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In this paper, we study the time evolution of the expectation value of Majorana neutrino with
the Schrödinger picture. The operators with the definite lepton number and operators with the
definite mass are related to each other by a Bogolyubov transformation. Then the vacuum with the
null lepton number is also related to the vacuum for the massive operator and it is written by the
superposition of the vacuum for massive field and Majorana pairs condensed states. We choose
the state with a definite lepton number ! = 1 and the momentum q ≠ 0 as an initial state. By
writing the state in terms of the superposition of energy eigenstates, we are able to study the time
evolution of the state in the Schrödinger picture. The expectation value of lepton number operator
is computed and it reproduces the same result as that obtained in the corresponding Heisenberg
operator.
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1. Introduction

In the previous paper [1], we have studied the time evolution of the lepton number carried by
Majorana neutrinos in the Heisenberg picture. In the present paper, we investigate the same problem
in the the Schrödinger picture. One can compute the expectation value of the physical observables
at arbitrary time in both Heisenberg picture and Schrödinger picture and they are equivalent in
this aspect. However, in order to find how the state evolves with respect to time, it is desirable to
formulate the previous framework in the Schrödinger picture.

The operator relation between neutrino/anti-neutrino and Majorana neutrino obtained in [1] is
expressed as a Bogolyubov transformation [2]. Then the two vacua, one which is annihilated by
the operators assigned with definite lepton number and the other annihilated by the operators with
definite mass, are related by the transformation. Using the relation, the initial state with the definite
lepton number can be expressed in terms of the operators with the definite mass applied on the
vacuum annihilated by the operators with definite mass. Then the time evolution of the initial state
can be derived and the expectation value of the lepton number is also obtained.

The Bogolyubov transformation is applied to the oscillation phenomena [3] and [4]. The
Majorana neutrino as a Bogolyubov quasi-particle is also suggested in the literature [5].

The paper is organized as follows. In section 2, we introduce the Bogolyubov transformation
to relate the operator for mass eigenstate to the operator with the definite lepton number. In section
3, the initial state is given. The time evolution of the state and the expectation value of lepton
number are obtained in section 4. The numerical calculation is also shown. Section 5 is devoted to
the conclusion and the derivation of the Bogolyubov transformation and the initial state are given
in appendixes.

2. Continuity condition and The Bogolyubov Transformation

In the previous paper [1], we consider the situation that the Majorana mass term is turned on
at C = 0 by a time step function. The following Lagrangian corresponds to that situation, but for the
single flavor case,

L = a!8m`W`a! − \ (C)
<

2
{(a!)2a! + ℎ.2.}. (1)

Then the equation of motion leads to a continuity condition at C = ±n ,

a! (C = −n, x) = %!k" (C = +n, x), (2)

where %! denotes the left-handed projection 1−W5
2 . The left-hand side of Eq.(2) is expanded by

on-shell massless spinors. Their coefficients are the annihilation operator denoted by 0(p) for a
neutrino and the creation operator for an anti-neutrino denoted by 1†(p). The right-hand side is
expanded by massive on-shell spinors. Their coefficients correspond to annihilation and creation
operators for massive Majorana field denoted by 0 (†)

"
(p, _) where _ denotes the helicities _ = ±.

The non-zero momentum p can be always split into two regions. A hemisphere region is called as
� region and the other hemisphere region is called as �̄. (See for the details in [6] .) The continuity
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condition is transfered to the following relations between the operators,

0(p)√
2?

=

√
�? + ?
2�?

(
0" (p,−) +

8<

�? + ?
0
†
"
(−p,−)

)
, (3)

0(−p)√
2?

=

√
�? + ?
2�?

(
0" (−p,−) −

8<

�? + ?
0
†
"
(p,−)

)
, (4)

1(p)√
2?

=

√
�? + ?
2�?

(
0" (p, +) +

8<

�? + ?
0
†
"
(−p, +)

)
, (5)

1(−p)√
2?

=

√
�? + ?
2�?

(
0" (−p, +) −

8<

�? + ?
0
†
"
(p, +)

)
, (6)

where ? = |p| , �? =
√
?2 + <2 and p ∈ �. To further simplify relations in Eq.(2), we introduce

the momentum dependent angle q? , which is related to the velocity E? as E? = ?

�?
= cos 2q?.

Then we rewrite the operator relations in Eqs.(3-6),

(
0(p)
0†(−p)

)
=

√
cos 2q?

