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Massive particles whose dynamics are described by the free Dirac equation can oscillate between
left and right-handed chiral states, undergoing chiral oscillations. The phenomenon is prominent
for non-relativistic particles, and can yield a depletion on the expected measured flux of cosmic
neutrinos and a modification of quantum correlations encoded in lepton-antineutrino pairs. In
this context, the interplay between chiral and flavor oscillations plays an important role in the
description of neutrino flavor dynamics. In this paper, we extend previous results and obtain flavor
oscillation formulas including chiral oscillations for N flavor mixing. We consider the general case
of mixing that can distinguish between left and right-handed states and derive the flavor oscillation
probabilities for Dirac and Majorana neutrinos within the bispinor formalism. We show that, for
three flavors, oscillation probabilities between chiral left and right-handed flavor states allows for
distinguishing between Dirac and Majorana neutrinos in the presence of additional CP-violation
Majorana phases. To summarize, our work addresses to phenomenologically accessible chiral
oscillation effects on non-relativistic neutrino dynamics and on quantum correlations encoded in
flavor states.
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1. Introduction

Neutrino flavor oscillations play a prominent role in different areas of particle physics, from the
explanation of the solar neutrino problem to implications for cosmological models [1, 2]. Flavor os-
cillations can bemodelled by describing a state with a definite flavor as a superposition of states with
different masses, called mass eigenstates [1]. While earlier frameworks for describing the dynamics
of free neutrinos were based on plane-wave or wave-packet solutions of the Schrödinger equation
[3–5], a fully relativistic treatment of the mass eigenstates is required for a correct description of
the fermionic character of the particle [6–10].

The dynamics of single fermionic particle states is given by the Dirac equation [11]. In this
framework, the state of a massive particle is described with a 4-component object, called a bispinor,
and the underlying group structure to the Dirac equation, namely the complete Lorentz group
[12], implies that such a particle state carries two discrete degrees of freedom: spin and chirality.
Although the latter is a Lorentz invariant, it is not a conserved quantity under the free particle
Dirac dynamics [11, 13]. In fact, the mass term of the Dirac equation couples the components
of the bispinor with different chiralities [13], which we call right-handed (positive chirality) and
left-handed (negative chirality), inducing chiral oscillations [10, 14–16]. Thus, a state describing a
free particle initially with a definite chirality will evolve into a superposition of left and right-handed
states. The amplitude of such oscillations depends on the ratio between mass and energy and, thus,
is very small for relativistic particles.

Neutrinos are created via weak interaction processes, which violate parity symmetry and
project the state into a definite chirality [17]. Since typically neutrinos are ultra-relativistic particles,
chiral oscillations are negligible. Nevertheless, in recent proposals for measuring non-relativistic
cosmic neutrinos via capture on Tritium [18–20], chiral oscillations could be prominent. Since
the measurement process is only sensitive to left-handed neutrino states, chiral oscillations to
the unmeasurable right-handed states would induce a depletion on the expected measured flux
of electron neutrinos [21, 22]. Furthermore, chiral oscillations affect the pion decay rates into a
lepton-antineutrino pair. If the antineutrino is non-relativistic, quantum correlations encoded in the
antineutrino-electron pair are sensitive to chiral oscillations and, in principle, could be probed via
a spin Bell inequality [23].

In this paper, we extend the formalism presented in [22] in order to describe chiral oscilla-
tion effects in flavor oscillations for non-relativistic neutrinos. We describe the mass eigenstates
as bispinors whose temporal evolution is given by the Dirac equation, and consider a chirality-
dependent flavor mixing [24]. The mixing matrix depends on whether the state is chiral left or
right-handed [24] and oscillation probabilities for N flavor mixing subjected to chiral oscillation
effects are depicted their corresponding time-averaged outputs [22]. In particular, we show that
Majorana and Dirac nature are indistinguishable, unless additional CP-violation Majorana phases
[25] differentiates left and right-handed chiral states. In this case, Dirac and Majorana neutrinos
exhibit different oscillation patterns for right-handed states. In the three flavor mixing scenario,
considering standard values for the mixing parameters, we show that the difference between the av-
eraged oscillation probabilities for Dirac and Majorana neutrino oscillations could be ∼ 8×10−5 for
non-relativistic neutrinos. Our results show how chiral oscillations can affect quantum correlations
encoded in single-particle neutrino states [26, 27] considered in wave-packet treatments [28], and
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in lepton-antineutrino pair production [23].
The paper is organized as follows. In section 2 we review chiral oscillation in the context of

