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1. Introduction

The origin of the observed patterns of fermion masses and mixing and of CP violation is one of
the most challenging unsolved problems in particle physics. The unsatisfactory status of the lepton
(as well as quark) flavour problem and the remarkable progress in studies of neutrino oscillations
have stimulated renewed attempts to seek solutions to the former. A step in this direction was made
in Ref. [1], where the idea of using modular invariance as a flavour symmetry was put forward.
The main feature of this approach is that the elements of the Yukawa coupling and fermion mass
matrices are modular forms, functions of a single complex scalar field: the modulus g. In the
simplest class of such models, the VEV of g is the only source of flavour symmetry breaking and no
flavons are needed. Another appealing feature of the proposed framework is that the VEV of g can
be the only source of CP-symmetry breaking [2]. When the flavour symmetry is broken, a certain
flavour structure arises and e.g. charged-lepton and neutrino masses, neutrino mixing and leptonic
CPV phases are simultaneously determined in terms of a limited number of parameters.

In almost all phenomenologically-viable flavour models based on modular invariance con-
structed so far (see [3] for a rather complete list) the hierarchy of the charged-lepton and quark
masses is obtained by fine-tuning some of the parameters, i.e. there is a high sensitivity of observ-
ables to model parameters or there are unjustified hierarchies between parameters introduced in the
model on an equal footing.

The present contribution is based on the work of Ref. [3], wherein we develop a formalism that
allows to construct models in which fermion (charged-lepton and quark) mass hierarchies follow
solely from the properties of the modular forms, avoiding fine-tuning without the need to introduce
extra fields. We also investigate the possibility of concurrently obtaining large mixing without
fine-tuning in models of lepton flavour. As we will see below, residual modular symmetries play a
crucial role in our analysis.

2. Modular symmetries as flavour symmetries

In the supersymmetric modular-invariance approach to flavour, one introduces the modulus
chiral superfield g transforming non-trivially under the modular group Γ ≡ (! (2,Z). The latter is
generated by the matrices

( =

(
0 1
−1 0

)
, ) =

(
1 1
0 1

)
, ' =

(
−1 0
0 −1

)
, (1)

obeying (2 = ', (())3 = '2 = 1, and ') = )'. For W ∈ Γ, one has

W =

(
0 1
2 3

)
∈ Γ : g → Wg =

0g + 1
2g + 3 , (2)

while matter superfields transform as weighted multiplets [1, 4, 5],

k8 → (2g + 3)−: d8 9 (W) k 9 , (3)

where d is a unitary representation of Γ. We restrict ourselves to integer modular weights : . To use
modular symmetry as a flavour symmetry, one fixes a level # ≥ 2 and assumes that d(W) = 1 for
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elements of the principal congruence subgroup, Γ(#) ≡ {W ∈ (! (2,Z), W ≡ 1(mod #)}, so that
d is effectively a representation of the (finite) quotient Γ′

#
≡ Γ

/
Γ(#) ' (! (2,Z# ). In the case

where matter fields transform trivially under ', d is effectively a representation of a smaller finite
modular group Γ# ≡ Γ

/ 〈
Γ(#) ∪ Z'2

〉
. For small # , the groups Γ# and Γ′

#
are isomorphic to

permutation groups and to their double covers (e.g. Γ2 ' (3, Γ3 ' �4, Γ4 ' (4, and Γ5 ' �5).
TheVEVof g is restricted to the upper half-plane and plays the role of a spurion, parameterising

modular symmetry breaking. Modular symmetry may then constrain the Yukawa couplings and
mass structures of a model in a predictive way. By requiring the invariance of the superpotential
under modular transformations, one finds that couplings .�1...�= (g) appearing in terms of the type
k�1 . . . k�= must be special holomorphic functions of g — they are modular forms of level # —
obeying

.�1...�= (g)
W
−→ .�1...�= (Wg) = (2g + 3):. d. (W).�1...�= (g) . (4)

