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1. Introduction

The asymptotic structure of General Relativity has been the subject of renewed interest as
it appears to encode important universal information about the infrared structure of scattering
amplitudes in perturbative quantum gravity. Strominger made the key observation [1–3] that the
leading soft graviton theorem of Weinberg [4] is actually nothing else than the Ward identity
associated with the asymptotic symmetries discovered by Bondi, van der Burg, Metzner and Sachs
(BMS) back in 1962 [5–7]. Further extensions of the BMS group of asymptotic symmetries
have been proposed [8–11] and shown to relate directly to the subleading soft graviton theorems
[10, 12, 13]. Other developments along these lines are reviewed in [14–16].

Asymptotically flat spacetimes admit a conformal compactification à la Penrose [17, 18]. Null
rays andmassless radiation reach part of the conformal boundary called null infinityI with topology
S2 × R. Interestingly Lorentz transformations act as SL(2,C) global conformal transformations on
the celestial sphere S2, while translations have a more intricate nonlinear geometrical action. In
order to fully exploit the asymptotic structure of gravity at I and its implications for scattering
amplitudes it turns out very useful to adopt a basis of boost eigenstates which are SL(2,C) conformal
primaries, rather than the more conventional momentum basis. As a result the S-matrix can be
recast as a set of correlation functions of a two-dimensional conformal field theory (CFT) living on
the celestial sphere S2 [19]. The story gets even better : the extended asymptotic symmetry algebra
introduced by Barnich and Troessaert extends the global conformal symmetry to the full Virasoro
symmetry [8, 9], such that standard CFT techniques potentially apply to this newly discovered
celestial CFT. In particular it contains a local stress tensor whose conformal Ward identity is the
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subleading soft graviton theorem [20]. For more information and references about the celestial CFT
program, the interested reader should consult [15, 16].

In parallel to these exciting developments emerged the idea that the celestial CFT is the right
framework in which to investigate whether the holographic principle [21] also applies to gravity
with flat asymptotics. The program of celestial holography aims at understanding quantum gravity
from the celestial CFT, in a way analogous to the celebrated AdS/CFT correspondence [22–24].
One manifestation of this holographic principle that I find particularly striking is that the infrared
soft factors of the gravitational S-matrix [4] are fully governed by the correlation functions of
a single primary operator [25]. This primary operator is the Goldstone mode of spontaneously
broken asymptotic supertranslation symmetries, and its celestial dynamics is fully encoded in a
two-dimensional effective action that is derived by holographic means [26]. This is only one
manifestation of celestial holography and much more work is needed to see how far the paradigm
goes. One especially interesting approach to this problem is the proposed uplift of the AdS3/CFT2
correspondence [27–29] that offers the prospects to leverage much of the AdS/CFT technology to
the benefits of celestial holography.

The present article serves two main purposes. The first is to offer a pedagogical review of the
covariant approach to asymptotically flat gravity in terms of a null conformal boundary I and a
News tensor that characterizes gravitational radiation. I will take this opportunity to connect this
covariant approach to the coordinate-basedBondi–Sachs formalism and present a unified description
of various important quantities involved in the construction of the physical News tensor, including
the Geroch tensor [30], the ‘vacuum’ News tensor [31, 32], the Liouville superboost field [31],
etc. I will also describe the BMS symmetries and its various extensions from the perspective of
null infinity I and its induced conformal geometry. The second purpose is to critically discuss an
apparent mismatch between the celestial CFT built out of the S-matrix and the holographic CFT
resulting from the uplifted AdS3/CFT2 correspondence. This mismatch concerns the value of the
Virasoro central charge in the extended BMS algebra and the status of the respective local stress
tensors. I conclude that the uplifted holographic stress tensor governs an unobservable Schwarzian
sector of asymptotically flat gravity and I speculate whether this sector could be that of infrared
divergences.

Conventions. A manifold M̃ equipped with a lorentzian metric g̃αβ is called a spacetime. The
hatted equality sign =̂ refers to an equality at null infinity I . Indices α, β, γ, ... denote four-
dimensional, µ, ν, ρ, ... denote three-dimensional, and i, j, k, .. denote two-dimensional coordinate
indices, respectively.

2. The geometry of null infinity

I start by recalling the definition of asymptotic flatness in relation to null infinity I and the
corresponding induced geometrical data. This approach largely relies on Penrose’s conformal com-
pactification [17, 18], which appears extremely well-suited to the description of massless fields and
radiation infinitely far away from physical sources. I will mostly follow the treatment given by
Geroch [30]. Another useful reference is the review paper by Ashtekar [33].
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Definition. The physical spacetime (M̃, g̃αβ) is said to be asymptotically locally flat at null infinity
if there exists another spacetime (M,gαβ) with boundary I together with a smooth function Ω on
M, such that

1. M̃ is diffeomorphic toM −I (by which they are identified) ,

2. onM −I : gαβ = Ω2 g̃αβ ,

3. at I : Ω = 0, ∇αΩ ,̂ 0 and ∇αΩ∇αΩ =̂ 0 .