the Dirac equation and briefly discuss their origin in terms of the group structure of the complete
Lorentz group. In section 3, we obtain the dynamical evolution of a flavor state for a general mixing.
We obtain generalized oscillation formulas for both left and right-handed states and evaluate the
effects of chiral oscillations for three flavor mixing in terms of the averaged oscillation probabilities.
In section 4, we discuss and evaluate the differences between Dirac and Majorana neutrinos driven
by additional CP-violation Majorana phases. We draw our conclusions in section 5.

2. Dirac equation and chiral oscillations

The Dirac equation describing the temporal evolution of the state of a free massive fermion is
given in terms of the free Dirac Hamiltonian, as

ĤD |ψ〉 =
(
p̂ · α̂ + m β̂

)
|ψ〉 = i∂t |ψ〉 , (1)

where natural units, ~ = c = 1, have been considered, operators have been denoted with hats and
vectors with boldface letters. The Dirac matrices, α̂x, α̂y, α̂z , and β̂, satisfy the anti-commutation
relations

α̂iα̂j + α̂j α̂i = 2δi j Î4,

α̂i β̂ + β̂α̂i = 0,
(2)

which, with β2 = Î4, ÎN the N-dim identity matrix, ensure the relativistic energy-momentum
relation Ep,m =

√
p2 + m2 for free particles.

The solutions of the Dirac equation are 4-component wave-functions, the Dirac bispinors [13]
which carry two intrinsic degrees of freedom: spin and chirality. Such internal structure of the
bispinors can be better understood in terms of the group structure underlying the Dirac equation.
In a group theory language, the Dirac equation is the dynamical equation for the irreducible
representations (irreps) of the so-called complete Lorentz group [12], which consists on the proper
Lorentz group plus parity. The latter connects the disjoint left and right-handed irreps of the proper
Lorentz group (given in terms of Weyl spinors), each of which are isormorphic to SU(2) and carry
one intrinsic degree of freedom, the spin. To construct the irreps of the complete Lorentz group
on thus requires a combination of left and right-handed Weyl spinors (which are the irreps of the
Lorentz group), which carry two internal discrete degrees of freedom, spin and chirality (or intrinsic
parity).

The internal structure of bispinors can be better appreciated when we consider a specific
representation for the Dirac matrices. Here, we use the chiral representation of the Dirac matrices
in which [29]

α̂i =

[
σ̂i 0
0 −σ̂i

]
, β̂ =

[
0 Î2

Î2 0

]
, (3)

where σ̂i (i = x, y, z) denotes the Pauli matrices. In this representation, the chiral matrix γ̂5 =

−iα̂x α̂yα̂z is diagonal:
γ̂5 = diag{ Î2,−Î2}, (4)
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accordingly, an arbitrary bispinor |ξ〉 can be decomposed as

|ξ〉 =

[
|ξR〉

|ξL〉

]
, (5)

where
��ξR,L〉 are two-component spinors, and R denotes right-handed (positive) chirality while L

denotes left-handed (negative) chirality. Eq. (1) yields a set of coupled equations for the components

p̂ · σ̂ |ξR〉 + m |ξL〉 = i∂t |ξR〉 ,

−p̂ · σ̂ |ξL〉 + m |ξR〉 = i∂t |ξL〉 ,
(6)

that is, the L and R components of the bispinor couple via the mass term of the Dirac equation
which in yields chiral oscillations.

