
P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
6
1

On nonsupersymmetric Pati–Salam string models

Ioannis Florakis,𝑎 John Rizos𝑎,∗ and Konstantinos Violaris-Gountonis𝑎
𝑎Department of Physics,
University of Ioannina, GR45110, Ioannina, Greece

E-mail: iflorakis@uoi.gr, irizos@uoi.gr, k.violaris@uoi.gr

We report recent progress in the construction of heterotic string compactifications with sponta-
neously broken supersymmetry and Pati-Salam gauge symmetry. We study one-loop radiative
corrections to the string effective potential and comment on its structure, along with the condi-
tions allowing for an exponentially suppressed value of the cosmological constant.

Corfu Summer Institute 2021 ”School and Workshops on Elementary Particle Physics and Gravity”
29 August - 9 October 2021
Corfu, Greece

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:iflorakis@uoi.gr
mailto:irizos@uoi.gr
mailto:k.violaris@uoi.gr
https://pos.sissa.it/


P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
6
1

On nonsupersymmetric Pati–Salam string models John Rizos

1. Introduction

An important open problem in string phenomenology concerns the mechanism of spontaneous
supersymmetry breaking and its physical consequences which has attracted considerable interest in
recent literature[1–18]. To this end, a tree-level analysis is insufficient for a quantitative comparison
with low energy data, and the incorporation of quantum corrections to terms in the string effective
action becomes a necessary yet daunting task. It is known that several stability issues need to be
addressed. On the one hand, the absence of supersymmetry is accompanied by potential Hagedorn-
like instabilities associated with the potential excitation of tachyonic modes. On the other hand,
terms in the string effective action are no longer super-protected and, in particular, the effective
potential receives corrections already at one-loop, triggering a sizeable back-reaction to the tree level
geometry. Furthermore, the one-loop effective potential typically becomes a function of all tree-
level moduli and the analysis of the potential with respect to all of them, as well as the identification
of a moduli stabilisation mechanism, remain difficult open problems.

It is then clear that, in order to retain string effects, the spontaneous breaking of supersymmetry
must be carried out at the full string level, in terms of an exactly solvable worldsheet CFT. In the
context of heterotic theories, this is the case in coordinate-dependent compactifications [19–22]
which essentially provide the stringy realisation of the Scherk-Schwarz mechanism [23, 24]. In the
simplest case, the breaking can be formulated in terms of freely-acting Z2 orbifolds coupling the
spacetime fermion parity (−1)𝐹 to an order-2 shift 𝛿 along a non-trivial cycle of the compactification
manifold. In the case where the latter is identified with a circle 𝑆1 of radius 𝑅, the Scherk-Schwarz
mechanism introduces a mass gap for states charged under 𝐹 and results in the spontaneous breaking
of supersymmetry, with the breaking scale essentially controlled by the KK scale, 𝑚3/2 ∼ 𝑀KK ∼
1/𝑅.

In this report, we discuss a class of four-dimensional Z2 × Z2 orbifold compactifications with
Pati–Salam gauge symmetry [25, 26], where N = 1 supersymmetry is spontaneously broken à la
Scherk-Schwarz, and which contain a number of semi-realistic features, such as the presence of
chiral matter. The models are initially constructed using the free-fermionic formulation [27–29]
and are then subsequently mapped to equivalent orbifold compactifications, where the dependence
on the moduli is manifest (c.f. [30] and references therein).

The primary scope of our analysis is to study the one-loop effective potential and to identify its
universal features. Clearly, this is a function of all moduli and the analysis of its shape with respect
to all of them lies outside the scope of this study. Furthermore, although the theories we construct
are tachyon-free at the fermionic point, small deformations along generic directions around it are
certain to excite tachyonic modes, provided the Scherk-Schwarz radius 𝑅 is sufficiently close to the
self-dual (fermionic) point. However, as soon as 𝑅 grows sufficiently larger than the string scale, the
theory becomes protected against tachyonic instabilities, regardless of the values of the remaining
moduli.