The unphysical spacetime (M,gαβ) is called an asymptote of (M̃, g̃αβ). The first condition encodes
the idea thatM is a (conformal) compactification of M̃. The second condition together with the first
part of the third condition states that the conformal boundaryI is infinitely far away with respect to
the physical metric g̃αβ . The condition ∇αΩ ,̂ 0 ensures thatΩ can be used as ‘radial’ coordinate in
a neighborhood of I , and identifies nα ≡ gαβ∇βΩ with the vector normal to I . Finally nαnα =̂ 0
states thatI is a null surface with respect to the unphysical metric and is therefore referred to as null
infinity. This last condition can actually be derived from Einstein’s equations and some minimal
assumptions on the falloff rate of the matter stress-energy tensor T̃αβ in a neighborhood of I . To
show this, we first write the relation between the physical and unphysical Einstein tensors,

G̃αβ = Gαβ + 2Ω−1∇α∇βΩ + gαβ

(
3Ω−2∇γΩ∇γΩ − 2Ω−1∇γ∇γΩ

)
. (1)

Then we make the minimal assumption that T̃αβ admits a smooth limit to I , a condition easily
satisfied by massless scalar fields and Maxwell fields for example [30]. Multiplying both sides of
(1) by Ω, using Einstein’s equations G̃αβ = 8πG T̃αβ and taking the limit Ω→ 0, we conclude that
the quantity

f ≡ Ω−1∇αΩ∇αΩ , (2)

must also admit a smooth limit to I . In particular nαnα =̂ 0 such that the conformal boundary I

is a null surface.
The above definition is only concerned with local properties of null infinity. In particular

any asymptote for which a portion of I has been removed still satisfies this definition. It is
then customary to require the global topology of I to be S2 × R, in which case (M̃, g̃αβ) is said
to be asymptotically flat at null infinity [33, 34]. More elaborate definitions that ensure geodesic
completeness ofI have also been given [18, 34–37]. A global definition which further incorporates
the spacetime structure at spatial infinity i0 has been given by Ashtekar and Hansen [38, 39]. See
Wald’s texbook for an overview of this subject [40]. In this paper I will not make use of these
refined definitions.

The definition of asymptotic flatness leaves significant ambiguity in the choice of conformal
factor Ω. If (M,gαβ,Ω) satisfies the above criteria, so does (M,Ω′,g′αβ) with

Ω
′ = ωΩ , g′αβ = ω

2gαβ , (3)

for ω any smooth and strictly positive function onM. Any sensible physical quantity should be
independent of this choice, i.e., the Weyl rescaling (3) should be considered a gauge redundancy.
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Said differently, (3) provides an equivalence relation for the asymptotes. There is a unique equiva-
lence class of asymptotes associated with a given asymptotically flat spacetime at null infinity (see
theorem 2 in [30]). One finds that Weyl rescalings act like

n′α = ω−1 (nα +Ω∇α lnω) , (4a)
f ′ = ω−1 ( f + 2nα∇α lnω +Ω∇α(lnω) ∇α(lnω)) . (4b)

Using this gauge freedom, it is always possible to choose a conformal frame satisfying the Bondi
condition

f =̂ 0 , (5)

in which case Einstein’s equations (1) imply

∇α∇βΩ =̂ 0 . (6)

As a direct consequence, we also have

∇α nβ =̂ 0 , Ln gαβ =̂ 0 . (7)

The condition (5) leaves a residual rescaling gauge freedom parametrized by functions ω > 0
satisfying Lnω = nα∇αω =̂ 0.

We now have a closer look at the geometrical structure induced on I . Since the latter is a
null surface, it is endowed with the Carrollian structure (qµν,nµ) where qµν and nµ are obtained by
pullback of the unphysical metric gαβ and the normal vector nα, respectively. The induced metric
qµν has signature (0,+,+), and nµ points along its degenerate direction,

nµqµν = 0 . (8)

Note that under Weyl rescalings, these quantities transform like

q′µν = ω
2 qµν , n′µ = ω−1 nµ . (9)

When the Bondi condition (5) is satisfied, the Levi-Civita derivative operator ∇α induces a torsion-
free and metric compatible derivative operator Dµ at I satisfying

Dρ qµν = 0 , Dρ nµ = 0 . (10)

The proof of these statements, together with a detailed discussion of the underlying Carrollian affine
connection, are given in appendix A. In contrast to the case where the metric is non-degenerate,
these conditions do not uniquely fix the induced connection. In the present context the connection
coefficients left undetermined by (10) actually encode non-universal information about gravitational
radiation [30, 37]. For concreteness it is sometimes useful to introduce an adapted coordinate system
xµ = (u, xi) in which the metric qµν takes the form

ds2 = 0 du2 + qi j dxi dx j , ∂uqi j = 0 . (11)

Here xi are the coordinates covering a ‘cut’ of I with topology of the sphere S2, and qi j is the
induced two-dimensional euclidean metric. In this coordinate system Γki j and Γ

u
ij are the only

nonzero Christoffel symbols, where the first are the Levi-Civita coefficients associated with the
metric qi j while the second are left undetermined by (10). As shown explicitly in section 6 these
appear to encode the shear tensor, Γuij ∼ Ci j , that describes gravitational waves passing through I .
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3. News and Geroch tensors

After having described the geometry of null infinity, I turn to the quantities needed to properly
characterize gravitational radiation. As is well-known, most of the physical information carried by
gravitational waves is encoded in the News tensor of Bondi and Sachs [5, 6, 41]. In the formalism
used here, its construction was given by Geroch [30].