Modular forms carry weights :. = : �1 + . . . + : �= and furnish unitary representations d. of the
finite modular group such that d. ⊗ d�1 ⊗ . . . ⊗ d�= ⊃ 1. Non-trivial modular forms span finite-
dimensional linear spaces. These have relatively low dimensionalities for small values of : and # ,
leading to a predictive setup in which only a restricted number of g-dependent Yukawa textures are
allowed in the superpotential. For additional details, the reader is referred to Ref. [3]

2.1 Residual symmetries

While there is no value of the modulus VEV preserving the full symmetry group, at so-called
symmetric points g = gsym the modular group is only partially broken, with unbroken generators
giving rise to residual symmetries. Note that the ' generator is unbroken for any value of g, so
that a Z'2 symmetry is always preserved. The fundamental domain D and symmetric points of the
modular group are shown in Figure 1. There are only three inequivalent such points [6],

• gsym = 8∞, invariant under ) , preserving Z)# × Z'2 ;

• gsym = 8, invariant under (, preserving Z(4 (note that (2 = '); and

• gsym = l ≡ exp(2c8/3), ‘the left cusp’, invariant under () , preserving Z()3 × Z
'
2 .

In a CP- and modular-invariant theory [2, 7], an additional ZCP2 symmetry is preserved for Re g = 0
or for g on the border of D, while is broken at generic values of g. Note that all three symmetric
values above preserve the CP symmetry.

3. Mass hierarchies without fine-tuning

3.1 Mass matrices close to symmetric points

At a symmetric point, flavour textures can be severely constrained by the residual symmetry
group, which may enforce the presence of multiple zero entries in the mass matrices. As g moves
away from its symmetric value, these entries will generically become non-zero. In what follows
it is shown that the magnitudes of such (residual-)symmetry-breaking entries are controlled by the
size of the departure n of g from gsym and by the field transformation properties under the residual
symmetry group, which may depend on modular weights.
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Figure 1: The fundamental domainD of the modular group Γ and its three symmetric points gsym = 8∞, 8, l.
The value of g can always be restricted to D by a suitable modular transformation. Figure from Ref. [7].

We start by considering a modular-invariant bilinear k2
8
" (g)8 9 k 9 , where the superfields k

and k2 transform under the modular group as

k
W
−→ (2g + 3)−:d(W) k , k2

W
−→ (2g + 3)−:2 d2 (W) k2 , (5)

so that each " (g)8 9 is a modular form of level # and weight  ≡ : + :2 . Modular invariance
requires " (g) to transform as

" (g)
W
−→ " (Wg) = (2g + 3) d2 (W)∗" (g)d(W)† . (6)

Taking g to be close to the symmetric point, and setting W to the residual symmetry generator,
one can use this transformation rule to constrain the form of the mass matrix. Each of the three
symmetric points is analysed in turn.

3.1.1 gsym = 8∞

Consider the)-diagonal representation basis for group generators, inwhich d (2) ()) = diag(d (2)
8
),

and take g ‘close’ to gsym = 8∞, i.e. large enough Im g. By setting W = ) in eq. (6), one finds

"8 9 ()g) =
(
d28 d 9

)∗
"8 9 (g) . (7)

It is convenient to treat the "8 9 as a function of @ ≡ exp (2c8g/#), so that n ≡ |@ | = 4−2c Im g/#

parameterises the deviation of g from the symmetric point. Note that the entries "8 9 (@) depend
analytically on @ and that @ )−→ Z@, with Z ≡ exp (2c8/#). Thus, in terms of @, eq. (7) reads

"8 9 (Z@) = (d28 d 9)∗"8 9 (@) . (8)

Expanding both sides in powers of @, one finds

Z="
(=)
8 9
(0) = (d28 d 9)∗"

(=)
8 9
(0) , (9)
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where " (=)
8 9

denotes the =-th derivative of "8 9 with respect to @. It follows that " (=)
8 9
(0) can only

be non-zero for values of = such that (d2
8
d 9)∗ = Z=. It is clear that in the symmetric limit @ → 0

the entry "8 9 = " (0)8 9 is only allowed to be non-zero if d2
8
d 9 = 1. More generally, if (d2

