡)

)
= 𝐽−1

𝜇 (𝑡)
(
𝛼𝑟k,𝜎 (𝑡)
𝛽
𝑟†
−k,𝜎 (𝑡)

)
𝐽𝜇 (𝑡), (52)

with generator

𝐽𝜇 (𝑡) =
∏
k,𝑟

exp
𝑖

∑︁
(𝜎, 𝑗 )

𝜉k
𝜎, 𝑗

[
𝛼
𝑟†
k,𝜎 (𝑡)𝛽

𝑟†
−k,𝜎 (𝑡) + 𝛽

𝑟
−k,𝜎 (𝑡)𝛼

𝑟
k,𝜎 (𝑡)

] , (53)

where (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2), and 𝜉k
𝜎, 𝑗

= (𝜒𝜎−𝜒 𝑗)/2, 𝜒𝜎 = arctan(𝜇𝜎/|k|), 𝜒 𝑗 = arctan(𝑚 𝑗/|k|).
From (52) we get:(

�̃�𝑟k,𝜎 (𝑡)
𝛽
𝑟†
−k,𝜎 (𝑡)

)
=

(
𝜌k
𝜎, 𝑗

𝑖𝜆k
𝜎, 𝑗

𝑖𝜆k
𝜎, 𝑗

𝜌k
𝜎, 𝑗

) (
𝛼𝑟k,𝜎 (𝑡)
𝛽
𝑟†
−k,𝜎 (𝑡)

)
, (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2), (54)

with 𝜌k
𝜎, 𝑗

= cos 𝜉k
𝜎, 𝑗

and 𝜆k
𝜎, 𝑗

= sin 𝜉k
𝜎, 𝑗

. Flavor vacua, associated to the masses (𝜇𝑒, 𝜇𝜇) in the
𝜒𝜎 parameter, are then obtained:

|̃0(𝜃, 𝑡)⟩𝑒𝜇 = 𝐽−1
𝜇 (𝜃, 𝑡) |0(𝑡)⟩𝑒𝜇 . (55)

The original masses (𝑚1, 𝑚2) are associated to |0(𝜃, 𝑡)⟩𝑒𝜇.
Flavor field operators are then expanded as follows:

𝜈𝜎 (𝑥) =
∫

𝑑3k
(2𝜋)3/2

∑︁
𝑟

[
𝑢𝑟k,𝜎 (𝑡)�̃�

𝑟
k,𝜎 (𝑡) + 𝑣

𝑟
−k,𝜎 (𝑡)𝛽

𝑟†
−k,𝜎 (𝑡)

]
𝑒𝑖k·x, 𝜎 = 𝑒, 𝜇. (56)

The tilde operators correspond to the masses (𝑚𝑒, 𝑚𝜇) and 𝑢𝑟k,𝜎 (𝑡) = 𝑢𝑟k,𝜎𝑒
−𝑖𝜔k,𝜎 𝑡 , 𝑣𝑟−k,𝜎 (𝑡) =

𝑣𝑟−k,𝜎𝑒
𝑖𝜔k,𝜎 𝑡 are solutions of the equations:

(−𝛼 · k + 𝑚𝜎𝛽)𝑢𝑟k,𝜎 = 𝜔k,𝜎𝑢
𝑟
k,𝜎 (57)

(−𝛼 · k + 𝑚𝜎𝛽)𝑣𝑟−k,𝜎 = −𝜔k,𝜎𝑣
𝑟
−k,𝜎 , (58)

with 𝜔k,𝜎 =
√︁

k2 + 𝑚2
𝜎 . Time dependence of the creation and destruction operators is due to the

interaction with the external field. They are defined on states at same time:

|�̃� 𝑟k,𝜎 (𝜃, 𝑡)⟩ = �̃�
𝑟†
k,𝜎 (𝑡) |̃0(𝜃, 𝑡)⟩𝑒𝜇 . (59)

These single particle states are eigenstates of both the Hamiltonian and the momentum operator:(
𝐻𝜎 (𝑡)
P̃𝜎 (𝑡)

)
|�̃� 𝑟k,𝜎 (𝜃, 𝑡)⟩ =

(
𝜔k,𝜎

k

)
|�̃� 𝑟k,𝜎 (𝜃, 𝑡)⟩, (60)