(
cos q? 8 sin q?
8 sin q? cos q?

) (
0" (p,−)
0
†
"
(−p,−)

)
, (7)

(
1(p)
1†(−p)

)
=

√
cos 2q?

(
cos q? 8 sin q?
8 sin q? cos q?

) (
0" (p, +)
0
†
"
(−p, +)

)
. (8)

The above relations can be expressed by using the transformation ) (q?) defined below,

) (q?) = exp [8q? (6?,+ + 6?,−)], (9)
6?,_ ≡ U" (p, _)U" (−p, _) + U†" (−p, _)U

†
"
(p, _), (10)

where 6?,± denote the generators of the transformation. Note that we have introduced the dimen-
sionless operators,

U" (p, _) ≡
0" (p, _)√

2�? (2c)3X (3) (0)
. (11)

They satisfy the anti-commutation relations for p = q,

{U" (p, _), U†" (q, _
′)} = X__′ . (12)
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Using the transformation ) (q?) in Eq.(9), one can rewrite the relations in Eqs.(7-8) between
massless operators and massive ones as,

0(p) =
√

cos 2q?) (q?)0" (p,−))−1(q?),

=
√

cos 2q?
(
cos q?0" (p,−) + 8 sin q?0†" (−p,−)

)
, (13)

0(−p) =
√

cos 2q?) (q?)0" (−p,−))−1(q?),

=
√

cos 2q?
(
cos q?0" (−p,−) − 8 sin q?0†" (p,−)

)
, (14)

1(p) =
√

cos 2q?) (q?)0" (p, +))−1(q?),

=
√

cos 2q?
(
cos q?0" (p, +) + 8 sin q?0†" (−p, +)

)
, (15)

1(−p) =
√

cos 2q?) (q?)0" (−p, +))−1(q?),

=
√

cos 2q?
(
cos q?0" (−p, +) − 8 sin q?0†" (p, +)

)
. (16)

The derivation of the relations in Eqs.(13-16) are shown in the appendix A. The matrix ) denotes
the Bogolyubov transformation [2].

2.1 Relation between two vacua from the Bogolyubov transformation

Since there are two sets of operators, (0(p), 1(p)) and 0" (p, _ = ±1), one can also define two
different vacua. The vacuum denoted by |0〉 is annihilated by 0(±p) and 1(±p),

0(±p) |0〉 = 1(±p) |0〉 = 0, (17)

where p ∈ � . Eq.(17) can be translated as,

) (q?)0" (±p, _ = ±1))−1(q?) |0〉 = 0. (18)

The vacuum |0" 〉 that is annihilated by the operator 0" (±p, _ = ±) satisfies,

0" (±p, _ = ±)|0" 〉 = 0. (19)

The two vacua are related to each other as,

|0〉 = ) |0" 〉, ) =
∏
p∈�

) (q?). (20)

Below we explicitly construct the vacuum |0〉 by applying the Bogolyubov transformation ) on the
vacuum |0" 〉.

|0〉 = ) |0" 〉 =
∏
p∈�
{cos2 q? − sin2 q?�

†
"+(p)�

†
"−(p) + 8 sin q? cos q?

∑
_=±

�
†
"_
(p)}|0" 〉, (21)

where �†
"_
(p) is defined as,

�
†
"_
(p) = U†

"
(−p, _)U†

"
(p, _). (22)

The derivation can be found in Eq.(51) in the appendix. This bosonic operator creates twoMajorana
particles with opposite momenta. We note that there are states of two pairs and one pair of massive
Majorana neutrinos in superpositions. The norm of these states are given by,

〈0" |�"−(p)�"+(p)�†"+(p)�
†
"−(p) |0" 〉 = 1, (23)

〈0" | (
∑
_′=±

�"_′ (p)) (
∑
_=±

�
†
"_
(p)) |0" 〉 = 2. (24)
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3. Construction of a one particle state with a definite lepton number

We are ready to build an initial state with a definite lepton number as follows,

|Ψ(0)〉 = #@0
†(q) |0〉

= #@
√

cos 2q@ (cos q@0†" (q,−) − 8 sin q@0" (−q,−))|0〉

=

[ ∏
p≠q∈�

{cos2 q? − sin2 q?�
†
"+(p)�

†
"−(p) + 8 sin q? cos q?