This report is organised as follows. In Section 2 we describe the construction of the models
at a special point of moduli space, where all internal coordinates can be consistently fermionised.
We then proceed in Section 3 to recast these theories as orbifold compactifications at generic points
of the perturbative moduli space and investigate the shape of the one-loop effective potential as a
function of the Scherk–Schwarz volume modulus. We discuss the classification and universality
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features of the models with respect to the super no-scale condition and the resulting features of the
one-loop effective potential.

2. Nonsupersymmetric Pati–Salam models

The starting point of the model analysis is a class of heterotic Pati–Salam string models de-
fined in the framework of the free fermionic formulation [27–29] by a set of 𝑛 = 10 basis vectors
{𝑣1, . . . , 𝑣𝑛}, where

𝑣1 = 1 = {𝜓𝜇, 𝜒1,...,6, 𝑦1,...,6, 𝜔1,...,6 | �̄�1,...,6, �̄�1,...,6, 𝜂1,2,3, �̄�1,...,5, 𝜙1,...,8}
𝑣2 = 𝑆 = {𝜓𝜇, 𝜒1,...,6}
𝑣3 = 𝑇1 = {𝑦12, 𝜔12 | �̄�12, �̄�12}
𝑣4 = 𝑇2 = {𝑦34, 𝜔34 | �̄�34, �̄�34}
𝑣5 = 𝑇3 = {𝑦56, 𝜔56 | �̄�56, �̄�56}
𝑣6 = 𝑏1 = {𝜒34, 𝜒56, 𝑦34, 𝑦56 | �̄�34, �̄�56, �̄�1,...,5, 𝜂1}
𝑣7 = 𝑏2 = {𝜒12, 𝜒56, 𝑦12, 𝑦56 | �̄�12, �̄�56, �̄�1,...,5, 𝜂2}
𝑣8 = 𝑧1 = {𝜙1,...,4}
𝑣9 = 𝑧2 = {𝜙5,...,8}
𝑣10 = 𝛼 = {�̄�4,5, 𝜙1,2},

(1)

along with a set of phases

𝑐𝑖 𝑗 = 𝑐

[
𝑣𝑖
𝑣 𝑗

]
= ±1 , 𝑖 ≥ 𝑗 = 1, . . . , 10 , (2)

associated with generalised GSO (GGSO) projections. These give rise to a huge number of 2
10(10−1)

2 +1

∼ 7×1013 in principle distinct configurations with Pati–Salam gauge group. The full gauge symme-
try of these configurations, aside from special cases where gauge symmetry enhancement occurs,
is:

𝐺 = 𝑆𝑂 (6) × 𝑆𝑂 (4) ×𝑈 (1)3 × 𝑆𝑂 (4)2 × 𝑆𝑂 (8)
= 𝑆𝑈 (4) × 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 ×𝑈 (1)3 × 𝑆𝑈 (2)4 × 𝑆𝑂 (8) .

(3)

We focus our analysis on a non superymmetric subset of these vacua obtained by setting 𝑐[𝑆𝑇1
] = +1.

These vacua are then subject to a set of constraints regarding their phenomenological characteris-
tics which can be expressed purely in terms of the GGSO phases. By employing projection and
representation operators, the entire string spectrum can be encoded in a model-independent form.
The generalised projectors for a given sector 𝑎 are:

P±
𝑎 =

∏
𝜉 ∈Ξ± (𝑎)

1
2

(
1 ± 𝑐

[
𝑎

𝜉

]∗)
, (4)

for states constructed from the ground state of the sector 𝑎 and

P
𝜑
𝑎 =

∏
𝜉 ∈Ξ(𝑎)

1
2

(
1 + 𝛿𝑎𝛿

𝜑
𝜉 𝑐

[
𝑎

𝜉

]∗)
, (5)
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with

𝛿
𝜑
𝑎 =

{
−1 , 𝜑 ∈ 𝑎

+1 , 𝜑 ∉ 𝑎
, (6)

for states containing fermion oscillators 𝜑 . Here Ξ±(𝑎) is the set of basis vectors which act as
projection operators on the sector 𝑎 in question.

