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1. Introduction

This paper is based on refs. [1–3] as well as work in progress done in collaboration with J.M.
Alves, G.C. Branco, A.L. Cherchiglia, C.C. Nishi, J.T. Penedo, M.N. Rebelo, and J.I. Silva-Marcos,
to whom I am deeply grateful.
Studying a class of extensions of the Standard Model with non-unitary mixing matrices can easily
become a very demanding task when the region of interest of the parameter space is very close
to regions where common approximations, widely used in the literature, fail. From this problem
originated the need to develop an exact parameterisation, that would work in all cases.
For instance, the classic neutrino seesaw mechanism papers [4, 5] work under the assumption that
the deviations from unitarity of the leptonic mixing matrix are negligible, which imply that the
heavy neutrino masses are around the GUT scale, in order to have order one Yukawa couplings
in the neutrino Dirac mass matrix. Furthermore, the famous Casas-Ibarra parameterisation [6] is
also an approximation, if used naively, as explained in section 2.2 of ref. [2]. Therefore, if one
wants to study a model where some of the heavy neutrinos have masses around the GeV scale or
below, the aforementioned assumptions start to crumble. Recently, a parameterisation where the
mixing matrix is parameterised via a power series was introduced [7]. The small parameter of the
power series is the deviations from unitarity of the mixing matrix and a first order truncation on
this parameter yields an accurate result for models with GeV neutrinos. However, if one wants to
study a model where the spectra of heavy neutrinos includes eV, keV or MeV masses, none of the
parameterisations available in the literature was suitable for it.
In the case of vector-like quarks, many works in the literature use the assumption that vector-like
quarks only couple to the third generation of SM quarks [8]. This does not need to be the case, as
experimental evidence signals that if vector-like quarks are the explanation for the CKM unitarity
problem, then the vector like quark might couple more to the 1st generation, as discussed in ref.
[3].
Hence, the following exact parameterisation is suitable when one wants to study a region of the
parameter space where common approximations fail or when one wants to perform a general scan
of the parameter space, without biases.

2. Mass Matrices and their Diagonalisation

The usefulness of the parameterisation will be motivated with two example models:

(A) SM with the addition of 𝑛𝑢 up and 𝑛𝑑 down singlet vector-like quarks

(B) SM with the addition of 𝑛𝑅 right-handed neutrinos.

The procedure to derive the parameterisation will be performed in the next sections. Keep in
mind that no approximations will be performed in any step, the results are exact. The first step is
to define the mass matrices and then diagonalise them. Considering the mass Lagrangian of (A)

LM = −
(
𝑑

0
𝐿 𝐷

0
𝐿

)
M𝑑

(
𝑑0
𝑅

𝐷0
𝑅

)
−

(
𝑢0
𝐿 𝑈

0
𝐿

)
M𝑢

(
𝑢0
𝑅

𝑈0
𝑅

)
+ h.c. , (1)
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and of (B), in the weak basis (WB) where charged leptons are diagonal,

L𝑚 = −
[
1
2
𝑛𝑇𝐿𝐶

∗M∗𝑛𝐿 + 𝑙𝐿𝑑𝑙𝑙𝑅
]
+ h.c. , (2)

where the up or down (𝑞 = 𝑢, 𝑑) quark (3 + 𝑛𝑞) × (3 + 𝑛𝑞) mass matrix is given by

M𝑞 =
©­­«
𝑚𝑞 𝑚𝑞

𝑀𝑞 𝑀𝑞

ª®®¬ , (3)

and the (3 + 𝑛𝑅) × (3 + 𝑛𝑅) neutrino mass matrix is given by

M =
©­­«

0 𝑚

𝑚𝑇 𝑀

ª®®¬ , (4)

the diagonalisation equations are

V𝑞

𝐿

† M𝑞 V𝑞

𝑅
= D𝑞 , V𝑇M∗V = D . (5)

The matrices that diagonalise the mass matrices, V, are (3+ 𝑛) × (3+ 𝑛) 1 unitary matrices and can
be decomposed into two other matrices 𝐴 and 𝐵