Turning our attention to the plane wave solutions of Eq. (1), we consider the simplified
framework in which a free massive particle propagates along the ez direction with momentum
p = pez . The positive and negative plane-wave solutions of the Dirac equation are then given
by |ψ+(p, t)〉 = eipz−iEp,mt |us(p,m)〉 and |ψ−(p, t)〉 = eipz+iEp,mt |vs(p,m)〉. Here s indicates the
polarization of the free-particle. Throughout the paper, we consider helicity bispinors: eigenstates
of the Helicity operator p ·Σ̂z

p 1. Helicity is a conserved quantity under the free Dirac equation,
and thus it is a convenient choice for describing free-particle states. The eigenstates of the Dirac
equation with positive and negative helicities are therefore given in terms of [11, 30]

|u±(p,m)〉 =

√
Ep,m + m

4Ep,m


(
1 ± p

Ep,m+m

)
|±〉(

1 ∓ p
Ep,m+m

)
|±〉

 , |v±(p,m)〉 =
√

Ep,m + m
4Ep,m


(
1 ± p

Ep,m+m

)
|±〉

−

(
1 ∓ p

Ep,m+m

)
|±〉

 ,
(7)

where σ̂z |±〉 = ± |±〉. It is worth mentioning that for the ultra-relativistic limit, m/p→ 0, and the
above described bispinors are either right-handed and positive-helicity or left-handed and negative
helicity, i.e. massless particles have the same chirality and helicity [13]. On the other hand, in the
non-relativistic limit, p/m → 0, we have equal left and right-handed components irrespective of
the helicity, i.e. chirality and helicity are different for massive particles. Helicity is related to the
spin of particles, is a conserved quantity but is not Lorentz invariant. Chirality, on the other hand,
is not a conserved quantity but is Lorentz invariant.

For a free massive particle under the Dirac equation dynamics, [ĤD, γ̂5] = 2m β̂γ̂5. Therefore,
a state with definite chirality at t = 0 will exhibit chiral oscillations as a consequence of the intrinsic
structure of massive Dirac bispinor. To describe the dynamics of chiral oscillations, let us first
define the left and right-handed bispinors��ψ±,L〉 = [

0
|±〉

]
,

��ψ±,R〉
=

[
|±〉

0

]
, (8)

and consider the temporal evolution of a massive particle that at t = 0 is in a state with left-handed
chirality and negative helicity |ψm(0)〉 =

��ψ−,L〉. The time-evolved bispinor is given by

|ψm(t)〉 =
[
cos (Ep,mt) − i

p
Ep,m

sin (Ep,mt)
] ��ψ−,L〉 − i

m
Ep,m

sin (Ep,mt)
��ψ−,R〉

(9)

1Here Σ̂i = diag{σ̂i, σ̂i}. Helicity is defined as the projection of the spin in the direction of momentum.
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We then obtain the probability that the state is in its initial configuration

Pm,L(t) = |
〈
ψ−,L

��ψm(t)
〉
|2 = 1 −

m2

E2
p,m

sin2 (
Ep,mt

)
, (10)

and the probability that the state is right-handed

Pm,R(t) = |
〈
ψ−,R

��ψm(t)
〉
|2 =

m2

E2
p,m

sin2 (
Ep,mt

)
. (11)

The probability to a right-handed state (11) oscillates with amplitude m2/E2
p,m, and therefore is

suppressed for ultra-relativistic particles. From (9), the average chirality is given by [14, 22]

〈γ̂5〉(t) = 〈ψm(t)|γ̂5 |ψm(t)〉 = −1 +
2m2

E2
p,m

sin2 (
Ep,mt

)
. (12)

Although the above calculations consider Dirac particles, they can be readily modified to
describe Majorana particles. The details are presented in [22], and the temporal evolution for a
Majorana particle initially in a left-handed and negative helicity state is given by��ψM

−,L(t)
〉
=

[
cos (Ep,mt) − i

p
Ep,m

sin (Ep,mt)
] ��ψ−,L〉

− i
m

Ep,m(M )
sin (Ep,mt)

��ψc
−,R

〉
,

(13)

where
���ψc
−,R

〉
= C

��ψ−,L〉 is a right-handed bispinor obtained via the charge conjugation of
��ψ−,L〉.

The survival probability and average chirality of this state are the same as those of (9).