11
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where the Hamiltonian and momentum operators Eqs.(50),(51), in terms of the tilde flavor operators,
read:

P̃𝜎 (𝑡) =
∑︁
𝑟

∫
𝑑3k k

(
�̃�
𝑟†
k,𝜎 (𝑡)�̃�

𝑟
k,𝜎 (𝑡) + 𝛽

𝑟†
k,𝜎 (𝑡)𝛽

𝑟
k,𝜎 (𝑡)

)
, (61)

𝐻𝜎 (𝑡) =
∑︁
𝑟

∫
𝑑3k𝜔k,𝜎

(
�̃�
𝑟†
k,𝜎 (𝑡) �̃�

𝑟
k,𝜎 (𝑡) − 𝛽

𝑟
k,𝜎 (𝑡) 𝛽

𝑟†
k,𝜎 (𝑡)

)
. (62)

The Bogoliubov transformations (52) leave invariant the flavor charges (and the oscillation
formulae) [15], 𝑄𝜎 = 𝑄𝜎:

𝑄𝜎 (𝑡) =
∑︁
𝑟

∫
𝑑3k

(
�̃�
𝑟†
k𝜎 (𝑡)�̃�

𝑟
k𝜎 (𝑡) − 𝛽

𝑟†
−k𝜎 (𝑡)𝛽

𝑟
−k𝜎 (𝑡)

)
. (63)

Since the interaction term is absent in 𝐻 (cf. Eq. (51) ), we have [𝑄𝜎 (𝑡), 𝐻 (𝑡)] = 0, and

[𝑄𝜎 (𝑡), 𝐻𝜎′ (𝑡)] = 0, 𝜎, 𝜎′ = 𝑒, 𝜇. (64)

The flavor states (59) are thus eigenstates also of the flavor charges:

𝑄𝜎 (𝑡) |�̃� 𝑟k,𝜎 (𝑡)⟩ = |�̃� 𝑟k,𝜎 (𝑡)⟩. (65)

A common set of eigenstates of these operators thus exists .
In addition to the generators given in Eqs.(50) and (51), the Lorentz generators are also obtained:

𝑀𝜆𝜌 (𝑡) =
∫

𝑑3x
(
𝑇0𝜌𝑥𝜆 − 𝑇0𝜆𝑥𝜌

)
+ 1

2

∫
𝑑3x 𝜈†

𝑓
𝜎𝜆𝜌𝜈 𝑓 = 𝑀

𝜆𝜌
𝑒 (𝑡) + 𝑀𝜆𝜌

𝜇 (𝑡), (66)

with 𝜎𝜇𝜈 = − 𝑖
2 [𝛾

𝜇, 𝛾𝜈]. The (equal-time) commutators for the two sets of operators (for 𝜎, 𝜎′ =

𝑒, 𝜇) are

[𝑃𝜇
𝜎 , 𝑃

𝜈
𝜎′] = 0 , [𝑀𝜇𝜈

𝜎 , 𝑃𝜆
𝜎′] = 𝑖𝛿𝜎𝜎′

(
𝜂𝜇𝜆𝑃𝜈

𝜎 − 𝜂𝜈𝜆𝑃
𝜇
𝜎

)
,

[𝑀𝜇𝜈
𝜎 , 𝑀

𝜆𝜌

𝜎′ ] = 𝑖𝛿𝜎𝜎′

(
𝜂𝜇𝜆𝑀

𝜈𝜌
𝜎 − 𝜂𝜈𝜆𝑀𝜇𝜌

𝜎 − 𝜂𝜇𝜌𝑀𝜈𝜆
𝜎 + 𝜂𝜈𝜌𝑀𝜇𝜆

𝜎

)
, 𝜎, 𝜎′ = 𝑒, 𝜇, (67)

where for simplicity we have omitted the notation of time dependence. The algebra is thus the
direct sum of two Poincaré algebras and Poincaré invariance holds at each 𝑡. A different Poincaré
structure exists at each 𝑡.