V𝑞
𝜒 =

©­­­«
𝐴
𝑞
𝜒

𝐵
𝑞
𝜒

ª®®®¬ , (6)

V =

©­­­«
𝐴

𝐵

ª®®®¬ , (7)

where 𝜒 = 𝐿, 𝑅, 𝐴 is a 3 × (3 + 𝑛) and 𝐵 a 𝑛 × (3 + 𝑛) matrix. 𝐴 and 𝐵 are non-unitary matrices,
in general. After this decomposition into 𝐴 and 𝐵, one can rewrite the equations in eq. (5) as

𝑚𝑞 = 𝐴
𝑞

𝐿
D𝑞 𝐴

𝑞

𝑅

†
,

𝑚𝑞 = 𝐴
𝑞

𝐿
D𝑞 𝐵

𝑞

𝑅

†
,

𝑀𝑞 = 𝐵
𝑞

𝐿
D𝑞 𝐴

𝑞

𝑅

†
,

𝑀𝑞 = 𝐵
𝑞

𝐿
D𝑞 𝐵

𝑞

𝑅

†
,

(8)

for quarks, and

1𝑛 = 𝑛𝑞 for quarks and 𝑛 = 𝑛𝑅 for neutrinos
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0 = 𝐴D 𝐴𝑇 ,

𝑚 = 𝐴D 𝐵𝑇 ,

𝑀 = 𝐵D 𝐵𝑇 ,

(9)

for neutrinos.
The last thing to do is a proper parameterisation of these 𝐴 and 𝐵 matrices. Before proceeding, the
next section contains, for completeness, the charged currents and neutral interactions Lagrangians
for quarks and neutrinos, in the physical basis. Naturally, these will only depend on the 𝐴 part of
the unitary matrices V, as this contains all the physical parameters of the theory, as it will become
clear in the Parameterisation section.

3. Interactions

The charged current Lagrangian for the quarks is given by

L𝑊 = − 𝑔
√

2

(
𝑢𝐿 𝑈𝐿

)
𝑉 𝛾𝜇

(
𝑑𝐿

𝐷𝐿

)
𝑊+
𝜇 + h.c. , (10)

where
𝑉 = 𝐴𝑢

†
𝐿 𝐴

𝑑
𝐿 , (11)

and for the neutrinos

L𝑊 = − 𝑔
√

2
𝑙𝐿 𝑉 𝛾

𝜇

(
𝑛𝐿

𝑁𝐿

)
𝑊+
𝜇 + h.c. , (12)

where
𝑉 = 𝐴 . (13)

While the neutral interactions (Higgs and 𝑍 boson) Lagrangian for the quarks is given by

L𝑍 = − 𝑔

2 cos 𝜃𝑊
𝑍𝜇 [

(
𝑞𝐿 𝑄𝐿

)
𝐹𝑞𝛾𝜇

(
𝑞𝐿

𝑄𝐿

)
+ h.c. , (14)

L𝐻 = −ℎ
𝑣

[ (
𝑞𝐿 𝑄𝐿

)
𝐹𝑞 D𝑞

(
𝑞𝑅

𝑄𝑅

) ]
+ h.c. , (15)

where

𝐹𝑞 = 𝐴
𝑞†

𝐿
𝐴
𝑞

𝐿
, (16)

and for the neutrinos

L𝑍 = − 𝑔

2 cos 𝜃𝑊
𝑍𝜇 [

(
𝑛𝐿 𝑁𝐿

)
𝐹 𝛾𝜇

(
𝑛𝐿

𝑁𝐿

)
] + h.c. , (17)
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L𝐻 = −ℎ
𝑣

[ (
𝑛𝐿 𝑁𝐿

)
𝐹 D

(
𝑛𝑐
𝐿

𝑁𝑐
𝐿

) ]
+ h.c. , (18)

where
𝐹 = 𝐴†𝐴 . (19)

4. Parameterisation

In ref. [1], where the neutrino case was studied, it was shown that a unitary matrix V can be
parameterised as