The first condition we impose concerns the appearance of tachyonic states in the string spec-
trum, which is no longer protected from such instabilities by supersymmetry. The elimination of all
physical tachyonic states from the spectrum then amounts to demanding that all relevant projectors
in the tachyonic sectors vanish:

P+
𝑎 = 0 , 𝑎 ∈ {𝑧1, 𝑧2, 𝛼, 𝑧1 + 𝛼} ∪ {𝑇𝑖 + 𝑧1, 𝑇𝑖 + 𝑧2, 𝑇𝑖 + 𝑝𝑧1 + 𝛼} ,

𝑖 = 1, 2, 3, 𝑝 = 0, 1 ,

P
�̄�
𝑇𝑗

= 0 , 𝜙 ∈ 1𝑅 − 𝑇𝑗 𝑅 , 𝑗 = 1, 2, 3 .

(7)

Having dealt with the tachyons, we can now proceed with the analysis of the massless spectrum. We
introduce additional conditions with the construction of semi-realistic Pati–Salam models in mind.
First of all, we require that the sectorsS𝑖

𝑝𝑞 = 𝑆+𝑏𝑖+𝑝𝑇𝑗+𝑞𝑇𝑘 , where 𝑝, 𝑞 = 0, 1, (𝑖, 𝑗 , 𝑘) = (1, 2, 3),
𝑖 ≠ 𝑗 ≠ 𝑘 give rise to chiral fermionic matter in complete Pati–Salam generations.

The number of generations is given by:

𝑛𝑔 = 𝑛𝐿 − �̄�𝐿 = �̄�𝑅 − 𝑛𝑅 , (8)

where 𝑛𝐿 , �̄�𝑅, count the number of copies of the representations 𝐹𝐿 (4, 2, 1) and 𝐹𝑅 (4̄, 1, 2) con-
taining fermion generations while �̄�𝐿 , 𝑛𝑅 count the corresponding anti-generations in 𝐹𝐿 (4̄, 2, 1)
and 𝐹𝑅 (4, 1, 2),

𝑛𝐿 = 4
3∑
𝑖=1

1∑
𝑝,𝑞=0

P−
S𝑖
𝑝𝑞

1
2

(
1 + 𝑋𝑆𝑈 (4)

S𝑖
𝑝𝑞

) 1
2

(
1 + 𝑋𝑆𝑂 (4)

S𝑖
𝑝𝑞

)
,

�̄�𝑅 = 4
3∑
𝑖=1

1∑
𝑝,𝑞=0

P−
S𝑖
𝑝𝑞

1
2

(
1 − 𝑋𝑆𝑈 (4)

S𝑖
𝑝𝑞

) 1
2

(
1 − 𝑋𝑆𝑂 (4)

S𝑖
𝑝𝑞

)
,

�̄�𝐿 = 4
3∑
𝑖=1

1∑
𝑝,𝑞=0

P−
S𝑖
𝑝𝑞

1
2

(
1 − 𝑋𝑆𝑈 (4)

S𝑖
𝑝𝑞

) 1
2

(
1 + 𝑋𝑆𝑂 (4)

S𝑖
𝑝𝑞

)
,

𝑛𝑅 = 4
3∑
𝑖=1

1∑
𝑝,𝑞=0

P−
S𝑖
𝑝𝑞

1
2

(
1 + 𝑋𝑆𝑈 (4)

S𝑖
𝑝𝑞

) 1
2

(
1 − 𝑋𝑆𝑂 (4)

S𝑖
𝑝𝑞

)
.

(9)

Here we have introduced the representation operators

𝑋𝑆𝑈 (4)
S𝑖
𝑝𝑞

=


−𝑐

[
S𝑖
𝑝𝑞

S 𝑗
0,1−𝑞+𝛼

]∗
, 𝑗 ≠ 𝑖 = 1, 2

−𝑐
[

S𝑖
𝑝𝑞

S1
1−𝑞,0+𝛼

]∗
, 𝑖 = 3

, 𝑋𝑆𝑂 (4)
S𝑖
𝑝𝑞

= −𝑐
[
S𝑖
𝑝𝑞
𝛼

]∗
, 𝑖 = 1, 2, 3 .