It turns out that gravitational waves reaching I can essentially be described in terms of the
unphysical Ricci tensor, or more precisely in terms of the unphysical Schouten tensor

Sαβ ≡ Rαβ −
1
6

R gαβ . (12)

Indeed its projection Sµν to I acts as a potential for the leading order Weyl tensor [30]. It also
satisfies the properties

Sµν nν = 0 , Sµν qµν = R , (13)

where R is the scalar curvature of Dµ and qµν is any covariant tensor satisfying qµρqρσqσν = qµν.
It is however not gauge invariant, since it transforms under (3) like

S′µν = Sµν − 2ω−1DµDνω + 4ω−2Dµω Dνω − qµν ω−2Dρω Dρω . (14)

Fortunately one can construct a gauge-invariant tensor at I in the elegant following way. Geroch
proved that there exists a unique ‘kinematical’ tensor at I , i.e., constructed out of universal
geometrical data, that satisfies1 [30]

ρ[µν] = 0 , ρµν nν = 0 , ρµν qµν = R , D[ρρµ]ν = 0 . (16)

The value of the Geroch tensor lies in its transformation under Weyl rescalings that is identical to
that of Sµν,

ρ′µν = ρµν − 2ω−1DµDνω + 4ω−2Dµω Dνω − qµν ω−2Dρω Dρω (17a)
= ρµν − 2ω−1D′µD′νω + q′µν ω

−2D′ρω D′ρω . (17b)

This allows to define the gauge-invariant News tensor

Nµν ≡ ρµν − Sµν , Nµν nν = Nµν qµν = 0 . (18)

This is the physical quantity that characterizes gravitational radiation at I . The change in relative
sign compared to the definition in [30] is chosen for consistency with the Bondi–Sachs formalism
discussed in section 6.

It is actually possible to explictly construct the Geroch tensor. In a conformal frame where
R = R0 is constant, the unique solution to (16) can be easily seen to be

ρ0
µν =

1
2
R0 q0

µν , (19)

1In the adapted coordinates (u, xi) introduced in (11), the Geroch tensor is simply the lift of a tensor ρi j on the sphere
S2 satisfying

ρ[i j] = 0 , ρi j qi j = R , D[iρj]k = 0 , (15)

where Di and R are now the Levi-Civita connection and curvature associated with the two-dimensional euclidean metric
qi j .
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in which case the News is simply the tracefree part of Sµν. To find its expression in a more general
frame still satisfying the Bondi condition (5),

qµν = ω2 q0
µν = e2ψq0

µν , Lnω = Lnψ = 0 , (20)

we simply need to use the second equation of (17) together with the Weyl transformation of the
curvature scalar,

R = ω2R ′ + 2ωD′ρD′ρω − 2D′ρω D′ρω . (21)

This allows us to write
ρµν =

1
2
R qµν − Tµν , (22)

where the traceless tensor Tµν is given by

Tµν = 2
[
ω−1DµDνω

]TF
= 2

[
DµDνψ + DµψDνψ

]TF
, (23)

in agreement with the expression given in appendix B of [32]. The News tensor thus admits the
alternative expression

Nµν = −[Sµν]TF − Tµν . (24)

Remark : Working again in adapted coordinates (u, xi), one can introduce the superboost
Liouville field Φ of Compère, Fiorucci and Ruzziconi [31] by fixing the reference metric to be (the
lift of) the flat metric q0

i j = δi j and defining Φ = −
1
2ψ, so that

R = DiDi
Φ , (25)

and

Nvac
i j ≡ Ti j =

[
1
2

DiΦDjΦ − DiDjΦ

]TF
. (26)

These authors introduce the additional notations

N̂ (CFR)i j = Ni j , N (CFR)i j = −[Si j]TF , (27)

such that (24) takes the form
N̂ (CFR)i j = N (CFR)i j − Nvac

i j . (28)

The ‘vacuum News’2 Ti j interestingly coincides with the tracefree part of the stress tensor of a
Liouville theory with action

SLiouville =
∫

d2x
√

q
(
1
2

Di
ΦDiΦ + R Φ

)
, (29)

while (25) is the corresponding equation of motion. It is well-known that the stress tensor of any
CFT2 is universally described by this action (see [42] for a review), which perhaps hints at a role
played by the above quantities in celestial holography. In particular when complex stereographic
coordinates xi = (z, z̄) are used to cover the sphere S2, it can be shown that Tzz reduces to a
Schwarzian derivative [43]. I will come back to these points in section 5.