V =
©­­«

𝐾 𝐾 𝑋†

−𝐾 𝑋 𝐾

ª®®¬ , (20)

for a non-singular 3× 3 general complex matrix, 𝐾 , a non-singular 𝑛𝑅 × 𝑛𝑅 general complex matrix
𝐾 and a 𝑛𝑅 × 3 matrix, 𝑋 , that will be defined next. From eq. (7) one can identify

𝐴 = (𝐾 𝐾𝑋†) , 𝐵 = (−𝐾 𝑋 𝐾 ) , (21)

where the unitarity of V yields

VV† =

(
𝐴

𝐵

) (
𝐴† 𝐵†

)
=

(
𝐴 𝐴† 𝐴 𝐵†

𝐵 𝐴† 𝐵 𝐵†

)
=

(
13 0

0 1𝑛𝑅

)
, (22)

V†V =

(
𝐴† 𝐵†

) (
𝐴

𝐵

)
= 𝐴† 𝐴 + 𝐵† 𝐵 = 13+𝑛𝑅 . (23)

Using eq. (21) and the unitarity relations in eqs. (22) and (23), eq. (9) becomes

0 = 𝑑 + 𝑋†𝐷𝑋∗ ,

𝑚 = 𝐾 𝑋†𝐷
(
𝐾 −1

)∗
,

𝑀 = 𝐾 (𝐷 + 𝑋 𝑑 𝑋𝑇 )𝐾 𝑇 .

(24)

The last two equations are exact equations for the 3 × 𝑛𝑅 Dirac mass matrix, 𝑚, and the 𝑛𝑅 × 𝑛𝑅
Majorana mass matrix, 𝑀 . The equation involving the null matrix has the solution

𝑋 = ± 𝑖
√︁
𝐷−1𝑂𝑐

√
𝑑 , (25)

where 𝑂𝑐 is an orthogonal complex matrix and 𝑑 (𝐷) is a diagonal matrix with the masses of
the light (heavy) neutrinos in the diagonal. This unique solution defines the matrix 𝑋 . From the
unitarity relations of V one can also obtain the following definitions

𝐾 = 𝑈𝐾 (13 + 𝑋†𝑋)−1/2 ,

𝐾 = 𝑈
𝐾
(1𝑛𝑅 + 𝑋𝑋†)−1/2 ,

𝐾𝑃𝑀𝑁𝑆 = 𝐾 ,

(26)
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where 𝑈𝐾 and 𝑈
𝐾

are unitary matrices, since the unitarity relations only define 𝐾 and𝐾 up to a
unitary matrix on the left. 𝐾 will play the role of the PMNS mixing matrix and is only unitary when
𝑋 −→ 0.

For the quarks, one can perform the same steps and write

V𝑞
𝜒 =

©­­«
𝐾
𝑞
𝜒 𝐾

𝑞
𝜒 𝑋

𝑞
𝜒
†

−𝐾 𝑞𝜒 𝑋𝑞𝜒 𝐾
𝑞
𝜒

ª®®¬ . (27)

for a non-singular 3×3 general complex matrix, 𝐾𝑞𝜒 , a non-singular 𝑛𝑞 ×𝑛𝑞 general complex matrix
𝐾
𝑞
𝜒 and a 𝑛𝑞 × 3 matrix, 𝑋𝑞𝜒 . Again, from eq. (6) one obtains

𝐴
𝑞
𝜒 = (𝐾𝑞𝜒 𝐾

𝑞
𝜒𝑋

𝑞
𝜒
†) , 𝐵𝑞𝜒 = (−𝐾 𝑞

𝜒𝑋
𝑞
𝜒 𝐾

𝑞
𝜒) , (28)

where the unitarity of V𝑞
𝜒 yields

V𝑞
𝜒V𝑞

𝜒
†
=

(
𝐴
𝑞
𝜒

𝐵
𝑞
𝜒

) (
𝐴
𝑞
𝜒
†

𝐵
𝑞
𝜒
†
)
=

©­«
𝐴
𝑞
𝜒 𝐴

𝑞
𝜒
†

𝐴
𝑞
𝜒 𝐵

𝑞
𝜒
†

𝐵
𝑞
𝜒 𝐴

𝑞
𝜒
†

𝐵
𝑞
𝜒 𝐵

𝑞
𝜒
†
ª®¬ =

(
13 0

0 1𝑛𝑞

)
, (29)