We note that due to the complexification of the internal fermions: 𝑦12,34,56, 𝜔12,34,56, �̄�12,34,56,
�̄�12,34,56, physical states of these models exhibit a multiplicity of 4, preventing the construction
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of models with 3 generations within the present setup. This issue is expected to be resolved in
constructions with real fermions.

Similar GGSO related conditions can be imposed which ensure the presence of the heavy and
light Higgs bosons, 𝐻 (4, 1, 2) and ℎ (1, 2, 2) = 𝐻𝑢

(
1, 2, +1

2

)
+ 𝐻𝑑

(
1, 2,− 1

2

)
, responsible for the

spontaneous breaking of the Pati–Salam and SM symmetries at the effective field theory level.

A common feature in the spectra of heterotic compactifications such as the ones presented here
are exotic fractionally charged states [31–35]. Since no experimental evidence for such particles
exists, we will demand that such states, always appear in vector-like pairs and can therefore acquire
large masses. We impose this relaxed condition as opposed to the more strict demand that all exotic
vanish, since the appearance of such states is inevitable in models with complex internal fermions.

Finally, we discard all models which exhibit enhancements of the observable Pati–Salam gauge
symmetry, while allowing for the enhancement of the hidden sector gauge groups.

After examining all these constraints, we find that 11 GGSO phases are irrelevant to our analy-
sis. In fact, 𝑐[1

1
] and 𝑐[1𝑆 ] amount to conventions, while 𝑐[𝑆𝑏1

], 𝑐[𝑆𝑏2
] and 𝑐[𝑏1

𝑏2
] correspond to a flip in

the overall chirality and can therefore be fixed without loss of generality. Additionally, the phases
𝑐[1𝑏1,2

], 𝑐[1𝑧1,2], as well as 𝑐[𝑇1
𝑏2
] and 𝑐[𝑇2

𝑏1
] are not necessary for the implementation of the above

constraints. In order to proceed with a detailed analysis of the model parameter space, we perform
a two-stage computer-aided scan, taking advantage of the fact that some critical model properties
can be determined at the 𝑆𝑂 (10) level generated by the vectors 𝑣𝑖 , 𝑖 = 1, . . . , 9 [36, 37]. For each
𝑆𝑂 (10)-level model which exhibits promising phenomenology we then re-introduce and iterate over
the full set GGSO phases related to the 𝑆𝑂 (10)-breaking vector 𝛼 and perform a comprehensive
scan of all descendant Pati–Salam models in order to find those that meet all the aforementioned
phenomenological criteria. Using this method we have collected a sample of approximately 5×104

Pati–Salam models which fulfill all the constraints.

3. Moluli dependence of one-loop effective potentials

While the fermionic formulation allows for a full model-independent analysis of the string
spectrum, it can only offer insight on the dynamics at the “fermionic point” of moduli space, where
all tori describing the compactified space are consistently fermionized. In order to investigate the
properties of our models at more general points of the perturbative moduli space, we employ the
orbifold formulation, in which the one-loop partition function corresponding to models generated

5
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by the basis (1) can be cast in the from:

𝑍 =
1

𝜂2𝜂2
1
24

∑
ℎ1,ℎ2,𝐻,𝐻′

𝑔1,𝑔2,𝐺,𝐺′ ∈Z2

1
23

∑
𝑎,𝑘,𝜌
𝑏,ℓ,𝜎

∈Z2

1
23

∑
𝐻1,𝐻2,𝐻3
𝐺1,𝐺2,𝐺3

∈Z2

(−1)𝑎+𝑏+𝐻𝐺+𝐻′𝐺′+Φ

×
𝜗[𝑎𝑏 ]
𝜂

𝜗[𝑎+ℎ1
𝑏+𝑔1

]
𝜂

𝜗[𝑎+ℎ2
𝑏+𝑔2

]
𝜂

𝜗[𝑎−ℎ1−ℎ2
𝑏−𝑔1−𝑔2

]
𝜂

×
�̄�[𝑘ℓ ]