2This terminology is unfortunate since the physical (gauge-invariant) News Ni j is identically zero in absence of
radiation by contradistinction with Nvac

i j
. I prefer to refer to Nvac

i j
= Ti j as the tracefree Geroch tensor.
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4. Asymptotic symmetries

Asymptotic symmetries of asymptotically flat spacetimes play a prominent role in our modern
understanding of perturbative quantum gravity, and one should also expect them to underlie the
basic structure of celestial holography. I describe below the three common proposals for what the
symmetries of gravity with flat asymptotics are, from the perspective of the universal geometry
induced at null infinity.

Global BMS algebra. The original discovery that asymptotically flat spacetimes possess asymp-
totic symmetries was made by Bondi, van der Burg, Metzner and Sachs [5–7]. The corresponding
symmetry group is called nowadays the global BMS group. The BMS symmetries can be viewed
as the subgroup of diffeomorphisms of I which preserve the pair (qµν,nµ) up to a Weyl rescaling
(9), i.e., up to a gauge transformation.3 Infinitesimally, they are therefore generated by vector fields
ξµ satisfying

Lξqµν = 2κ qµν , Lξnµ = −κ nµ . (30)

They must also preserve the Bondi condition Lnqµν = 0 which requires the function κ to satisfy
Lnκ = 0. This can be shown from the following equality,

0 !
= Lξ Lnqµν = Ln Lξqµν + L[ξ,n]qµν = 2qµν Lnκ − Lκnqµν = 2qµν Lnκ . (31)

A subset of these vector fields are of the simple form

ξµ = f nµ , Ln f = 0 , (32)

satisfying the above constraints with κ = 0. They form the abelian subalgebra s ⊂ bms of
supertranslations. One can show that the Lie bracket of a supertranslation generator f nµ ∈ s with
a generic vector field ξµ ∈ bms is again a supertranslation generator,

ξ ′µ ≡ [ξ, f n]µ = κξ′ nµ , κξ′ =
(
Lξ f − κξ f

)
, Lnκξ′ = 0 . (33)

Thus s is also an ideal of the bmsLie algebra. The structure of the quotient bms/s can be understood
in the following way. For any ξµ ∈ bms/s, we adopt the parametrization

ξµ = ξ̄µ + α nµ , Lnξ̄
µ = 0 , (34)

and we find that the second equation of (30) requires

Lnα = κ . (35)

Lowering with the degenerate metric, ξ̄µ = qµν ξ̄ν, we find the constraints

ξ̄µ nµ = 0 , Lnξ̄µ = 0 , Dµ ξ̄ν + Dν ξ̄µ = 2κ qµν . (36)

This should be understood as the lift toI of the two-dimensional conformal Killing equation, which
is more explicit in adapted coordinates xµ = (u, xi). As is well-known the globally well-defined

3This is also referred to as the conformal Carroll algebra of level 2, bms = ccarr2 [44, 45].
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solutions to (36) form a sl(2,C) = so(3,1) Lie algebra. Putting this together, the BMS Lie algebra
has the semi-direct sum structure

bms = so(3,1) + s . (37)

This is exactly like the Poincaré algebra, except that the translation algebra t = R3,1 is replaced by
the infinite-dimensional abelian algebra s. This is not a coincidence as it is understood that Poincaré
transformations of Minkowski space induce an action at I which is precisely of the type described
above [30]. The generators of the translation subalgebra t ⊂ s can be isolated by the following
conditions [30], (

DµDν +
1
2
ρµν

)
f ∝ qµν , (38)

where ρµν is the Geroch tensor defined in (16). In a conformal frame where qµν is the unit round
sphere metric, the solutions to (38) are the four lowest spherical harmonics [33].

To make the symmetry algebra fully explicit, we can again use adapted coordinates xµ = (u, xi)
such that we can write a generic symmetry generator in the form

ξµ =
(

f +
u
2

Djξ
j , ξi

)
, ∂u f = ∂uξi = 0 , (39)

where ξi is a two-dimensional conformal Killing vector field satisfying

Diξj + Djξi = Dkξ
k qi j . (40)

Then the bms algebra takes the familiar form

ξ̂
µ
12 = [ξ1, ξ2]

µ , (41)

with

f12 = ξ
i
1Di f2 +

1
2

f1Diξ
i
2 − (1↔ 2) , (42a)

ξi12 = ξ
j
1 Djξ

i
2 − (1↔ 2) . (42b)

Extended BMS algebra. An extension of the BMS algebra was proposed more recently by
Barnich and Troessaert [8, 9]. The proposal is simply to consider local solutions of the conformal
Killing equation (40). In complex stereographic coordinates xi = (z, z̄) covering the sphere S2, the
corresponding vector fields have (anti)-meromorphic components ξz(z) and ξ z̄(z̄). Therefore the
extended BMS algebra takes the form

bmse =
[
diff(S1) ⊕ diff(S1)