∑
_=±

�
†
"_
(p)}

]
×#@

√
cos 2q@

(
cos q@ + 8 sin q@�†"+(q)

)
0
†
"
(q,−)|0" 〉, (25)

where #@ is a normalization factor given by,

#@ =

√
1

2@(2c)3X3(0)
. (26)

To derive Eq.(25), we use Eq.(21) and Eq.(53).

4. Time evolution of the initial state and the expectation value for lepton number

The state evolved from the initial state in Eq.(25) is obtained;

|Ψ(C)〉 =
∏

k(≠q) ∈�
{cos2 q: − sin2 q:4

−48�: C�
†
"+(k)�

†
"−(k) + 8 sin q: cos q:4−82�: C

∑
_=±1

�
†
"_
(k)}

×#@
√

cos 2q@4−8�@ C
(
cos q@ + 8 sin q@4−28�@ C�

†
"+(q)

)
0
†
"
(q,−)|0" 〉, (27)

We compute the expectation value of lepton number with the state at C defined in Eq.(27),

〈Ψ(C) |! |Ψ(C)〉, (28)

where the lepton number is originally written in terms of the operator associated with operators for
massless neutrinos.

! =

∫ ′ 33?

(2c)32|p|
(0†(p)0(p) − 1†(p)1(p)).

=

∫
p∈�

+33?

(2c)3
;p, (29)

where + = (2c)3X (3) (p = 0) and ;p is the contribution to the lepton number from the momentum p
sector and is rewritten in terms of the operators for massive Majorana particle.

;p =
|p|
�?
(=(p,−) + =(−p,−) − =(p, +) − =(−p, +))

− 8<

�?
(�†
"−(p) − �

†
"+(p) + �"+(p) − �"−(p)), (30)

=(p, _) = U
†
"
(p, _)U" (p, _). (31)
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The expectation value of ;q for the state |Ψ(C)〉 is given by

〈Ψ(C) |;q |Ψ(C)〉
=

∏
k(≠q) ∈�

〈0" |{cos2 q: − sin2 q:4
48�: C�"−(k)�"+(k) − 8 sin q: cos q:482�: C

∑
_=±1

�"_(k)}

{cos2 q: − sin2 q:4
−48�: C�

†
"+(k)�

†
"−(k) + 8 sin q: cos q:4−82�: C

∑
_=±1

�
†
"_
(k)}|0" 〉#2

@ cos 2q@ ×

〈0" |0" (q,−)(cos q@ − 8 sin q@428�@ C�"+(q));q(cos q@ + 8 sin q@4−28�@ C�
†
"+(q))0

†
"
(q,−)|0" 〉

= #2
@ cos 2q@ ×

〈0" |0" (q,−)(cos q@ − 8 sin q@428�@ C�"+(q));q(cos q@ + 8 sin q@4−28�@ C�
†
"+(q))0

†
"
(q,−)|0" 〉.

(32)

The last matrix element in Eq.(32) is computed as;

#2
@ cos 2q@ ×
〈0" |0" (q,−)(cos q@ − 8 sin q@428�@ C�"+(q));q(cos q@ + 8 sin q@4−28�@ C�

†
"+(q))0

†
"
(q,−)|0" 〉

= #2
@ cos 2q@ [cos2 q@ 〈0" |0" (q,−);q0†" (q,−)|0" 〉
+ sin2 q@ 〈0" |0" (q,−)�"+(q);q�†"+(q)0

†
"
(q,−)|0" 〉

−8 sin q@ cos q@428�@ C 〈0" |0" (q,−)�"+(q);q0†" (q,−)|0" 〉
+8 sin q@ cos q@4−28�@ C 〈0" |0" (q,−);q�†"+(q)0

†
"
(q,−)|0" 〉]

= #2
@ cos 2q@

[
|q|
�@

cos 2q@ +
<

�@
sin 2qq cos(2�@C)

]
(2c)32�@X (3) (0)

=

(
@

�@

)2
+

(
<

�@

)2
cos(2�@C), (33)

and for ;p (p ≠ q), the matrix element vanishes as;