V𝑞
𝜒
†V𝑞

𝜒 =

(
𝐴
𝑞
𝜒
†

𝐵
𝑞
𝜒
†
) (
𝐴
𝑞
𝜒

𝐵
𝑞
𝜒

)
= 𝐴

𝑞
𝜒
†
𝐴
𝑞
𝜒 + 𝐵𝑞𝜒

†
𝐵
𝑞
𝜒 = 13+𝑛𝑞 , (30)

for each 𝑞 = 𝑢, 𝑑 and 𝜒 = 𝐿, 𝑅.
Using eq. (28) and the unitarity relations in eqs. (29) and (30), eq. (8) becomes

𝑚𝑞 = 𝐾
𝑞

𝐿

(
𝑑𝑞 + 𝑋𝑞𝐿

†
𝐷𝑞 𝑋

𝑞

𝑅

)
𝐾
𝑞

𝑅

†
,

𝑚𝑞 = 𝐾
𝑞

𝐿

(
𝑋
𝑞

𝐿

†
𝐷𝑞 − 𝑑𝑞 𝑋𝑞𝑅

†
)
𝐾
𝑞

𝑅

†
,

𝑀𝑞 = 𝐾
𝑞

𝐿

(
𝐷𝑞 𝑋

𝑞

𝑅
− 𝑋𝑞

𝐿
𝑑𝑞

)
𝐾
𝑞

𝑅

†
,

𝑀𝑞 = 𝐾
𝑞

𝐿

(
𝐷𝑞 + 𝑋𝑞𝐿 𝑑𝑞 𝑋

𝑞

𝑅

†
)
𝐾
𝑞

𝑅

†
,

(31)

where 𝑚𝑞 is the 3× 3 Dirac mass matrix for the quarks and the entries of the 3× 𝑛𝑞 matrix, 𝑚𝑞, are
proportional to the Higgs vacuum expectation value, as well. The 𝑛𝑞 × 3 mass matrix,𝑀𝑞, and the
𝑛𝑞 × 𝑛𝑞 mass matrix, 𝑀𝑞, are bare mass terms involving only singlet quark fields.
It is always possible to go to a WB where𝑚𝑞 is 0 2. In that WB, one can proceed like in the neutrino
case to obtain a formula for 𝑋𝑞𝜒 ,

𝑋
𝑞

𝐿
=

√︃
𝐷−1
𝑞 𝑃

𝑞
√︁
𝑑𝑞 ,

𝑋
𝑞

𝑅
=

√︁
𝐷𝑞𝑃

𝑞

√︃
𝑑−1
𝑞 ,

(32)

2This is always possible for𝑀𝑞 , as well.
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where 𝑃𝑞 is a general complex matrix and 𝑑𝑞 (𝐷𝑞) is a diagonal matrix with the masses of the light
(heavy) quarks in the diagonal. The following definitions can also be obtained from the unitarity
relations in eqs. (29) and (30),

𝐾
𝑞
𝜒 = 𝑈

𝑞

𝐾𝜒
(13 + 𝑋𝑞𝜒

†
𝑋
𝑞
𝜒)−1/2 ,

𝐾
𝑞
𝜒 = 𝑈

𝑞

𝐾 𝜒
(1𝑛𝑞 + 𝑋𝑞𝜒𝑋𝑞𝜒

†)−1/2 ,

𝐾𝐶𝐾𝑀 = 𝐾𝑢𝐿
†
𝐾𝑑𝐿 ,

(33)

where𝑈𝑞
𝐾𝜒

and𝑈𝑞
𝐾 𝜒

are unitary matrices, since the unitarity relations only define 𝐾 and𝐾 up to a

unitary matrix on the left. The combination 𝐾𝑢
𝐿
†𝐾𝑑

𝐿
will play the role of the CKM mixing matrix

and is only unitary when 𝑋𝑢
𝐿
, 𝑋𝑑

𝐿
−→ 0.