]
+ s∗ . (43)

Note that diff(S1) is also the centerless Virasoro algebra and it is often this latter terminology that
is used. The superrotation vector fields sitting in the quotient

[
diff(S1) ⊕ diff(S1)

]
/so(3,1) are

not globally well-defined since they have poles at isolated points on the Riemann sphere S2. It
might therefore look like these additional transformations should not be allowed if we restrict to
everywhere smooth metric fields qi j and cuts of I with sphere topology.4 But the situation is

4Situations where cuts of I are more general Riemann surfaces have been considered in [46–48]. The singular
Virasoro superrotations have also been interpreted as inserting cosmic string defects in the bulk of spacetime [49] or
defects on the celestial sphere [50].
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identical to that of two-dimensional CFTs, and the existence of these non-global symmetries is
sufficient to guarantee the existence of locally conserved currents [51]. This justifies the extended
version of the BMS algebra. Finally the supertranslation algebra s∗ is generated by functions f that
can also have singularities on the sphere in order for the Lie algebra (42) to close, and it is therefore
larger than the algebra s of smooth supertranslations.

Generalized BMS algebra. A generalization of the asymptotic symmetry algebra has been pro-
posed by Campiglia and Laddha [10, 11]. I am not aware of a description from the perspective of
the universal geometry of I , however it does not prove difficult to offer one.5 Indeed generalized
BMS symmetries turn out to be those preserving the conformal class (εµνρ,nµ) where εµνρ is the
volume form at I , together with the Bondi condition Lnqµν = 0. To show this, I first introduce a
degenerate tetrad eiµ

��
i=1,2 satisfying

qµν = δi j eiµe j
ν , eiµnµ = 0 . (44)

Here δi j can be understood to be the euclidean metric on the tangent space of the sphere S2. In order
to construct the volume form εµνρ we need a third linearly independent one-form lµ normalized
with lµnµ = 1, such that

εµνρ =
1
3!

l[µe1
νe2
ρ] . (45)

Note that the ambiguity lµ → lµ + h eiµ in defining lµ does not affect the volume form. Finally we
deduce the Weyl transformations of eiµ and lµ from that of qµν and nµ,

e′iµ = ω eiµ , l ′µ = ω lµ , (46)

so that
ε ′µνρ = ω

3 εµνρ . (47)

Infinitesimally, generalized BMS symmetries are thus generated by vector fields satisfying

Lξεµνρ = 3κ εµνρ , Lξnµ = −κ nµ , Lnκ = 0 , (48)

where the last equation again follows from the Bondi condition. The corresponding Lie algebra
is very similar to that of the global bms algebra. In particular, there is still an abelian ideal s of
supertranslations characterized by (32)-(33). The only difference stems from the absence of the
conformal Killing equation constraint, such that the quotient bmsg/s now contains the generators
of all smooths diffeomorphisms of the sphere,

bmsg = diff(S2) + s . (49)

In adapted coordinates (u, xi), the explicit form of the Lie algebra (41)-(42) still holds. Note that
the first equation of (48) is simply used to eliminate κ in terms of ξµ,

κ =
1
3

Dµξ
µ =

1
3

(
Diξ

i + ∂uξ
u
)
=

1
2

Diξ
i , (50)

5A treatment in terms of four-dimensional diffeomorphisms which resembles the one given here can be found in [52].
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but does not actually impose any additional constraint on ξµ.

Remark : In the Bondi–Sachs formalism, asymptotic symmetries are realized as bulk dif-
feomorphisms having support at r → ∞ and preserving the Bondi gauge (57). There are bulk
diffeomorphisms involving reparametrizations of the radial coordinate r which precisely act like
Weyl rescalings at I [9, 53, 54]. It is customary to use these additional diffeomorphisms in order
to undo the Weyl rescaling induced in (30) for example. Thus when qi j is kept fixed one obtains the
extended BMS alegbra, while if only √q is kept fixed one obtains the generalized BMS algebra.

5. Superrotations and Schwarzian transformations

We are now ready to show that the Geroch tensor ρi j behaves like the stress tensor of a
CFT2, and more specifically that it has an anomalous Schwarzian transformation under Virasoro
superrotations.

We start by choosing the reference metric q0
µν in (20) to be the flat metric on the Riemann

sphere covered by complex stereographic coordinates (z′, z̄′),

q0
i j dx ′i dx ′j = dz′ dz̄′ . (51)

Then we consider the conformal symmetry, consisting of a meromorphic change of coordinates

z′ = Π(z) , z̄′ = z̄ , (52)

followed by the Weyl rescaling

q0
i j 7→ qi j = (∂zΠ)−1 q0

i j , (53)

so that the total transformation is a symmetry of the background metric (except at isolated points)

(ds0)2 = dz′ dz̄′ = ∂zΠ dz dz̄ 7→ ds2 = dz dz̄ . (54)

From (22)-(23) we find that the component ρzz of the Geroch tensor takes the familiar form of a
Schwarzian derivative,