7. Concluding remarks

In this paper we have reviewed some features of neutrino mixing and oscillations in QFT.
Mixing transformations are physically meaningful only provided that the canonical structure

of the QFT formalism is not violated. This implies that the action of flavor neutrino field operators
𝜈𝜎 , 𝜎 = 𝑒, 𝜇, is properly defined on a representation of the CAR which is unitarily inequivalent to
the one where massive neutrino fields 𝜈𝑖 , 𝑖 = 1, 2, are defined. Wrong results, incompatible with
the canonical structure, are obtained by omitting to consider the contributions from the condensate
structure of the flavor vacuum.
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Within such a QFT framework, mixing can be seen as the result of the interaction of the
neutrino fields with a suitably defined background gauge field. The coupling of neutrino fields with
the gauge field appears then to be responsible of the flavor oscillations, suggesting that the flavor
vacuum, with its condensation content, may behave as a refractive medium (see e.g. [51]). Such a
scenario also suggests analogies with the case of photons in the vacuum acting as a medium with
refractive properties due to quantum gravity fluctuations [52]. In this line, neutrino mixing and
oscillations have been proposed to be seen in connection to quantum gravity effects [53–58].

In the gauge theory frame, flavor neutrino fields 𝜈𝑒 and 𝜈𝜇 can be defined to be on-shell fields
with masses 𝑚𝑒 and 𝑚𝜇, and thus viewed as fundamental fields. This allows the existence at each
time 𝑡 of the Poincaré structure for the flavor states. Time evolution then describes trajectories
through uir of the CAR, each one endowed with a Poincaré structure (a similar phenomenon
occurs in QFT in curved background [59]). In this respect, the comparison with the description
of unstable particles is very enlightening [60, 61], and naturally emerges from the study of flavor-
energy uncertainty relations [24, 26]. In fact, in the case of unstable particles, the inequivalence
of representations at different times is an inescapable and well-understood feature [60–63]. The
Hamiltonian operator 𝐻 that commutes with the flavor charges can be defined and flavor states are
simultaneous eigenstates of flavor charges.

A phenomenological consequence of this is that in the charged current processes with neutrino
creation at the interaction vertex, the neutrino is actually 𝜈𝑒 or 𝜈𝜇 (as allowed by the corresponding
lepton number conservation law), not 𝜈1 or 𝜈2. Lepton number conservation is not violated in the
vertex only provided that the flavor vacuum state is used (App. A and B).

Another phenomenological consequence, that might be tested experimentally, may be seen in
the beta decay, say 𝐴 → 𝐵 + 𝑒− + �̄�𝑒. 𝐴 and 𝐵 are two nuclei, e.g. tritium 3H and 3He. If flavor
neutrinos manifest as fundamental fields according to the above scheme, we have the neutrino mass
𝑚𝑒 and the end point of the beta decay is the maximal kinetic energy 𝐾 that the electron can assume,
𝐾𝑚𝑎𝑥 = 𝑄 − 𝑚𝑒, with 𝑄 = 𝐸𝐴 − 𝐸𝐵 − 𝑚 ≈ 𝑚𝐴 − 𝑚𝐵 − 𝑚; 𝑚 is the electron mass. In the case of
tritium decay, 𝑄 = 18.6 KeV.

Of course, for massless neutrinos, 𝑚𝜈 = 0 and 𝐾𝑚𝑎𝑥 = 𝑄. For massive neutrinos 𝐾𝑚𝑎𝑥 =

𝑄 − 𝑚 𝑗 , or 𝐾𝑚𝑎𝑥 = 𝑄 − 𝑚𝑒, in the two cases, for mass eigenstate 𝑚𝜈 = 𝑚 𝑗 , 𝑗 = 1, 2, or flavor
fundamental field 𝑚𝜈 = 𝑚𝑒, respectively.

The spectrum is proportional to the phase volume factor 𝐸𝑝𝐸𝑒𝑝𝑒, with 𝐸 = 𝑚 + 𝐾 and
𝑝 =

√
𝐸2 − 𝑚2 the electron energy and momentum, and 𝐸𝑒 = 𝑄 − 𝐾:

𝑑𝑁

𝑑𝐾
= 𝐶𝐸𝑝 𝐸𝑒

√︃
𝐸2
𝑒 − 𝑚2

𝑒 Θ(𝐸𝑒 − 𝑚𝑒). (68)

Θ(𝐸𝑒 −𝑚 𝑗) is the Heaviside step function. If neutrinos are the massive ones with 𝑚 𝑗 , 𝑗 = 1, 2, one
would have:

𝑑𝑁

𝑑𝐾
= 𝐶𝐸𝑝 𝐸𝑒

∑︁
𝑗

|𝑈𝑒 𝑗 |2
√︃
𝐸2
𝑒 − 𝑚2

𝑗
Θ(𝐸𝑒 − 𝑚 𝑗), (69)

where 𝑈𝑒 𝑗 = (cos 𝜃, sin 𝜃). The end point is at 𝐾 = 𝑄 − 𝑚1 and the spectrum has an inflexion at
𝐾 ≃ 𝑄 − 𝑚2. For these different scenarios see Fig.(1), where the spectrum for a massless neutrino
is also plotted.