The matrices relevant for neutral interactions with the 𝑍 and the Higgs, as defined in the section
Interactions, are given by

𝐹𝑞 =

(
(13 + 𝑋𝑞𝐿

†
𝑋
𝑞

𝐿
)−1 (13 + 𝑋𝑞𝐿

†
𝑋
𝑞

𝐿
)−1𝑋

𝑞

𝐿

†

𝑋
𝑞

𝐿
(13 + 𝑋𝑞𝐿

†
𝑋
𝑞

𝐿
)−1 𝑋

𝑞

𝐿
(13 + 𝑋𝑞𝐿

†
𝑋
𝑞

𝐿
)−1𝑋

𝑞

𝐿

†

)
, (34)

for quarks, and

𝐹 =

(
(13 + 𝑋†𝑋)−1 (13 + 𝑋†𝑋)−1𝑋†

𝑋 (13 + 𝑋†𝑋)−1 𝑋 (13 + 𝑋†𝑋)−1𝑋†

)
, (35)

for neutrinos.
Finally, the exact formula for the (3 + 𝑛) × (3 + 𝑛) unitary matrix assumes the form

V𝑞
𝜒 =

(
𝑈
𝑞

𝐾𝜒
(13 + 𝑋𝑞𝜒

†
𝑋
𝑞
𝜒)−1/2 𝑈

𝑞

𝐾𝜒
(13 + 𝑋𝑞𝜒

†
𝑋
𝑞
𝜒)−1/2𝑋𝑞†𝜒

−𝑈𝑞
𝐾 𝜒

(1𝑛𝑞 + 𝑋𝑞𝜒𝑋𝑞𝜒
†)−1/2𝑋𝑞𝜒 𝑈

𝑞

𝐾 𝜒
(1𝑛𝑞 + 𝑋𝑞𝜒𝑋𝑞𝜒

†)−1/2

)
, (36)

for quarks, and

V =

(
𝑈𝐾 (13 + 𝑋†𝑋)−1/2 𝑈𝐾 (13 + 𝑋†𝑋)−1/2𝑋†

−𝑈
𝐾
(1𝑛𝑅 + 𝑋𝑋†)−1/2𝑋 𝑈

𝐾
(1𝑛𝑅 + 𝑋𝑋†)−1/2

)
, (37)

for neutrinos.
Note that parameterisations with a similar structure, used in the leptonic sector, existed in the
literature prior to this work [9][10], but are either approximations or a special case of this one.

5. Procedure and Usefulness

Now that all the necessary equations were derived, one needs to obtain observables out of
them. One procedure is the following

• Start with 𝑑, 𝐷,𝑈𝐾 and 𝑂𝑐/𝑃𝑞,

• Calculate 𝑋 ,

• Calculate mass matrices, charged currents matrix 𝑉 and the neutral interactions matrix 𝐹.
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With these, one should be able to obtain any observable, exact at tree level. Another valid approach
is to proceed in the reverse order, but starting from the mass matrices would be inherently more
difficult due to the redundant extra parameters.
It is important to emphasize that all physical parameters are contained in 𝑑, 𝐷,𝑈𝐾 and 𝑂𝑐/𝑃𝑞. For
the neutrino case, a counting for 𝑛𝑅 = 3 was performed in table 1 of ref. [2].
Performing the depicted prescription yields results at tree level that are exact. However, there are
some caveats.
In the case of neutrinos, one should mind radiative corrections on the light neutrino masses, as
stated in section 4 of ref. [2]. The upshot from that discussion is that one needs some kind of
lepton-number like softly broken symmetry to protect these radiative corrections of becoming too
large, when the mass of the heavy neutrinos is below the GeV scale. This is known in the literature
as “symmetry protected seesaw models” [11].
A concern that exists in every model is perturbativity. This is easy to understand when one analyses
the Dirac mass matrix, 𝑚, equation in (24) or (31): If the Yukawa couplings3 are 𝑂 (1) then 𝑋†𝐷

must also be 𝑂 (1), which implies that deviations from unitarity need to decrease when the masses
of the heavy neutrinos increase, or the inverse. This fact was used to set an upper bound on the mass
of the hypothetical up vector-like quark singlet introduced in ref. [3] to solve the CKM unitarity
problem.
The perturbativity issue was discussed in some detail, for quarks, on section 2.5 of ref. [3] and, for
neutrinos, on section 2.3 of ref. [2].