3. Chiral oscillations and flavor dynamics

We can now describe the interplay of chiral and flavor oscillations for massive neutrinos.
Weak interactions that create neutrinos select specific chiral components of the state, creating
particles with definite chirality [17]. We therefore, consider a neutrino whose state at t = 0 has a
definite flavor α and left-handed chirality. In principle, the state could exhibit any spin polarization,
including a superposition of positive and negative helicities. This is the case, for example, for
anti-neutrinos produced in the pion decay [31–33]: for massive antineutrinos, the full state includes
a superposition of positive and negative helicity states. To describe the intrinsic chirality of weak
interactions, one considers the chiral projection of the antineutrino into the right-handed bispinor
component [23]. As a consequence, it can be shown that the resulting superposition still involves
positive and negative helicity components, but with the positive helicity amplitude suppressed for
relativistic states. This is an entangled electron-antineutrino state, such that a measurement of the
electron state can bring the polarization of the antineutrino state into a definite helicity state. In
what follows, we consider the conceptually simpler framework in which the neutrino state at t = 0
has a definite negative helicity:

|να(t = 0)〉 =
∑
i

Uα,i

��ψi,−,L〉 ⊗ |νi〉 ≡ ��να,L〉 , (14)

5



P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
6
5

Chiral oscillations in three-flavor neutrino mixing Massimo Blasone

whereUα,i are the elements of the mixing matrix, and
��ψi,−,L〉 is given in (8). Here we have included

the index i to specify that the bispinor describe the state of the mass eigenstate i. For now, we
consider Dirac neutrinos, the extension to Majorana neutrinos shall be briefly discussed below. The
temporal evolution of the mass eigenstates bispinors

��ψi,−,L〉 are given in (9) and, assuming that all
mass eigenstates have the same momentum, yields

|να(t)〉 =
∑
i

Uα,i

{[
cos (Ep,mi t) − i

p
Ep,mi

sin (Ep,mi t)
] ��ψi,−,L〉 ⊗ |νi〉

− i
mi

Ep,mi

sin (Ep,mi t)
��ψi,−,R〉

⊗ |νi〉
}
.

(15)

We then consider the mixing transformation between mass and flavor states that takes into account
possible differences between left and right chiral components [24]:��ψi,−,L〉 ⊗ |νi〉 =∑

β

U∗β,i
��ψi,−,L〉 ⊗ ��νβ〉 , ��ψi,−,R〉

⊗ |νi〉 =
∑
β

V∗β,i
��ψi,−,R〉

⊗
��νβ〉 , (16)

such that

|να(t)〉 =
∑
β,i

Uα,iU∗β,i

[
cos (Ep,mi t) − i

p
Ep,mi

sin (Ep,mi t)
] ��ψi,−,L〉 ⊗ ��νβ〉

− i
∑
β,i

Uα,iV∗β,i
mi

Ep,mi

sin (Ep,mi t)
��ψi,−,R〉

⊗
��νβ〉 . (17)

The oscillation probability to a state of flavor β and left handed-chirality is therefore given by

Pνα,L→νβ,L (t) = |
〈
νβ,L

��να,L(t)〉 |2
=

∑
i

|Uα,i |
2 |Uβ,i |

2Pmi,L(t)

+ 2
∑
{i, j }

Re
[
Uα,iU∗α, jU

∗
β,iUβ, j

] [
cos(Ep,mi t) cos(Ep,m j t) +

p2

Ep,mi Ep,m j

sin(Ep,mi t) sin(Ep,mi t)
]

− 2p
∑
{i, j }

Im
[
Uα,iU∗α, jU

∗
β,iUβ, j

] [ sin(Ep,m j t) cos(Ep,mi t)

Ep,m j

−
sin(Ep,mi t) cos(Ep,m j t)

Ep,mi

]
,

(18)
where in the last two lines

∑
{i, j } ≡

∑N−1
i=1 (

∑N
j=i+1), and Pmi,L(t) was defined in (10).