13



P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
4
9

Neutrino mixing, entanglement and the gauge paradigm in quantum field theory Giuseppe Vitiello

12 13 14 15 16 17 18

0.0

0.2

0.4

0.6

0.8

dN
dK

K(KeV )

Figure 1: Tail of the tritium 𝛽 spectrum: - a massless neutrino (dotted line); - fundamental flavor states
(continuous line); - superposed prediction for 2 mass states (short-dashed line): the inflexion in the spectrum
is where the most massive state switches off. Parameters as in Ref.[28].

Finally, we observe that the Hamiltonian operator 𝐻, that does not include the energy “frozen”
in the mixing (which cannot be turned off), is the sum of the kinetic energies available for scattering
processes of the flavor neutrinos. 𝐻 may be thus interpreted as the “free” energy 𝐹 ≡ 𝐻. Then, the
entropy associated with flavor mixing can be defined:

𝐻 − 𝐹 = 𝑇𝑆, (70)

with the “temperature” 𝑇 identified with the coupling constant 𝑔 = tan 2𝜃, i.e.:

𝑆 =

∫
𝑑3x �̄� 𝑓 𝐴0𝜈 𝑓 =

1
2
𝛿𝑚

∫
𝑑3x (�̄�𝑒𝜈𝜇 + �̄�𝜇𝜈𝑒). (71)

The rôle played by the gauge field in Eq. (71) appears to be consistent with an interpretation of the
gauge field as a reservoir [64]. From such a perspective, each of the two flavor neutrinos might be
viewed as an open system, with cyclic dissipation occurring in the oscillation dynamics and might
be studied in the frame of quantum dissipative systems [62] in the finite temperature QFT [6]. In
the approximate context of QM, it has been shown that the difference of the muon and electron
free energies at a given time, is less than the total initial energy of the flavor neutrino state and is
proportional to the expectation value of the entropy (see details in Appendix B of [28]).

An interesting question is the one of the connection of the entropy in Eq. (71) to the time
dependent entanglement entropy associated with neutrino mixing and oscillations [37–40].
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A. Two-point Green’s functions for flavor fields

Consider the creation of a 𝜈𝑒 neutrino at 𝑡 = 0. Suppose its flavor is observed unchanged at
time 𝑡 > 0. The amplitude of the process computed by using the vacuum state |0⟩1,2 is [14]:

P>
𝑒𝑒 (k, 𝑡) = 𝑖 𝑢

𝑟†
k,1 𝑒

𝑖𝜔k,1𝑡 𝑆>𝑒𝑒 (k, 𝑡) 𝛾0 𝑢𝑟k,1 , (A.1)

with 𝑆>𝑒𝑒 (k, 𝑡) the Fourier transform of the Wightman function

𝑆>𝑒𝑒 (𝑡, x; 0, y) = 1,2⟨0|𝜈𝑒 (𝑡, x) 𝜈𝑒 (0, y) |0⟩1,2. (A.2)

We obtain
P>
𝑒𝑒 (k, 𝑡) = cos2 𝜃 + sin2 𝜃 |𝑈k |2 𝑒−𝑖 (𝜔k,2−𝜔k,1 )𝑡 . (A.3)

This is an unacceptable result because at 𝑡 = 0 it is not 1:

P>
𝑒𝑒 (k, 0+) = cos2 𝜃 + sin2 𝜃 |𝑈k |2 < 1 . (A.4)

Such an unconsistency is eliminated by using the flavor vacuum |0(𝜃, 𝑡)⟩𝑒,𝜇. Indeed, it can be
shown [14] that, in such a case, one obtains:

P>
𝑒𝑒 (k, 𝑡) = 𝑖 𝑢

𝑟†
k,1 𝑒

𝑖𝜔k,1𝑡 G>
𝑒𝑒 (k, 𝑡) 𝛾0 𝑢𝑟k,1 , (A.5)

where G>
𝑒𝑒 (k, 𝑡) is the Fourier transform of the Wightman function computed in |0(𝜃, 𝑡)⟩𝑒,𝜇. We

have:
P>
𝑒𝑒 (k, 𝑡) = cos2 𝜃 + sin2 𝜃

(
|𝑈k |2 𝑒−𝑖 (𝜔k,2−𝜔k,1 )𝑡 + |𝑉k |2 𝑒𝑖 (𝜔k,1+𝜔k,2 )𝑡

)
, (A.6)

satisfying the correct condition at 𝑡 = 0,

P>
𝑒𝑒 (k, 0+) = 1 . (A.7)

Also, it is
|P>

𝑒𝑒 (k, 𝑡) |2 + |P>
𝜇𝜇 (k, 𝑡) |2 + |P>

𝑒,𝜇 (k, 𝑡) |2 + |P>
𝜇𝑒 (k, 𝑡) |2 = 1 , (A.8)

with P>
𝜌𝜎 , 𝜌, 𝜎 = 𝑒, 𝜇, defined in a similar way as P>

𝑒𝑒.
By using retarded propagators the difference between propagators on mass and flavor vacuum

does not appear: 𝑆𝑟𝑒𝑡 (k, 𝑡) = G𝑟𝑒𝑡 (k, 𝑡), with

𝑆𝑟𝑒𝑡 (𝑡, x; 0, y) = 𝜃 (𝑡) 1,2⟨0|
{
𝜈𝜌 (𝑡, x), 𝜈𝜎 (0, y)

}
|0⟩1,2 , (A.9)

G𝑟𝑒𝑡 (𝑡, x; 0, y) = 𝜃 (𝑡) 𝑒,𝜇⟨0(𝜃, 0) |
{
𝜈𝜌 (𝑡, x), 𝜈𝜎 (0, y)

}
|0(𝜃, 0)⟩𝑒,𝜇 , 𝜌, 𝜎 = 𝑒, 𝜇 .(A.10)

However, computing the oscillation probability as

Q𝜈𝜌→𝜈𝜎 (k, 𝑡) = Tr
[
G𝑟𝑒𝑡

𝜎𝜌 (k, 𝑡)G𝑟𝑒𝑡†
𝜎𝜌 (k, 𝑡)

]
, (A.11)

Equations (29) and (30) are re-obtained.
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B. Lepton number conservation in the vertex

At tree level, in the production and detection vertices, flavor oscillation can be neglected and
lepton number has to be conserved (violation of the lepton number in loop diagrams are negligible
in our following discussion). Consider for example the process 𝑊+ → 𝑒+ + 𝜈𝑒 and use in the
computation of the amplitude the Pontecorvo states:

A𝑃
𝑊+→𝑒+ 𝜈𝑒

=
𝑃
⟨𝜈𝑟k,𝑒 | ⊗ ⟨𝑒𝑠q |

[
−𝑖

∫ 𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

d4𝑥H 𝑒
𝑖𝑛𝑡 (𝑥)

]
|𝑊+

p,𝜆⟩ , (B.1)

where
H 𝑒

𝑖𝑛𝑡 (𝑥) = − 𝑔

2
√

2
𝑊+

𝜇 (𝑥) 𝐽
𝜇
𝑒 (𝑥) + ℎ.𝑐. , (B.2)

is the interaction Hamiltonian density, with the current 𝐽𝜇𝑒 (𝑥) given by

𝐽
𝜇
𝑒 (𝑥) = �̄�𝑒 (𝑥) 𝛾𝜇 (1 − 𝛾5)𝑒(𝑥) . (B.3)

Due to the flavor oscillations, it is not meaningful to consider flavor fields in the asymptotic limits
𝑡𝑖𝑛/𝑜𝑢𝑡 → ∞. Short-time behavior of the amplitude, around the production time 𝑡 = 0, has to be
evaluated. One then obtains [18]:

A𝑃
𝑊+→𝑒+ 𝜈𝑒

=
𝑖𝑔

2
√

4𝜋
𝜀p,𝜇,𝜆√︃

2𝐸𝑊
p

𝛿3(p − q − k)