〈Ψ(C) |;p |Ψ(C)〉
=

∏
k(≠p) ∈�

〈0" |{cos2 q: − sin2 q:4
48�: C�"−(k)�"+(k) − 8 sin q: cos q:482�: C

∑
_=±1

�"_(k)}

{cos2 q: − sin2 q:4
−48�: C�

†
"+(k)�

†
"−(k) + 8 sin q: cos q:4−82�: C

∑
_=±1

�
†
"_
(k)}|0" 〉

×〈0" |{cos2 q? − sin2 q?4
48�?C�"−(p)�"+(p) − 8 sin q? cos q?482�?C

∑
_=±1

�"_(p)}|;p

{cos2 q? − sin2 q?4
−48�?C�

†
"+(p)�

†
"−(p) + 8 sin q? cos q?4−82�?C

∑
_=±1

�
†
"_
(p)}|0" 〉

×#2
@ cos 2q@ ×

〈0" |0" (q,−)(cos q@ − 8 sin q@428�@ C�"+(q)) (cos q@ + 8 sin q@4−28�@ C�
†
"+(q))0

†
"
(q,−)|0" 〉

= 〈0" |{cos2 q? − sin2 q?4
48�?C�"−(p)�"+(p) − 8 sin q? cos q?482�?C

∑
_=±1

�"_(p)}|;p

{cos2 q? − sin2 q?4
−48�?C�

†
"+(p)�

†
"−(p) + 8 sin q? cos q?4−82�?C

∑
_=±1

�
†
"_
(p)}|0" 〉

= 0. (34)

6
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Using the above results, one obtains the expectation value Eq.(28) as;

〈Ψ(C) |! |Ψ(C)〉 =

(
@

�@

)2
+

(
<

�@

)2
cos(2�@C),

= E2 + (1 − E2) cos( 2<C
√

1 − E2
), (35)

with the velocity E is defined by E = @

�@
. In Fig.1, Eq.(35) is plotted for various velocities of the

neutrino. For a relativistic neutrino E ∼ 1, the lepton number stays around 1 with short period of
the oscillation. For a non-relativistic neutrino E < 1, the lepton number oscillates between 1 and
−1 with the longer period. The period of the oscillation ) satisfies,

<) = c
√

1 − E2. (36)

0 2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

mt

<
ψ
(t
)|
L|
ψ
(t
))
>

Figure 1: The expectation value of the lepton number is plotted versus <C where < denotes the neutrino
mass. The pink colored line shows the relativistic case with E = 0.99, The blue colored line shows the case
with E = 1√

2
. The red colored line shows the non-relativistic case with E = 0.1.

5. Conclusions

We study the time evolution of lepton number in the Schrödinger picture for a single flavor.
Similar to the Heisenberg picture, a multi-flavor Schrödinger is also possible. But the extention
to the multi-flavor case is outside of the scope of the paper. The expectation value is the same as
that obtained by Heisenberg picture previously. For non-relativistic case, it oscillates with the large
amplitude (〈Δ!〉 ' ±1). For relativistic case, it oscillates rapidly with the small amplitude around
〈!〉 ' 1. The vacuum with null lepton number is a superposition of the vacuum for mass eigenstate,
a pair of Majorana particles, and two pairs of Majorana particles. Similar to the vacuum, the one

7



P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
6
3

Time evolution of the lepton number of Majorana neutrinos in the Schrödinger picture versus Heisenberg
picture Takuya Morozumi

particle state with the definite lepton number 1 is a superposition of a mass eigenstate of Majorana
neutrino and a state with a Majorana pair and a Majorana neutrino. These non-trivial superposition
of states with different energies give rise to the oscillating behavior for the expectation value of
lepton number.

Acknowledgement
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Appendix A: The derivation of Eqs.(13-16) and Eq.(21)
In this appendix, we prove the relations Eqs.(13-16).

) (q?)0†" (p,−))
−1(q?) = cos q?0†" (p,−) − 8 sin q?0" (−p,−), (37)

) (q?)0†" (−p,−))
−1(q?) = cos q?0†" (−p,−) + 8 sin q?0" (p,−), (38)

with the definition of ) (q?) in Eq.(9) and Eq.(10). One can also compute derivatives,

3=

3q=?
{) (q?)0†" (±p,−))

−1(q?)}

= 8= [6?,+ + 6?,−, [6?,+ + 6?,−, ...[6?,+ + 6?,−, {) (q?)0†" (±p,−))
−1(q?)}] . (39)

For = = 2<(< = integer), it is

32<

3q2<
?

{) (q?)0†" (±p,−))
−1(q?)}

���
q?=0

= (−1)<0†
"
(±p,−). (40)

For = = 2< + 1, it is given by,

32<+1

3q2<+1
?