8
d 9)∗ = Z ;

with 0 ≤ ; < # ,
"8 9 (@) = 00 @

; + 01 @
#+; + 02 @

2#+; + . . . (10)

in the vicinity of the symmetric point. It crucially follows that the entry "8 9 is expected to be
O(n ;) whenever Im g is large. The power ; only depends on how the representations of k and k2

decompose under the residual symmetry group Z)
#
.

3.1.2 gsym = 8

For g in the vicinity of gsym = 8, it is convenient to work in the (-diagonal basis, where now
d (2) (() = diag(d (2)

8
). Define d̃ (2)

8
≡ 8: (2) d (2)

8
. By setting W = ( in eq. (6), one finds

"8 9 ((g) = (−8g) 
(
d̃28 d̃ 9

)∗
"8 9 (g) . (11)

We now treat the "8 9 as functions of B ≡ (g− 8)/(g+ 8) so that, in this context, n ≡ |B | parameterises
the deviation from the symmetric point. Note that the entries "8 9 (B) depend analytically on B and
that B (−→ −B. In terms of B, eq. (11) reads

"8 9 (−B) =
(
1 + B
1 − B

) 
( d̃28 d̃ 9)∗"8 9 (B) ⇒ "̃8 9 (−B) = ( d̃28 d̃ 9)∗"̃8 9 (B) , (12)

where "̃8 9 (B) ≡ (1 − B)− "8 9 (B). Expanding both sides in powers of B, one finds

(−1)="̃ (=)
8 9
(0) = ( d̃28 d̃ 9)∗"̃

(=)
8 9
(0) , (13)

where "̃ (=)
8 9

denotes the =-th derivative of "̃8 9 with respect to B. Thus, "8 9 ∼ "̃8 9 is only allowed
to be O(1) when d̃2

8
d̃ 9 = 1. If instead d̃2

8
d̃ 9 = −1, the entry "8 9 ∼ "̃8 9 is expected to be O(n),

with n = |B |. Note that, unlike in the previous case, the relevant factors d̃ (2)
8

depend (by definition)
on the weights : (2) .

3.1.3 gsym = l

Finally, for g ' gsym = l, it is useful to work in the basis where () is diagonal and to define
d̃
(2)
8
≡ l: (2) d (2)

8
. By setting W = () in eq. (6), one finds

"8 9 (()g) = [−l(g + 1)] 
(
d̃28 d̃ 9

)∗
"8 9 (g) . (14)

We now treat the "8 9 as functions of D ≡ (g −l)/(g −l2) so that, in this context, n ≡ |D | parame-
terises the deviation from the symmetric point. Note that the entries "8 9 (D) depend analytically on
D and that D ()−−→ l2D. In terms of D, eq. (14) reads

"8 9 (l2D) =
(
1 − l2D

1 − D

) 
( d̃28 d̃ 9)∗"8 9 (D) ⇒ "̃8 9 (l2D) = ( d̃28 d̃ 9)∗"̃8 9 (D) , (15)

where "̃8 9 (D) ≡ (1 − D)− "8 9 (D). Expanding both sides in powers of D, one finds

l2="̃
(=)
8 9
(0) = ( d̃28 d̃ 9)∗"̃

(=)
8 9
(0) , (16)
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where "̃ (=)
8 9

denotes the =-th derivative of "̃8 9 with respect to D. Thus, "8 9 ∼ "̃8 9 is only allowed
to be O(1) when d̃2

8
d̃ 9 = 1. More generally, if d̃2

8
d̃ 9 = l

; with ; = 0, 1, 2, then the entry "8 9 ∼ "̃8 9
is expected to be O(n ;), with n = |D |. Like in the previous case, the factors d̃ (2)

8
depend on weights.