×
2∑︁
𝑗=1

𝑈2
𝑒 𝑗

∫ 𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

d𝑡 𝑒−𝑖𝜔k, 𝑗 𝑡𝑜𝑢𝑡 �̄�𝑟k, 𝑗 𝛾
𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸

𝑊
p −𝐸𝑒

𝑞−𝜔k, 𝑗 )𝑡 . (B.4)

The energy and the polarization vector of 𝑊+ are 𝐸𝑊
p and 𝜀p,𝜇,𝜆, respectively. The positron wave

function is 𝑣𝑠q,𝑒. Consider a Δ𝑡 such that 𝜏𝑊 ≪ Δ𝑡 ≪ 𝑡𝑜𝑠𝑐, with 𝜏𝑊 the 𝑊+ lifetime, and 𝑡𝑜𝑠𝑐 the
oscillation time. Take then 𝑡𝑖𝑛 = −Δ𝑡/2 and 𝑡𝑜𝑢𝑡 = Δ𝑡/2. The amplitude expansion at the leading
order in Δ𝑡, gives:

A𝑃
𝑊+→𝑒+ 𝜈𝑒

≈ 𝑖𝑔

2
√

4𝜋
𝜀p,𝜇,𝜆√︃

2𝐸𝑊
p

𝛿3(p − q − k)Δ𝑡
2∑︁
𝑗=1

𝑈2
𝑒 𝑗 �̄�

𝑟
k, 𝑗 𝛾

𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 . (B.5)

The flavor violating amplitude

A𝑃
𝑊+→𝑒+ 𝜈𝜇

=
𝑃
⟨𝜈𝑟k,𝜇 | ⊗ ⟨𝑒𝑠q |

[
−𝑖

∫ 𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

d4𝑥H 𝑒
𝑖𝑛𝑡 (𝑥)

]
|𝑊+

p,𝜆⟩ . (B.6)

is evaluated in a similar way:

A𝑃
𝑊+→𝑒+ 𝜈𝜇

=
𝑖𝑔

2
√

4𝜋
𝜀p,𝜇,𝜆√︃

2𝐸𝑊
p

𝛿3(p − q − k) (B.7)

×
2∑︁
𝑗=1

𝑈𝜇 𝑗 𝑈𝑒 𝑗

∫ 𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

d𝑡 𝑒−𝑖𝜔k, 𝑗 𝑡𝑜𝑢𝑡 �̄�𝑟k, 𝑗 𝛾
𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸

𝑊
p −𝐸𝑒

𝑞−𝜔k, 𝑗 )𝑡 ,
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and it gives in the short time limit the non-zero unacceptable result:

A𝑃
𝑊+→𝑒+ 𝜈𝜇

≈ 𝑖𝑔

2
√

4𝜋
𝜀p,𝜇,𝜆√︃

2𝐸𝑊
p

𝛿3(p − q − k)Δ𝑡
2∑︁
𝑗=1

𝑈𝜇 𝑗 𝑈𝑒 𝑗 �̄�
𝑟
k, 𝑗 𝛾

𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 . (B.8)

Such a wrong result, violating flavor conservation at production vertex, is not obtained when using
the QFT flavor states introduced in our discussion (cf. Eq. (31)). The amplitudes of the decay
process𝑊+ → 𝑒+ 𝜈𝑒 is found to be [18]:

A𝑊+→𝑒+ 𝜈𝑒 =
𝑖𝑔

2
√

2(2𝜋) 3
2
𝛿3(p − q − k)

∫ 𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

d𝑡
𝜀p,𝜇,𝜆√︃

2𝐸𝑊
p

𝛿3(p − q − k)

×
{
cos2 𝜃 𝑒−𝑖𝜔k,1 𝑡𝑖𝑛 �̄�𝑟k,1 𝛾

𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸
𝑊
p −𝐸𝑒

𝑞−𝜔k,1 )𝑡

+ sin2 𝜃
[
|𝑈k | 𝑒−𝑖𝜔k,2 𝑡𝑖𝑛 �̄�𝑟k,2 𝛾

𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸
𝑊
p −𝐸𝑒

𝑞−𝜔k,2 )𝑡

+ 𝜖𝑟 |𝑉k | 𝑒𝑖𝜔k,2 𝑡𝑖𝑛 �̄�𝑟−k,2 𝛾
𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸

𝑊
p −𝐸𝑒

𝑞+𝜔k,2 )𝑡
]}
, (B.9)

where 𝜖𝑟 ≡ (−1)𝑟 . The amplitude for the ‘flavor non-conserving’ process𝑊+ → 𝑒+ 𝜈𝜇 is:

A𝑊+→𝑒+ 𝜈𝜇 = sin 𝜃 cos 𝜃
𝑖𝑔

2
√

2(2𝜋) 3
2
𝛿3(p − q − k)

∫ 𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

d𝑡
𝜀p,𝜇,𝜆√︃

2𝐸𝑊
p

𝛿3(p − q − k)

×
{
𝑒−𝑖𝜔k,2 𝑡𝑖𝑛 �̄�𝑟k,2 𝛾

𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸
𝑊
p −𝐸𝑒

𝑞−𝜔k,2 )𝑡

−
[
|𝑈k | 𝑒−𝑖𝜔k,1 𝑡𝑖𝑛 �̄�𝑟k,1 𝛾

𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸
𝑊
p −𝐸𝑒

𝑞−𝜔k,1 )𝑡

+ 𝜖𝑟 |𝑉k | 𝑒𝑖𝜔k,1 𝑡𝑖𝑛 �̄�𝑟−k,1 𝛾
𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 𝑒−𝑖 (𝐸

𝑊
p −𝐸𝑒

𝑞+𝜔k,1 )𝑡
]}
. (B.10)

These expressions give for 𝜏𝑊 ≪ Δ𝑡 ≪ 𝑡𝑜𝑠𝑐 [18]:

A𝑊+→𝑒+ 𝜈𝑒 ≈ 𝑖𝑔

2
√

2(2𝜋) 3
2
𝛿3(p − q − k)

𝜀p,𝜇,𝜆√︃
2𝐸𝑊

p

𝛿3(p − q − k) Δ𝑡

×
{
cos2 𝜃 �̄�𝑟k,2 + sin2 𝜃

[
|𝑈k |�̄�𝑟k,2 + 𝜖

𝑟 |𝑉k | �̄�𝑟−k,2

]}
𝛾𝜇 (1 − 𝛾5) 𝑣𝑠q,𝑒 , (B.11)

and

A𝑊+→𝑒+ 𝜈𝜇 ≈ 0 , (B.12)

which is the result fitting the experiments.

C. Static and dynamic neutrino entanglement

The two-qubit representation of neutrinos 𝜈1 and 𝜈2 is obtained by writing, in obvious notation,
[7]

|𝜈1⟩ ≡ |1⟩1 |0⟩2 ≡ |10⟩, |𝜈2⟩ ≡ |0⟩1 |1⟩2 ≡ |01⟩. (C.1)
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The flavor states are then described as the entanglement of the 𝜈 𝑗 , 𝑗 = 1, 2, neutrinos, and this is
called [7] the static entanglement.

The dynamical entanglement arises from time evolution of flavor states (flavor oscillation) [38]
and the two-qubit states are

|𝜈𝑒⟩ ≡ |1⟩𝑒 |0⟩𝜇, |𝜈𝜇⟩ ≡ |0⟩𝑒 |1⟩𝜇, (C.2)

with |0⟩𝜎 and |1⟩𝜎 denoting absence and presence of a 𝜎-flavored neutrino, respectively, 𝜎 = 𝑒, 𝜇.
The variances of charges𝑄𝜈 𝑗

(Eq. (13)), provide a measure of the static entanglement occurring
in the states |𝜈𝑟k,𝜎⟩ [41]:

𝜎2
𝑄 𝑗

≡
(
Δ𝑄𝜈 𝑗

)2
= ⟨𝑄2

𝜈 𝑗
⟩𝜌 − ⟨𝑄𝜈 𝑗

⟩2
𝜌 =

1
4

sin2(2𝜃) , (C.3)

which is the same result obtained for quantum mechanics (QM) entanglement [41]. Similarly the
variances of the flavor charges measure the dynamic entanglement:

𝜎2
𝑄 ≡

(
Δ𝑄𝜈𝜌

)2
= ⟨𝑄2

𝜈𝜌
(𝑡)⟩𝜌 − ⟨𝑄𝜈𝜌 (𝑡)⟩2

𝜌 = Q𝜌→𝜌 (𝑡)
(
1 − Q𝜌→𝜌 (𝑡)

)
. (C.4)

In these results, through the contributions from the vacuum condensate appearing in the oscillation
formulas Eqs. (29) and (30), the differences can be traced with respect to the QM (the relativistic
limit) result. In this connection, we finally observe that the Leggett-Garg inequalities for temporal
correlations appear to be more strongly violated in QFT than in QM [40].