3

𝜂3

�̄�[𝑘+𝐻′
ℓ+𝐺′ ]
𝜂

�̄�[𝑘−𝐻′
ℓ−𝐺′ ]
𝜂

�̄�[𝑘+ℎ1
ℓ+𝑔1

]
𝜂

�̄�[𝑘+ℎ2
ℓ+𝑔2

]
𝜂

�̄�[𝑘−ℎ1−ℎ2
ℓ−𝑔1−𝑔2

]
𝜂

×
�̄�[𝜌+𝐻

′

𝜎+𝐺′]
𝜂

�̄�[𝜌−𝐻
′

𝜎−𝐺′]
𝜂

�̄�[𝜌𝜎]2

𝜂2

�̄�[𝜌+𝐻𝜎+𝐺]
4

𝜂4

×
Γ (1)

2,2 [
𝐻1
𝐺1

|ℎ1
𝑔1 ] (𝑇 (1) ,𝑈 (1) )
𝜂2𝜂2

Γ (2)
2,2 [

𝐻2
𝐺2

|ℎ2
𝑔2 ] (𝑇 (2) ,𝑈 (2) )
𝜂2𝜂2

Γ (3)
2,2 [

𝐻3
𝐺3

|ℎ1+ℎ2
𝑔1+𝑔2 ] (𝑇 (3) ,𝑈 (3) )
𝜂2𝜂2 ,

(10)

where Φ is a phase that encodes information related to the GGSO phases (2). In this notation,
the Neveau–Schwarz and Ramond sectors are defined by the parameter 𝑎 = 0, 1 respectively, with
summation over 𝑏 acting as the GSO projection. The twisted sectors of the Z2 × Z2 orbifold are
determined by ℎ1,2 and the projections 𝑔1,2. The complex right-moving fermions generating the
𝑆𝑂 (16) × 𝑆𝑂 (16) lattice are labeled by k and 𝜌 and their corresponding projections ℓ and 𝜎. The
twists utilised in order to break the gauge symmetry and produce the observable Pati–Salam factor
are then introduced via (𝐻,𝐺) and (𝐻′, 𝐺′).

Finally, the moduli dependence is manifest through the two dimensional toroidal lattices Γ2,2,
on which the order two shifts corresponding to three additional freely-acting Z2 orbifolds labeled
by (𝐻𝑖 , 𝐺𝑖) are introduced. At the fermionic point defined as 𝑇 = 𝑖, 𝑈 = (1 + 𝑖)/2, these lattices
factorise into products of Jacobi theta functions:

Γ2,2 [𝐻𝑖

𝐺𝑖
|ℎ𝑖𝑔𝑖 ] =

1
2

∑
𝜖𝑖 ,𝜁𝑖∈Z2

|𝜗[𝜖𝑖𝜁𝑖 ]𝜗[
𝜖𝑖+ℎ𝑖
𝜁𝑖+𝑔𝑖 ] |

2(−1)𝐻𝑖𝜁𝑖+𝐺𝑖 𝜖𝑖+𝐻𝑖𝐺𝑖 , (11)

recovering the fermionic formulation description.
All model dependent information is then carried by the orbifold phase Φ, containing bilinears

of the boundary condition parameters, with specific choices corresponding to each possible model.
The implementation of the Scherk–Schwarz mechanism [23, 24] imposes strict constraints on the
form of this phase [26, 30].

This reformulation of the theory provides the tools necessary for the investigation of the one-
loop effective potential

𝑉one-loop(𝑡𝐼 ) = − 1
2(2𝜋)4

∫
F

𝑑2𝜏

𝜏3
2
𝑍 (𝜏, 𝜏; 𝑡𝐼 ), (12)

as a function of the moduli of the tree two-tori 𝑡𝐼 =
{
𝑇 (𝑖)

1 + 𝑖𝑇 (𝑖)
2 ,𝑈 (𝑖)