3.2 Decomposition under residual symmetries

We have just seen that as g departs from a symmetric value gsym — with n parameterising
the deviation — the zero entries of fermion mass matrices become O(n ;). We now show that
the exponents ; are extracted from products of factors which correspond to representations of the
residual symmetry group.

Matter fields k furnish ‘weighted’ representations (r, :) of the finite modular group Γ′
#
.

Whenever a residual symmetry is preserved by g, fields decompose into unitary representations of
the residual symmetry group. Modulo a possible Z'2 factor, these are the cyclic groups Z)

#
, Z(4 , and

Z()3 (cf. section 2.1). A cyclic group Z= ≡ 〈0 | 0= = 1〉 has = inequivalent 1-dimensional irreps,

1: : d(0) = exp
(
2c8

:

=

)
, (17)

where : = 0, . . . , = − 1. For odd =, the only real irrep of Z= is the trivial one, 10. For even =, there
is one more real irrep, 1=/2. All other irreps are complex, with (1:)∗ = 1=−: .

To illustrate the decomposition of representations at symmetric points, take as an example a
(3, :) triplet k of (′4. It transforms under the unbroken W = () at g = l as

k8
()−−→ (−l − 1)−: d3(())8 9 k 9 = l:d3(())8 9 k 9 . (18)

One can check that the eigenvalues of d3(()) are 1, l and l2, and so in a suitable (()-diagonal)
basis the transformation rule explicitly reads

k
()−−→ l:

©«
1 0 0
0 l 0
0 0 l2

ª®®¬k =
©«
l: 0 0
0 l:+1 0
0 0 l:+2

ª®®¬k , (19)

which means that k decomposes as k { 1: ⊕ 1:+1 ⊕ 1:+2 under the residual Z()3 .
One can similarly find the residual symmetry representations for any other ‘weighted’multiplet:

• At g = 8∞, k ∼ (r, :) transforms under the unbroken W = ) as

k8
)−→ dr())8 9 k 9 = d8 k8 , (20)

where we have assumed to be in a )-diagonal basis. The phase factors d8 correspond to the
Z)
#
irreps into which k decomposes. It follows that each d8 is a power of Z = exp(2c8/#),

depending on r but not on : .

• At g = 8, k ∼ (r, :) transforms under the unbroken W = ( as

k8
(−→ (−8)−:dr(()8 9 k 9 = 8:d8 k8 , (21)

in an (-diagonal basis. The phase factors d̃8 = 8:d8 correspond to the Z(4 irreps into which k
decomposes. It follows that each d̃8 is a power of 8 which depends both on r and on : (mod 4).

6
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• At g = l, k ∼ (r, :) transforms under the unbroken W = () as

k8
()−−→ (−l − 1)−:dr(())8 9 k 9 = l:d8 k8 , (22)

in an ()-diagonal basis, as in the example of eq. (19). The phase factors d̃8 = l:d8 correspond
to the Z()3 irreps into which k decomposes. It follows that each d̃8 is a power of l which
depends both on r and on : (mod 3).

It follows from the above that, for g ' 8∞, the product (d2
8
d 9)∗ matches some power Z ; with

0 ≤ ; < # , while for g ' l one has d̃2
8
d̃ 9 = l

; with ; = 0, 1, 2. These were tacitly taken as the most
general possibilities in sections 3.1.1 and 3.1.3. For g ' 8, it turns out that only two out of the four
possibilities are viable, namely ; = 0, 2 so that d̃2

8
d̃ 9 = ±1, as considered in section 3.1.2. This is

due to the fact that " (g)8 9 is '-even and thus the fields k28 and k 9 need to carry the same '-parity.
The decompositions of the weighted representations of Γ′

#
(# ≤ 5) under the three residual

symmetry groups have been collected in appendix A of Ref. [3].

3.3 Hierarchical structures

The results found so far allow us to construct hierarchical mass matrices in the vicinity of a
symmetric point. Physical masses are the singular values of " (g) and are also analytic functions
of n . To uncover the dependence of the physical spectrum on n we make use of the following set of
relations, valid for any = × = complex matrix " [8]:∑

81<...<8?