The mass eigenstates can oscillate to right-handed states, which induce a finite probability that
an initially left-handed neutrino of a flavor α is in a right-handed chirality of flavor β, which reads

Pνα,L→νβ,R (t) =
∑
i

|Uα,i |
2 |Vβ,i |2Pmi,R(t)

+
∑
{i, j }

Re
[
Uα,iU∗α, jV

∗
β,iVβ, j

] mimj

Ep,mi Ep,m j

sin(Ep,mi t) sin(Ep,m j t).
(19)

Notice that the third line of Eq. (18) contains a term that vanishes, unless the mixing matrix contains
a CP-violation phase. A lengthy algebraic manipulation can explicitly show that both Eqs. (18)
and (19) evolve with frequencies defined by both the energy difference ∆Ei j = Ep,mi − Ep,m j and
by the energy sum Ep,mi + Ep,m j . The latter appears due to the relativistic treatment used here,
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sin2 θ12 0.36
sin2 θ13 0.021
sin2 θ23 0.42

m1 0.8 eV
∆m2

21 = m2
2 − m2

1 7.5 × 10−5 eV2

∆m2
31 = m2

3 − m2
1 2.8 × 10−3 eV2

Table 1: Values for mixing angles and square mass difference.

which includes both positive and negative energy states in the time evolution for mass eigenstates
[6, 7]. Such contributions are also obtained in a quantum field treatment of flavor oscillations
[34–36], and the case in which Vα,i = Uα,i describe the mixing that does not differentiate between
left and right-handed neutrino states. Finally, all the terms composing (19) are multiplied by the
mass-to-energy ratio, and therefore are suppressed in relativistic dynamical regimes. Oscillation
probabilities, Eqs. (18) and (19), for the special case of two flavors, agree with those obtained in
[24]. In the limit mi/p→ 0 (for i = 1, .., N),

Pνα,L→νβ,L (t) → PS
να→νβ

(t) =
∑
i

|Uα,i |
2 |Uβ,i |

2

+ 2
∑
{i, j }

Re
[
Uα,iU∗α, jU

∗
β,iUβ, j

]
cos (∆Ei j t)

+ 2
∑
{i, j }

Im
[
Uα,iU∗α, jU

∗
β,iUβ, j

]
sin (∆Ei j t),

(20)

where PS
να→νβ

(t) is the standard oscillation probability obtained in the usual quantum mechanical
treatment for neutrino oscillations.

Considering the mixing of three flavor parameterized by the mixing matrix

U =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (21)

where ci j = cos θi j , si j = sin θi j are given in terms of the mixing angles θ12, θ13, θ23, and δ is
the CP-violation phase, and Majorana CP-violation phases have been momently suppressed, and
assuming the mass hierarchy m3 � m2 > m1 [1], the square mass differences and the mixing angles
used are summarized in Table 1.

Hence, the oscillation probabilities for an electron neutrino are depicted in Figure 1 for p/m1 = 1
and in Figure 2 for p/m1 = 3. Chiral oscillations manifest in two ways: as fast oscillations in
Pνα,L→νβ,L (t) (shown in the upper row) and as prominent oscillation probabilities to right-handed
neutrinos (displayed in the lower row). In the intermediate dynamical regime depicted in Fig. 2,
chiral oscillations effects are highly suppressed. Even though there is still a clear effect of the fast
chiral oscillations in Pνα,L→νβ,L (t), their amplitudes are smaller. Correspondingly, the oscillations
Pνα,L→νβ,R (t) are less prominent when compared with the results depicted in Fig. 1. In fact the
maximum oscillation probability to right-handed components for p/m1 = 3 is around 20% of the
value for p/m1 = 1.
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⌫e,L ! ⌫e,L ⌫e,L ! ⌫µ,L ⌫e,L ! ⌫⌧,L

⌫e,L ! ⌫e,R ⌫e,L ! ⌫µ,R ⌫e,L ! ⌫⌧,R

Time


~

m1c2
⇥ 104

�

P
⌫
↵

,L
!

⌫
�

,L
(t

)
P
⌫
↵

,L
!

⌫
�

,R
(t

)

P (S)
⌫e!⌫e

(t) P (S)
⌫e!⌫µ

(t) P (S)
⌫e!⌫⌧

(t)

Figure 1: Oscillation probabilities (18) and (19) as a function of time for a non-relativistic electron neutrino.
The flavor oscillations are accompanied by fast chiral oscillations, which have an amplitude ∝ m2

i /E
2
mi,p

, and
are evident in the regime m ∼ p considered in this plots. The red curves in the first row depict the standard
survival probability, which does not include chiral oscillations. Parameters as in Table 1 and p/m1 = 1.