1 + 𝑖𝑈 (𝑖)
2 , 𝑖 = 1, 2, 3

}
. In the

absence of supersymmetry, this potential receives non-vanishing contributions from the entire tower
of bosonic and fermionic states in the spectrum. This potential typically leads to large, negative
values for the cosmological constant and the introduction of a dilaton tadpole. In order to probe
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the behaviour of the potential away from the fermionic point, we consider deformations along the
volume modulus 𝑇2 of the Scherk-Schwarz torus while keeping the remaining moduli fixed at the
fermionic point. It turns out that the large volume dynamics can be summarised as follows

𝑉one-loop(𝑇2 ≫ 1) ∼ −𝐶
𝑛𝑏 − 𝑛 𝑓

𝑇2
2

+ exponentially suppressed terms , (13)

where 𝐶 is a normalization constant, while 𝑛𝑏, 𝑓 stand for the number of the massless bosonic and
fermionic degrees of freedom of the theory, with all other contributions being suppressed exponen-
tially. The cosmological constant we obtain in that case is well above the observational upper bound
even for values of 𝑇2 that lie in the region of a few TeV, necessitating the elimination of the 1/𝑇2

2
term by demanding that 𝑛𝑏 = 𝑛 𝑓 . Models which exhibit this massless Bose–Fermi degeneracy,
termed “super no-scale models” [1, 38–40] are capable of producing an exponentially suppressed
cosmological constant¹.

The super no-scale condition 𝑛𝑏 = 𝑛 𝑓 , along with the demand that supersymmetry breaking
be consistent with the Scherk–Schwarz mechanism are then imposed as additional constraints on
top of those presented in the previous section. By investigating models satisfying all of the above
criteria, we notice that they can be classified according to their effective potential, although their
actual spectra and interactions may differ.

Explicit calculations of the one-loop effective potential as a function of the 𝑇2 modulus reveal
the existence of four broad categories of models based on the general structure of the potential.
Four typical examples are presented in Figure 1. The first category consists of models (see Fig. 1A)
with a positive semi-definite potential exhibiting a global maximum at the fermionic point and an
exponential suppression driving the theory towards a small positive cosmological constant as 𝑇2 is
varied. The second category (see Fig. 1B) also possesses a positive semi-definite potential, however,
here the self-dual point corresponds to a local minimum, accompanied by a pair of maxima by its
sides. At large volume this case also leads to small positive values for the cosmological constant.
The two remaining categories (see Fig. 1C,D) correspond to potentials with a global minimum with
large negative value at the fermionic point. In the third category, the theory exhibits two positive
maxima, while the potential of fourth category is negative semi-definite.

While the cases with a negative potential may at first appear problematic, since they imply
supersymmetry breaking at the string scale and the stabilization of the cosmological constant at
large negative values, we note that this is not necessarily provide grounds for discarding them.
The reason is that the super no-scale property and the shape of the effective potential are highly
sensitive to all degrees of freedom in the string spectrum and are not preserved when modding out
by additional orbifold group factors. This was explicitly checked by analyzing an 𝑆𝑂 (10) parent-
model and its Pati–Salam descendants and we indeed confirmed that, as expected, the introduction
of additional Z2 orbifold factors drastically affects those properties. Thus, the negative-potential
solutions constructed here may still be relevant at an intermediate stage, as the new parent models

¹Note that, although the super no-scale condition 𝑛𝑏 = 𝑛 𝑓 appears universal, this is not necessarily the case. Actu-
ally, the form of the dominant power law suppression of the effective one-loop potential also depends on the particular
embedding of the Scherk-Schwarz shift vector in the 2-torus. Different choices for this lattice vector typically lead to the
𝑇−2 term dressed by different automorphic functions of the 𝑈-modulus, with potentially different combinatorics factors.
In principle, this implies that the super no-scale condition would then need to be suitably generalized in order to cancel
the power law term. We defer further discussion of this point to future work.
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that may produce vacua with appealing phenomenological features, upon introducing additional
orbifolds factors to further reduce to the Standard Model gauge symmetry.
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Figure 1: An example for each of the four distinct categories of models based on the overall shape of the
rescaled potential �̃� (𝑇2) = 2(2𝜋)4𝑉 (𝑇2).
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