<2
81
. . . <2

8?
=

∑��det"?×?
��2 , (23)

where ? = 1, . . . , = is fixed, <8 are the singular values of " , and the sum on the right-hand side
goes over all possible ? × ? submatrices "?×? of " . For more details, see [3].

As an example, consider a model at level # = 5 with large Im g and matter fields k ∼ (3, :)
and k2 ∼ (3′, :2). One has the decompositions k { 10 ⊕ 11 ⊕ 14 and k2 { 10 ⊕ 12 ⊕ 13 under
the residual group at the symmetric point gsym = 8∞. One can then identify d8 = diag(1, Z , Z4) and
d2
8
= diag(1, Z2, Z3), with Z = exp(2c8/5), and derive the power structure

" (g(n)) ∼
©«

1 n4 n

n3 n2 n4

n2 n n3

ª®®¬ , with n = 4−2c Im g/5 , (24)

which corresponds to a hierarchical (1, n , n4) spectrum. .
Note that  = : + :2 must be large enough that sufficient modular forms contribute to " (g).

For instance, for  = 2 the superpotential may turn out to include a unique contribution:

, ⊃
∑
B

UB

(
.
(5,2)
5 (g)k2k

)
1,B

⇒ " (g) = U
©«
√

3.1 .5 .2
.4 −

√
2.3 −

√
2.5

.3 −
√

2.2 −
√

2.4

ª®®¬. (5,2)5

, (25)

where the UB are coupling constants, the sum is taken over all possible singlets B and . (# , )r(,`)
denotes the modular form multiplet of level # , weight  and irrep r, with ` possibly labelling

7
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# Γ′
#

Pattern Sym. point Viable r ⊗ r2

2 (3 (1, n , n2) g ' l [2 ⊕ 1(′) ] ⊗ [1 ⊕ 1(′) ⊕ 1′]

g ' l [10 ⊕ 10 ⊕ 1′0] ⊗ [11 ⊕ 11 ⊕ 1′′
1
]

3 �′4 (1, n , n2)
g ' 8∞ [10 ⊕ 10 ⊕ 1′0] ⊗ [11 ⊕ 11 ⊕ 1′′

1
] with 10 ≠ (11)∗

4 (′4

(1, n , n2) g ' l [30, or 2 ⊕ 1(′) , or 2̂ ⊕ 1̂(′) ] ⊗ [11 ⊕ 11 ⊕ 1′
1
]

(1, n , n3) g ' 8∞
3 ⊗ [2 ⊕ 1, or 1 ⊕ 1 ⊕ 1′], 3′ ⊗ [2 ⊕ 1′, or 1 ⊕ 1′ ⊕ 1′],
3̂′ ⊗ [2̂ ⊕ 1̂, or 1̂ ⊕ 1̂ ⊕ 1̂′], 3̂ ⊗ [2̂ ⊕ 1̂′, or 1̂ ⊕ 1̂′ ⊕ 1̂′]

5 �′5 (1, n , n4) g ' 8∞ 3 ⊗ 3′

Table 1: Hierarchical mass patterns which can be realised in the vicinity of symmetric points. Subscripts
run over irreps of a certain dimension, and 1′′′0 = 10 for # = 3, while 1′′0 = 10 for # = 4.

linearly independent multiplets of the same type (.8 are the corresponding components). At leading
order in n = |@ |, one has (.1, .2, .3, .4, .5) '

(
−1/
√

6, @, 3@2, 4@3, 7@4
)
up to normalisation and

the power structure indeed matches that of eq. (24). However, one can check that the determinant
of " vanishes identically for any g and the spectrum is ∼ (1, n , 0), with one massless fermion. This
issue is solved at weight  = 4. Then, the multiplets . (5,4)4 , . (5,4)5,1 , and . (5,4)5,2 are available and the
spectrum is indeed of the type (1, n , n4) without a massless fermion. While the n power-counting
in eq. (25) may resemble that of a Froggatt-Nielsen mechanism [9], our framework is unrelated and
can be regarded as an improvement. Instead of having an unknown O(1) coefficient for each mass
matrix entry, entries depend only on g and a limited number of superpotential parameters.