ρzz = −Tzz =
∂3
zΠ

∂zΠ
−

3
2

(
∂2
zΠ

∂zΠ

)2

≡ S[Π(z); z] . (55)

The overall coefficient which would be the central charge if ρzz really was the stress tensor of a
two-dimensional CFT, is simply unity. As usual this Schwarzian transformation can be traced back
to the Weyl transformation (53) of the background metric, and although it might be tempting to
view (55) as a manifestation of a celestial CFT, we should remember that the Geroch tensor was
introduced precisely such that the physical News be invariant under Weyl rescalings. Therefore the
Schwarzian transformation (55) is pure gauge and unobservable.
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Remark : It is customary to fix a conformal frame where the metric qi j is the unit round sphere
metric rather than the flat metric. However this does not affect the end result (55). To show this one
simply has to modify the Weyl rescaling (53) by

q0
i j 7→ qi j = γ2 (∂zΠ)

−1 q0
i j , γ =

2
1 + zz̄

, (56)

and again make use of (22)-(23) together with the nonzero Christoffel symbol Γzzz = 2∂z ln γ.

6. Relation with the Bondi–Sachs formalism

So far everything has been worked out in terms of the geometry of null infinity I , and it
might be useful to make connection with the coordinate-based approach that is widely used in the
literature. In the latter one writes the physical metric in Bondi gauge (see [55] for a review),

ds̃2 = − du2 − 2 du dr +
(
r2qi j + r Ci j

)
dxi dx j + ... , (57)

where ... refer to terms that are subleading in a large-r expansion. Here qi j is a metric on the sphere
S2 while the shear Ci j is a traceless symmetric tensor.

Now we construct the unphysical metric following section 2. We make the choice of conformal
factor Ω = 1/r , such that the unphysical metric is

ds2 = −Ω2 du2 + 2 du dΩ +
(
qi j +ΩCi j

)
dxi dx j + ... . (58)

The normal vector is simply

nα = δΩα , nα = δαu +O(Ω2) , (59)

and the Bondi condition (5) is therefore satisfied.
Null infinityI is the surface atΩ = 0 and is covered with the adapted coordinates xµ = (u, xi).

We need to split the tangent bundle TM at I into TI and its complement, for which there is
no canonical procedure as explained in appendix A. We will do this by simply discarding the
Ω-components of the various tensors and their covariant derivatives. By explicit computation, we
find that the only nonzero induced connection coefficients at I are

Γ
k
i j =

1
2

qkl (∂iql j + ∂jqil − ∂lqi j ) , Γ
u
ij = −

1
2

Ci j . (60)

This is what we expected from appendix A. The spatial components of the induced connection are
the Levi-Civita coefficients associated with the spatial metric qi j , while Γuij is directly proportional
to the shear and therefore encodes information about gravitational radiation. We also compute the
unphysical Schouten tensor, and we find

Si j = qi j − ∂uCi j , Suu = Sui = 0 , (Ω = 0) . (61)

In case that qi j = q0
i j is the metric of the unit round sphere (without punctures), the physical News

tensor (24) would therefore simply be

Ni j = −[Si j]TF = ∂uCi j . (62)

12
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However, one should be careful not to take this formula outside of its regime of validity. In general
the Geroch tensor is explicitly needed.

Minkowski spacetime is a vacuum of General Relativity since it has zero energy among other
things. It is however not invariant under BMS symmetries and there is in fact an infinite family
of degenerate vacua. Compère and Long have explicitly constructed these vacua by performing
finite extended BMS transformations from Minkowski space [43] (the case with generalized BMS
transformations has been treated in [31]). Adopting a frame where the metric qi j is the unit round
sphere metric in complex stereographic coordinates, qi j dxi dx j = γ2 dz dz̄, the vacuum solutions
take the form (57) with

Czz = − (u + f (z, z̄)) S[Π(z); z] − 2 D2
z f (z, z̄) = (u + f (z, z̄)) Tzz − 2 D2

z f (z, z̄) . (63)

Here f (z, z̄) and Π(z) are the parameters of the supertranslation and Virasoro superrotation trans-
formations, respectively. Again we see the appearance of a Schwarzian derivative associated with
the Virasoro part of the transformation. But this quantity is pure gauge and is cancelled out in the
News thanks to the Geroch tensor (55),

Nzz = ∂uCzz + ρzz = 0 . (64)

This is reassuring as no gravitational waves have been created by acting with a symmetry transfor-
mation on empty Minkowski space.

7. Discussion

Extended vs. generalizedBMS. I want to emphasize the important conceptual difference between
the extended and generalizedBMS transformations. Indeed the former leaves themetric qi j invariant
up to a gauge transformation, by contrast to the latter one. Hence generalized BMS transformations
deserve to be called symmetries if and only if the (conformal class of) metric qi j is a genuine
dynamical field rather than a fixed background structure.

Do we need to fix qi j as part of the boundary conditions
in order to make sense of the theory?