Time


~

m1c2
⇥ 104

�

⌫e,L ! ⌫e,L

⌫e,L ! ⌫µ,L

⌫e,L ! ⌫⌧,L

⌫e,L ! ⌫e,R

⌫e,L ! ⌫µ,R

⌫e,L ! ⌫⌧,R

p/m1 = 3

P
⌫
↵

,L
!

⌫
�

,L
(t

)
P
⌫
↵

,L
!

⌫
�

,R
(t

)

Figure 2: Oscillation probabilities (18) and (19) as a function of time at an intermediate dynamical regime
between non-relativistic and relativistic. In comparison with Fig. 1, the fast chiral oscillations and the
probabilities for chirality flip are highly suppressed. Parameters as in Table 1 and p/m1 = 3.
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p/m1

⌫e,L ! ⌫e,L

⌫e,L ! ⌫µ,L

⌫e,L ! ⌫⌧,L

⌫e,L ! ⌫⌧,R

⌫e,L ! ⌫µ,R
⌫e,L ! ⌫e,R

P̄
⌫

e
,L

!
⌫
�

,{
R

,L
}

Figure 3: Time averaged oscillation probabilities as a function of the momentum following the framework
set in Eq. (22). Oscillations to right-handed chiral states are suppressed as the momentum increase. Dashed
lines represent the result for the standard formula. Parameters as in Table 1.

To further quantify the effects of chiral oscillations for three flavors, we follow the framework
of Ref. [22] and consider the time averaged oscillation probabilities

P̄να,L→νβ,{L,R} =
1
τ

∫ τ

0
dtPνα,L→νβ,{L,R} (t), (22)

with a period of integration chosen as the longest one τ ≡ τ12 =
4π

Ep,m2−Ep,m1
. The results for

all the possible oscillation channels of an initially left-handed electron neutrino are shown in
Fig. 3. Oscillations to right-handed states are suppressed as p/m1 increases, while the oscillation
probabilities to left-handed states approach the standard result obtained by suppressing chiral
oscillations – Eq. (20). For small ratios p/m1, P̄νe,L→νβ,L ∼ P̄νe,L→νβ,R , indicating the prominence
of chiral oscillations in the non-relativistic regime.

Due to chiral oscillations, the averaged survival probability exhibits a depletion in the non-
relativistic regime when compared with the standard result. Since measurement schemes for
neutrinos involve weak interaction processes, they are sensitive only to left-handed neutrinos and
therefore, the measurement of non-relativistic neutrinos would exhibit a depletion due to the promi-
nent oscillations of the mass eigenstates from left to right-handed components. For two flavor
mixing, as discussed in [22], such depletion can be 50% of the result obtained with the standard
description of flavor oscillations not including chiral oscillations. This is relevant when probing
cosmological neutrinos, which are non-relativistic and, as such, should exhibit a depletion on the
expected measured flux due to oscillations to right-handed chiral components [21, 22].

4. Chiral and flavor oscillations of Dirac and Majorana neutrinos

In the previous section we have considered the effect of chiral oscillations on the flavor
dynamics of Dirac neutrinos. Turning our attention to Majorana neutrinos, we conclude readily
that the oscillation probabilities from (18) and (19) are also valid for Majorana neutrino, with the
following correction: oscillations to right-handed components are να,L → νcβ,R, as can be inferred
from the time evolution for Majorana mass states given in (13). The impact of chiral oscillations
on the measurement of cosmic neutrinos would be the same for Dirac and Majorana neutrinos,
with the difference that capture by Tritium is sensitive to both left-handed and negative helicity
neutrinos, and right-handed and positive helicity antineutrinos. The second is only present in the

9
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case of Majorana neutrinos, which yields a factor 2 difference betweenMajorana and Dirac neutrino
capture rates in the non-relativistic regime even in the absence of chiral oscillations [20, 21].