It is to be remarked that the static and the dynamical entanglement have origin in the unitarily
inequivalence between the representations (Hilbert spaces) of the qubit states |𝜈𝑖⟩ ( Eq. (25)) and
the representation to which the qubit states |𝜈𝜎 (𝑡)⟩ belong, at time 𝑡, for the static case; while, for
the dynamical case, where the qubits are flavor states at time 𝑡 = 0, the unitarily inequivalence is
among representations at different times (Eq. (26)).

D. The gauge field and the flavor vacuum as a refractive medium

In Sec. 7, we have observed that the description of the mixing in terms of the neutrino field
coupling with the gauge field suggests that the flavor vacuum may be seen as a refractive medium.

To see this in a simple way [65], assume the propagation of two waves of same frequency 𝑓 ,
𝜔 = 2 𝜋 𝑓 , propagating with speed v0 = 𝜆 𝑓 in the vacuum. Let us represent the two waves as two
degenerate states, say |1⟩ and |2⟩ (in our oversimplified discussion, these are generic states, not
necessarily neutrino states). Their time evolution is given by(

|1(𝑡)⟩

|2(𝑡)⟩

)
=

(
𝑒−𝑖𝜔𝑡 0

0 𝑒−𝑖𝜔𝑡

) (
|1(0)⟩

|2(0)⟩

)
. (D.1)

Suppose now that the degeneracy is broken since the propagation medium presents different refrac-
tion indexes, 𝑛𝑖 = v0/v𝑖 for |𝑖⟩, 𝑖 = 1, 2, respectively, with v𝑖 the respective propagation (phase)
speed. The propagation over a path of length 𝐿 occurs then in different times, 𝑡1 and 𝑡2 for |1⟩ and
|2⟩, respectively:

𝑡𝑖 =
𝐿

v𝑖
= 𝑛𝑖

𝐿

v0
= 𝑛𝑖 𝑡 , 𝑖 = 1, 2, (D.2)
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where 𝑡 = 𝐿/v0. Then, the time evolution phase factors are 𝑒−𝑖𝜔 𝑡𝑖 = 𝑒−𝑖𝜔𝑖 𝑡 , 𝑖 = 1, 2, for the two
states, respectively, where 𝜔 𝑡𝑖 = 2 𝜋 𝑓 𝑛𝑖 𝑡 = 2 𝜋 𝑓𝑖 𝑡 = 𝜔𝑖 𝑡, with 𝑓𝑖 ≡ 𝑓 𝑛𝑖 , i.e. 𝜆𝑖 𝑓 = v𝑖 and
𝜆𝑖 𝑓𝑖 = v0.

Under the mixing transformation (cf. Eq. (6)) the states |1(𝑡)⟩ and |2(𝑡)⟩ give(
|𝜙(𝑡)⟩

|𝜓(𝑡)⟩

)
= 𝑒−𝑖𝜔1𝑡

(
cos 𝜃 𝑒−𝑖 (𝜔2−𝜔1 )𝑡 sin 𝜃

− sin 𝜃 𝑒−𝑖 (𝜔2−𝜔1 )𝑡 cos 𝜃

) (
|1⟩

|2⟩

)
, (D.3)

with 𝜔1 ≠ 𝜔2. For 𝜃 ≠ 𝜋
4 + 𝑛 𝜋

2 , by inverting Eq. (D.3), the matrix elements of the time derivative
𝑖𝜕𝑡 show that, the effect of the propagation through the refractive medium is equivalent to the one
coming from the coupling to the gauge field 𝐴(1)

0 = 1
2 (𝜔2 − 𝜔1) cos 2𝜃 = 1

2𝜔(𝑛2 − 𝑛1) cos 2𝜃,
which of course is vanishing for 𝑛1 = 𝑛2.
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