The answer to this question is not completely obvious and may actually depend on the framework
adopted. In the Bondi–Sachs formalism [56], which can be viewed as a version of the characteristic
initial value problem expressed in terms of an asymptotic expansion near I , resolution of the
equations of motion only requires the specification of the initial value qi j |u=u0 . In that framework
it is therefore consistent to view qi j as a dynamical field even though its time evolution ∂uqi j = 0 is
trivial when the Bondi gauge fixing condition (5) is adopted (more generally the evolution equation
is non-trivial [57]). The drawback of the Bondi-Sachs formalism is that it requires specification of
the shear tensor Ci j for all times so that it plays the role of a source rather than that of a dynamical
field. Alternatively one can consider the variational principle with boundary conditions at spatial
infinity i0. As a result one encounters the opposite situation where the shear Ci j is free to fluctuate
while the sphere metric qi j needs to be fixed as part of the boundary conditions [26, 58–60].6 I

6To be more precise, the only fixed quantity at spatial infinity is the metric hab on the three-dimensional hyperboloid
describing the approach to i0. This metric naturally induces a fixed two-dimensional metric qi j on the celestial sphere
S2.
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believe that these subtleties regarding the choice of formalism and the type of boundary conditions
have important implications in selecting one or the other asymptotic symmetry algebra, and therefore
deserve further scrutiny.

The celestial stress tensor. The discovery of the extended BMS algebra containing two (cen-
terless) Virasoro subalgebras strongly suggested to rewrite scattering amplitudes in perturbative
quantum gravity as correlation functions of a CFT2 living on the celestial sphere. As a result the
subleading soft graviton theorem was found equivalent to the familiar conformal Ward identity of
a local CFT stress tensor [20]. This celestial stress tensor is explicitly given by [20, 61]

Tzz = −
1

32πG

∮
C

dz̄
2iπ

∫ ∞

−∞

du u γ2
(
D3
z − 2TzzDz − DzTzz

)
Nzz , (65)

where for ease of the discussion I discarded the dependence on the supertranslation mode. The
term in parenthesis can be understood as a derivative operatorD3

z that transforms covariantly under
Weyl rescalings and for which Tzz plays the role of a Weyl connection [61]. By computation of the
stress tensor two-point function, the corresponding central charge has further been found to vanish
identically [62] in agreement with a BMS flux algebra without central extension [61]. Because of
its Schwarzian transformation, it would have been tempting to identify the quantity Tzz with the
celestial stress tensor. However these quantities are very distinct and in particular the celestial stress
tensor (65) does not transform anomalously since the corresponding central charge is zero.

Uplift of the AdS3/CFT2 correspondence. I come now to my main motivation for reviewing the
Schwarzian gauge transformations at null infinity in such details, namely the approach to celestial
holography by uplift of the AdS3/CFT2 correspondence [27–29]. The starting point of this approach
is the slicing ofMinkowski space7 by three-dimensional hyperboloids. The slices covering the inner
part of the lightcone have negative constant curvature, i.e., they are AdS3 hyperboloids. The key
observation is that Virasoro superrotations act tangentially to these slices and further coincide
on each slice with the usual Brown–Henneaux asymptotic symmetries [63]. Since it is widely
believed that AdS3 gravity is dual to a CFT2 – although the details of this correspondence are
still largely mysterious –, the authors of [27–29] proposed to leverage the AdS3/CFT2 duality to a
correspondence between four-dimensional asymptotically flat gravity and the sought-for celestial
CFT. If true this would offer many interesting prospects for understanding quantum gravity in flat
space.

The observation that I would like to make here is that this proposal creates some tension
regarding the physical status of the Schwarzian transformations, and therefore of the value of the
Virasoro central charge. It is indeed well-known that the central charge in the AdS3 asymptotic
symmetry algebra is nonzero and inversely proportional to the three-dimensional Newton constant
(in units of the AdS3 curvature radius) [63]. The effective three-dimensional Newton constant can
be estimated by looking at the four-dimensional Einstein–Hilbert action, yielding [28]

ceff ∼ L2
IR M2

pl , (66)

where LIR is an infrared cutoff coming from integration over the direction transverse to the AdS3
slices. This quantity does not appear to vanish in contradistinction with the celestial central charge.

7So far this approach has only been investigated at the level of linearized gravitational perturbations.
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Moreover, by explicit coordinate transformation one can show that the uplifted holographic stress
tensor [64] actually maps to Tzz - the u-independent component of ∂uCzz - at null infinity, and both
quantities indeed transform anomalously under Virasoro superrotations, i.e, they are associated with
a nonzero central charge. Therefore I am forced to conclude that the uplifted holographic stress
tensor is pure gauge and unobservable.