We are interested in identifying all possible 3 × 3 hierarchical mass matrices arising from the
described mechanism for # ≤ 5. We scan over representations r and r2 , rejecting spectra with
massless fermions. In the reducible case, the same weight and the same d(') is shared across the
decomposition. For g ' 8 the hierarchical pattern cannot be produced solely as a consequence of
the smallness of n , since mass matrix entries are either O(1) or O(n). The full results of the scan
are given in appendix B of Ref. [3]. It is only possible to obtain hierarchical spectra for a small list
of representation pairs, the most promising of which are collected in Table 1. We have excluded
from this summary table reducible representations made up of three copies of the same singlet, as
in those cases the number of superpotential parameters is unappealingly high.

4. Charged-lepton masses and large lepton mixing without fine-tuning

4.1 Viable PMNS matrix in the symmetric limit

Inspired by the above results, we have searched and built viable and predictive (′4 and �′5
lepton flavour models, see section 3.4 of [3]. In these models, the slightly-broken residual symmetry
allows to successfully produce hierarchical charged-leptonmasses without tuning the corresponding
couplings. However, tuning is still present in the neutrino sector, as residual symmetries constrain
the PMNS matrix, forcing some of its entries to be zero. It is known that only a limited number of

8
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# Γ′
#

Pattern Sym. point Viable r�2 ⊗ r! Property

2 (3 (1, n , n2) g ' l [2 ⊕ 1(′) ] ⊗ [1 ⊕ 1(′) ⊕ 1′] 1 or 4

g ' l [10 ⊕ 10 ⊕ 1′0] ⊗ [11 ⊕ 11 ⊕ 1′′
1
] 2

[1 ⊕ 1 ⊕ 1′] ⊗ [1′′ ⊕ 1′′ ⊕ 1′],3 �′4 (1, n , n2)
g ' 8∞

[1 ⊕ 1 ⊕ 1′′] ⊗ [1′ ⊕ 1′ ⊕ 1′′]
2

4 (′4 (1, n , n2) g ' l [30, or 2 ⊕ 1(′) , or 2̂ ⊕ 1̂(′) ] ⊗ [11 ⊕ 11 ⊕ 1′
1
] 1 or 4

5 �′5 − − − −

Table 2: Hierarchical charged-lepton mass patterns which may be realised in the vicinity of symmetric points
without fine-tuned mixing (PMNS close to the observed one in the symmetric limit).

flavour symmetry representation choices for lepton fields ! and �2 may give rise to a viable PMNS
matrix in the symmetric limit [10]. Viability in our case means that either none of its entries vanish,
or only the (13) entry vanishes as n → 0. A modular-symmetric model of lepton flavour with
hierarchical charged-lepton masses may be free of fine-tuning if it satisfies any of the properties [3]:

1. ! { 1 ⊕ 1 ⊕ 1, �2 { 1 ⊕ A , where 1 is some real singlet and A is some (possibly reducible)
representation such that A ⊅ 1;

2. ! { 1 ⊕ 1 ⊕ 1∗, �2 { 1∗ ⊕ A, where 1 is some complex singlet, 1∗ is its conjugate, and A is
some (possibly reducible) representation such that A ⊅ 1, 1∗.

3. all charged-lepton masses vanish in the symmetric limit, i.e. the corresponding hierarchical
pattern involves only positive powers of n , e.g. (n, n2, n3);

4. all light neutrino masses vanish in the symmetric limit, i.e. ! decomposes into three (possibly
identical) complex singlets none of which are conjugated to each other.

Applying this filter to the promising hierarchical cases of Table 1, one is left with the representation
pairs of Table 2. Note there is no surviving possibility for �(′)5 .