Considering a more general framework, the mixing matrix for Majorana neutrinos can include
more CP-violation phases than the one for the Dirac neutrinos. In fact, in the general case of N
flavors, the number of CP-violation phases for Dirac neutrinos (nD) and for Majorana neutrinos
(nM) are respectively [25]

nD =
(N − 1)(N − 2)

2
, nM =

N(N − 1)
2

. (23)

Therefore, the Majorana mixing matrix for three flavors can include two phases in addition to the
Dirac phase δ in (21), which we indicate as φ2 and φ3:

UM = U


1 0 0
0 eiφ2/2 0
0 0 eiφ3/2

 = UΦ, (24)

where we have defined Φ = diag{1, eiφ2/2, eiφ3/2}. We first notice that in the case U = V ,
|UM
α,i |

2 = |Uα,i |
2 and UM

α,iU
M,∗
α, j UM,∗

β,i UM
β, j = Uα,iU∗α, jU

∗
β,iUβ, j . Since Eqs.(18), (19) depend on

those products, we conclude that the oscillation probabilities can not distinguish between Dirac
and Majorana neutrinos, even in the presence of additional CP-violation phases. The distinction
between Dirac andMajorana is possible only ifU , V and in the presence of additional CP-violation
phases for Majorana neutrinos, as explicitly exemplified in the two flavor case in [24]. For three
flavors, we consider the additional CP-violation phase matrices ΦL,R with elements of the form
[ΦL,R]i j = eiφi,(L,R)/2δi j , such that

UM = UΦL, VM = VΦR . (25)

The oscillation probabilities to left-handed states (18) are the same for Dirac and Majorana, but the
probability to right-handed states (19) for Majorana neutrinos reads

PM
να,L→νβ,R

(t) =
3∑
i=1
|Uα,i |

2 |Vβ,i |2Pmi,R(t)

+
∑
{i, j }

{
cos

(
∆φi − ∆φ j

2

)
Re

[
Uα,iU∗α, jV

∗
β,iVβ, j

]
− sin

(
∆φi − ∆φ j

2

)
Im

[
Uα,iU∗α, jV

∗
β,iVβ, j

] } mimj

Ep,mi Ep,m j

sin(Ep,mi t) sin(Ep,m j t),

(26)
where ∆φi = φi,L − φi,R.

To illustrate the effects of the additional CP-violation phases combined with a mixing that
differentiates between left and right-handed bispinors, we consider now the case in which the
mixing angles are the same for left and right-handed states, but with one of the Majorana phases
being different. In particular, we assume that ∆φ1,3 = 0 while ∆φ2 , 0 in Eq. (26). In Figure 4, we
show the difference between the time averaged oscillation probabilities to right-handed neutrinos
for the Dirac and Majorana cases P̄νe,L→βR − P̄M

νe,L→βR
(see Eq. (22)), for different values of ∆φ2.
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Figure 4: Difference between the time-averaged oscillation probability for Dirac and Majorana neutrinos
to right-handed states, including extra CP-violation phases as a function of the momentum and for several
values of ∆φ2 (see Eq. (26)). Masses and mixing parameters given in Table 1.

We notice that the difference is more evident for the oscillations νe,L → νµR and νe,L → ντR. For
the latter, the averaged probability for Majorana neutrinos is bigger than for the Dirac case. For
states with p � m1, the difference between Dirac and Majorana vanishes, since chiral oscillations
are suppressed, as such, the terms that depend on the difference between the additional Majorana
phases also vanish.

5. Conclusions

In summary, we have extended and generalized the description of chiral oscillation effects
in flavor oscillations for mixing involving N-flavors, including mixing that distinguish left from
right-handed states, as well as additional CP-violation Majorana phases, and obtained oscillation
formulas that agree with those recently derived in [24]. We have followed the framework presented
in [22], and shown that the additional CP-violation Majorana phases induce a difference between
Dirac and Majorana neutrinos for the time-averaged oscillation probabilities to right-handed states.
Since those effects depend strictly on the chiral oscillations, they are prominent for non-relativistic
neutrinos and aremore evident on the oscillation probabilities to right-handedmuon and tau neutrino
states. The measurement of such difference requires the development of techniques sensitive to
right-handed neutrinos, since the survival probability of a left-handed electron neutrino does not
depend on the additional Majorana phases and therefore can not distinguish between Majorana and
Dirac neutrinos. Alternatively, chiral oscillations can also affect quantum correlations encoded in
single particle neutrino states [26–28] and in lepton-antineutrino pairs [23], which may yield novel
procedures to measure the effects shown here.
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