6. Conclusions

In this article, two models with non-unitary mixing matrices were analysed through the lens of
an exact parameterisation that proved to be extremely useful. The usefulness of this parameterisa-
tion resides in the exact formulas at tree level, which are easy to implement numerically. Moreover,
deviations from unitarity of the mixing matrix are controlled by the matrix 𝑋 and no approximations
regarding them or the mass scale of heavy fields is needed to obtain exact results. Furthermore,
it can be used in any model with non-unitary mixing matrices: Inverse Seesaw, Linear Seesaw,
type-II and type-III seesaw or models with vector like fermions and scalars.
More details regarding this analysis can be found in the following works [1–3].
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8



P
o
S
(
C
O
R
F
U
2
0
2
1
)
0
7
0

Non-Unitary Mixing Matrices in Neutrino and Vector-like Quark Models Pedro M. F. Pereira

References

[1] N. R. Agostinho, G. C. Branco, P. M. F. Pereira, M. N. Rebelo and J. I. Silva-Marcos, “Can
one have significant deviations from leptonic 3 × 3 unitarity in the framework of type I seesaw
mechanism?,” Eur. Phys. J. C 78 (2018) no.11, 895 doi:10.1140/epjc/s10052-018-6347-2
[arXiv:1711.06229 [hep-ph]].

[2] G. C. Branco, J. T. Penedo, P. M. F. Pereira, M. N. Rebelo and J. I. Silva-Marcos, “Type-
I Seesaw with eV-Scale Neutrinos,” JHEP 07 (2020), 164 doi:10.1007/JHEP07(2020)164
[arXiv:1912.05875 [hep-ph]].

[3] G. C. Branco, J. T. Penedo, P. M. F. Pereira, M. N. Rebelo and J. I. Silva-Marcos, “Ad-
dressing the CKM unitarity problem with a vector-like up quark,” JHEP 07 (2021), 099
doi:10.1007/JHEP07(2021)099 [arXiv:2103.13409 [hep-ph]].

[4] T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131
(1979), 95-99 KEK-79-18-95.

[5] P. Minkowski, “𝜇 → 𝑒𝛾 at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B 67 (1977),
421-428 doi:10.1016/0370-2693(77)90435-X

[6] J. A. Casas and A. Ibarra, “Oscillating neutrinos and 𝜇 → 𝑒, 𝛾,” Nucl. Phys. B 618 (2001),
171-204 doi:10.1016/S0550-3213(01)00475-8 [arXiv:hep-ph/0103065 [hep-ph]].

[7] E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, “Global constraints
on heavy neutrino mixing,” JHEP 08 (2016), 033 doi:10.1007/JHEP08(2016)033
[arXiv:1605.08774 [hep-ph]].

[8] J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, “Handbook of
vectorlike quarks: Mixing and single production,” Phys. Rev. D 88 (2013) no.9, 094010
doi:10.1103/PhysRevD.88.094010 [arXiv:1306.0572 [hep-ph]].

[9] J. G. Korner, A. Pilaftsis and K. Schilcher, “Leptonic CP asymmetries in flavor changing
H0 decays,” Phys. Rev. D 47 (1993), 1080-1086 doi:10.1103/PhysRevD.47.1080 [arXiv:hep-
ph/9301289 [hep-ph]].

[10] W. Grimus and L. Lavoura, “The Seesaw mechanism at arbitrary order: Disentangling the
small scale from the large scale,” JHEP 11 (2000), 042 doi:10.1088/1126-6708/2000/11/042
[arXiv:hep-ph/0008179 [hep-ph]].

[11] S. Antusch and O. Fischer, “Testing sterile neutrino extensions of the Standard Model at future
lepton colliders,” JHEP 05 (2015), 053 doi:10.1007/JHEP05(2015)053 [arXiv:1502.05915
[hep-ph]].

9


	Introduction
	Mass Matrices and their Diagonalisation
	Interactions
	Parameterisation
	Procedure and Usefulness
	Conclusions