4.2 Scan of predictive (′4 models with g ' l

Finally, we consider the most structured surviving cases within Table 2. These arise for (′4,
g ' l and �2 and ! being a triplet and the direct sum of three singlets, respectively. The expected
charged-lepton spectrum is (1, n , n2). We have performed a systematic scan restricting ourselves
to promising models involving the minimal number of effective parameters (9, including Re g and
Im g). Right-handed neutrino fields #2 are present since Weinberg dimension-5 operator models
require more parameters. Aiming at minimal and predictive models, we impose a generalised CP
symmetry enforcing the reality of coupling constants [2]. Out of 48 models, we have identified the
only one which is viable and not fine-tuned, and is consistent with the 2f range for the Dirac CPV
phase, predicting X ' c. For this model, ! = !1 ⊕ !2 ⊕ !3 with !1, !2 ∼ (1̂, 2), !3 ∼ (1̂′, 2),

9
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�2 ∼ (3̂, 4) and #2 ∼ (3′, 1). The corresponding superpotential reads:

, =
[
U1

(
.
(4,6)
3′,1 �2!1

)
1
+ U2

(
.
(4,6)
3′,2 �2!1

)
1
+ U3

(
.
(4,6)
3′,1 �2!2

)
1
+ U4

(
.
(4,6)
3′,2 �2!2

)
1
+ U5

(
.
(4,6)
3 �2!3

)
1

]
�3

+
[
61

(
.
(4,3)
3̂

#2!1

)
1
+ 62

(
.
(4,3)
3̂

#2!2

)
1
+ 63

(
.
(4,3)
3̂′

#2!3

)
1

]
�D + Λ

(
.
(4,2)
2 (#2)2

)
1
.

(26)
Since !1 and !2 are indistinguishable, one can set U2 = 0 without loss of generality.

At leading order in a small parameter |n |, with n ≡ 1 − 1+
√

3
1−8

Y
\
and |n | ' 2.8

��� g−l
g−l2

��� in the
context of this section,1 the charged-lepton mass matrix reads

"†4 ' −
3(
√

3 − 1)6
√

13
E3U1\

12
©«

1 Ũ3 +
√

13
2 Ũ4

8
√

39
2 Ũ5√

3 n
√

3
(
Ũ3 −

√
13
2 Ũ4

)
n 8

√
13

2 Ũ5 n

5
2 n

2 1
4

(
10Ũ3 +

√
13Ũ4

)
n2 − 58

√
13

4
√

3
Ũ5 n

2

ª®®®®¬
, (27)

while the charged-lepton mass ratios follow the expected n-pattern and are given by

<4

<`
' 2
| Ũ4 Ũ5 |

√
4+

(
2Ũ3+

√
13Ũ4

)2
+39Ũ2

5

3Ũ2
4+

[
1+

(
Ũ3−
√

13Ũ4
)2

]
Ũ2

5

|n | ,
<`

<g
' 4
√

13

√
3Ũ2

4+
[
1+

(
Ũ3−
√

13Ũ4
)2

]
Ũ2

5

4+
(
2Ũ3+

√
13Ũ4

)2
+39Ũ2

5

|n | , (28)

with Ũ8 ≡ U8/U1. Up to an overall normalisation K, the light neutrino mass matrix is given by

"a ' K n
©«

0 0 6̃3
0 0 6̃26̃3

6̃3 6̃26̃3 28
√

2
3 6̃

2
3

ª®®®¬ (29)

at leading order in |n |, where 6̃8 ≡ 68/61. The smallness of |n | does not constrain the"a contribution
to mixing, which depends only on the 68 , and large mixing angles are allowed. Note that there is a
massless neutrino even though #2 is a triplet. The fit of the model yields (#f ' 0.563):

<4

<`
= 0.00475+0.00061

−0.00052 ,
<`

<g
= 0.0556+0.0136

−0.0116 , Σ<a = 0.0588+0.0002
−0.0002 eV ,

X<2 = 7.38+0.35
−0.44 × 10−5 eV2 , |Δ<2 | = 2.48+0.05

−0.04 × 10−3 eV2 , A = 0.0298+0.00196
−0.0023 ,

sin2 \12 = 0.304+0.039
−0.036 , sin2 \13 = 0.0221+0.0019

−0.002 , sin2 \23 = 0.539+0.0522
−0.099 ,

<VV = 0.00144+0.00035
−0.00033 eV ,

X

c
= 1 ± O(10−6) , U

c
= 1 ± O(10−5) .