{) (q?)0†" (±p,−))
−1(q?)}

���
q?=0

= (−1)<(∓8)0" (∓p,−). (41)

They are derived with the following commutation relations,

[6?,+ + 6?,−, 0†" (±p,−)] = ∓0" (∓p,−). (42)

Then one can show,

) (q?)0†" (p,−))
−1(q?) =

( ∞∑
<=0

(−1)<
(2<)! (q?)

<

)
0
†
"
(p,−) − 8

( ∞∑
<=0

(−1)<
(2< + 1)! (q?)

<+1

)
0" (−p,−)

= cos q?0†" (p,−) − 8 sin q?0" (−p,−), (43)
) (q?)0†" (−p,−))

−1(q?) = cos q?0†" (−p,−) + 8 sin q?0" (p,−). (44)

This leads to the relations of Eq.(13) and Eq.(14). Eqs.(15-16) can also be proved similarly.
Next, the outline of the derivation of Eq.(21) is given as follows;

) (q?) |0" 〉 = exp[+8
∑
_=±

6_(?)q?] |0" 〉

=

∞∑
==0

8= (q?)=

=!
(6+(?) + 6−(?))= |0" 〉.

8
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(6+(?) + 6−(?)) |0" 〉 =
∑
_=±

�
†
"_
(p) |0" 〉, (45)

{6+(?) + 6−(?)}2 |0" 〉 = 2(1 + �†
"−(p)�

†
"+(p)) |0" 〉, (46)

{6+(?) + 6−(?)}3 |0" 〉 = 2{6+(?) + 6−(?)}(1 + �†"−(p)�
†
"+(p)) |0" 〉

= 4{6+(?) + 6−(?)}|0" 〉
= 4

∑
_=±

�
†
"_
(p) |0" 〉, (47)

{6+(?) + 6−(?)}4 |0" 〉 = 4{6+(?) + 6−(?)}2 |0" 〉, (48)

where we denote 6_(?) = 6?,_. In deriving Eq.(47), we have used the following anti-commutation
relation,

{�"_(p), �†"_(p)} = U" (p, _)U†" (p, _) + U
†
"
(−p, _)U" (−p, _)

= 1 − U†
"
(p, _)U" (p, _) + U†" (−p, _)U" (−p, _). (49)

From the consideration above, one concludes that

{6+(?) + 6−(?)}2=+1 |0" 〉 = 4={6+(?) + 6−(?)}|0" 〉,
{6+(?) + 6−(?)}2=+2 |0" 〉 = 4={6+(?) + 6−(?)}2 |0" 〉. (50)

Then one obtains the relation in Eq.(21),

) (q?) |0" 〉

= |0" 〉 + 8
∞∑
==0

(−1)=q2=+1
? 22=

(2= + 1)! {6+(?) + 6−(?)}|0" 〉 +
∞∑
==0

(−1)=+1q2=+2
? 22=

(2= + 2)! {6+(?) + 6−(?)}2 |0" 〉

= |0" 〉 −
sin2 q?

2
{6+(?) + 6−(?)}2 |0" 〉 + 8 cos q? sin q?{6+(?) + 6−(?)}|0" 〉

= cos2 q? |0" 〉 + 8 cos q? sin q?
∑
_=±

�
†
"_
(p) |0" 〉 − sin2 q?�

†
"−(p)�

†
"+(p) |0" 〉, (51)

where we used the following relations
∞∑
==0

(−1)=q2=+1
? 22=

(2= + 1)! = −1
2

sin2 q?,

∞∑
==0

(−1)=+1q2=+2
? 22=

(2= + 2)! = cos q? sin q? . (52)

Appendix B: The derivation of Eq.(25)
In this appendix, we derive the relation which is used to derive Eq.(25),√

cos 2q@ (cos q@0†" (q,−) − 8 sin q@0" (−q,−))
×{cos2 q@ − sin2 q@�

†
"+(q)�

†
"−(q) + 8 sin q@ cos q@

∑
_=±

�
†
"_
(q)}|0" 〉

=
√

cos 2q@{(cos3 q@ + sin2 q@ cos q@)0†" (q,−)
+8(sin q@ cos2 q@ + sin3 q@)�†"+(q)0

†
"
(q,−)}|0" 〉

=
√

cos 2q@{cos q@0†" (q,−) + 8 sin q@�†"+(q)0
†
"
(q,−)}|0" 〉. (53)
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