(30)

The viable region in the g plane corresponds to a neutrino spectrum with NO and is located very
close to gsym = l, as can be seen from Figure 2. The annular form of the region is explained by
the fact that the phase of (g − l) has no effect on the observables, as it enters only through n and
its effects are suppressed by the smallness of |n |. Therefore, in the regime g ' l this model is
effectively described by 8 rather than 9 parameters:

|n (g) | = 0.0186+0.0028
−0.0023 , Ũ3 = 2.45+0.44

−0.42 , Ũ4 = −2.37+0.36
−0.30 , Ũ5 = 1.01+0.06

−0.06 ,

6̃2 = 1.5+0.15
−0.14 , 6̃3 = 2.22+0.17

−0.15 , E3 U1 = 4.61+1.32
−1.33 GeV ,

E2
D 61

Λ
= 0.268+0.057

−0.063 eV .
(31)

1This local definition is motivated by the fact that Y/\ = (1 − 8)/(1 +
√

3) at g = l, with Y, \ defined in Ref. [7].
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Figure 2: Allowed regions in the g plane for the viable (′4 and �
′
5 lepton flavour models of section 3.4 of [3]

and for the (′4 model discussed here (left). The region corresponding to the latter is magnified (right).

5. Summary and Conclusions

In modular-invariant theories of flavour, hierarchical fermion masses may arise solely due to
the proximity of the modulus to a point of residual symmetry gsym = 8, l or 8∞. In particular, if n
parameterises the deviation of g from gsym with |n | � 1, the degree of suppression of mass matrix
elements is given by |n |; where ; can take the values ; = 0, 1, ..., # − 1 if Im g is large; ; = 0, 1, 2
if g ' gsym = l; or ; = 0, 1 if g ' gsym = 8. Here, # is the level of the finite modular group Γ(′)

#
.

As shown, the specific value of ; depends only on how the representations of the fermion fields
entering the mass term bilinear decompose under the corresponding residual symmetry group.

Furthermore, we have found that it is only possible to obtain hierarchical spectra for a small list
of representation pairs, the most promising of which correspond to the patterns (1, n , n2), (1, n , n3)
and (1, n , n4), see Table 1. Having scanned these models, we found two viable ones based on (′4
and �′5, both in the ‘vicinity’ of gsym = 8∞, in which charged-lepton mass hierarchies arise naturally
as a consequence of the described mechanism. However, a certain degree of fine-tuning is still
required due to the need for large corrections to the symmetric-limit PMNS matrix. One may avoid
it only if the model satisfies at least one of four conditions (see section 4.1). Accordingly, we have
constructed and presented a viable model based on (′4 modular symmetry with g ' l, which is free
of fine-tuning in both the charged-lepton and neutrino sectors (see section 4.2). The charged-lepton
mass pattern is predicted to be

(
<g , <`, <4

)
∼ (1, n , n2) with n ' 0.02.2

These results demonstrate that the requirement of no fine-tuning in models based on modular
invariance is remarkably restrictive. One hopes that such constraints may allow to identify not more
than a few — if not just one — modular-invariant models providing a simultaneous, viable and
appealing solution to the joint lepton and quark flavour puzzle.

2It was recently shown that values of g corresponding to a deviation of n ' 0.02 from gsym = l as required by the fit,
cf. eq. (31), naturally arise in simple SUGRA-motivated potentials for the modulus [11].
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