Beyond the traditional celestial CFT with zero central charge and stress tensor (65), could
there be another distinct holographic CFT with nonzero central charge (66) and stress tensor Tzz?
If it existed such a CFT would apparently describe pure gauge degrees of freedom. The infrared
divergent sector of flat space scattering amplitudes seems like a natural candidate for what this
holographic CFT might govern. Indeed infrared divergences are unphysical and often the result
of a poor treatment of gauge invariance, and can be avoided altogether by working with dressed
asymptotic states [65–68]. Nonetheless the infrared divergent sector is governed by the correlators
of a CFT2 in which the Goldstone modes of spontaneously broken asymptotic symmetries play a
prominent role [25, 26]. The effective action of supertranslation Goldstone modes already found
a natural home in that context, allowing to entirely reconstruct the infrared soft factors from an
intrinsically celestial formulation [26]. It would be very interesting to assess whether the effective
action of superrotation Goldstone modes derived in [69] – which clearly describes a CFT2 with
stress tensor Tzz – plays a similar role. This effective action is ubiquitous and similarly appears in
the context of the AdS3/CFT2 correspondence [42, 70]. From a CFT perspective, it describes the
stress tensor sector and can be used to compute Virasoro identity blocks and maximally chaotic out-
of-time-order correlators [70–74]. Precisely at the time where these lines are written, an interesting
paper has appeared which confirms the existence of a second holographic stress tensor governing
chaotic features of asymptotically flat gravity [75].
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A. Induced Carrollian connection at null infinity

I start this appendix by showing that the four-dimensional Levi-Civita derivative operator ∇α
induces a torsionfree derivative operator Dµ at I which satisfies

Dρ qµν = 0 , Dρ nµ = 0 . (67)

First we need to split the tangent bundle TM at I into TI and its complement. In particular, we
need three basis vectors eαµ labelled by an index µ that are tangential to I , i.e., they must satisfy

eαµ nα =̂ 0 . (68)

Associated with this basis is a three-dimensional coordinate system xµ covering I such that

eαµ =
∂xα

∂xµ
. (69)
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The issue with null hypersurfaces is that there is no canonical splitting between tangential and
normal bundles since the normal vector nα is also tangential. One can still make a choice of
splitting, but the induced geometry will depend upon this choice. Fortunately, we are still able to
prove that some properties of the induced connection are independent of this choice. The induced
covariant derivative of a tangent vector Aα – which must therefore satisfy Aαnα =̂ 0 – is defined by
projection onto the chosen tangential bundle TI ,

DρAµ ≡̂ eγρ eµα ∇γAα , Aµ ≡̂ eµαAα , (70)

where we introduced the dual one-forms eµα such that eµαeαν = δ
µ
ν . Note that the freedom Aα →

Aα + h nα related to the choice of splitting discussed above does not affect this definition thanks to
the Bondi condition (7). We have

DρAµ = eγρ ∇γ(e
µ
αAα) − eγρ ∇γeµα Aα = eγρ ∂γAµ − eγρeαν ∇γeµα Aν (71a)

≡ ∂ρAµ + ΓµρνAν , (71b)

such that we identify the induced connection

Γ
µ
ρν =̂−eγρeαν ∇γeµα . (72)

Using
∇γeµα = ∂γeµα − Γ

β
γαeµβ = ∇αeµγ , (73)

it is straightforward to show that the induced connection is torsionfree, Γρ
[µν]
= 0.

Projection of (7) directly implies Dρnµ = 0, and we are left to show that the induced connection
is compatible with the induced metric qµν. For this we first introduce a decomposition of the four-
dimensional metric gαβ in a neighborhood of I ,

gαβ = −(nαmβ + nβmα) + qαβ , (74)

where mα is any null vector normalized such that mαnα = −1. We then proceed to compute

Dρqµν =̂ eγρeαµ eβν ∇γqαβ = eγρeαµ eβν ∇γ
(
gαβ + nαmβ + nβmα

)
=̂ 0 , (75)

where in the last line I made use of the Bondi condition (7) together with (68). As a direct
consequence we also have

Lnqµν = nρDρqµν + qµρDνnρ + qνρDµnρ = 0 , (76)

which is simply the projection of the second equation in (7). It means that qµν is the lift along the
null direction generated by nµ of a two-dimensional non-degenerate euclidean metric on a ‘cut’ of
I with normal vector nµ. This concludes the proof of the universal properties (67) satisfied by the
induced derivative operator Dµ at I .

For a non-degenerate metric, only the Levi-Civita connection is both metric compatible and
torsionfree. For a degenerate metric qµν however, the conditions (67) are not sufficient to fully
determine the connection. From the viewpoint of the four-dimensional bulk geometry, this is partly
related to the arbitrariness in splitting the tangent bundle TM into TI and its complement. More

16



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
3
3

Schwarzian transformations at null infinity K. Nguyen

interestingly perhaps, the undetermined connection coefficients also encode non-universal data
(namely the shear tensor). The constraints on Γρµν following from (67) are given for example in
appendix A of [69],

Γ
σ
µν qσρ =

1
2

(
∂µqνρ + ∂νqµρ − ∂ρqµν

)
, Γ

ρ
µν nν = 0 . (77)

To make these constraints more explicit, we can introduce a set of basis vectors (nµ, eµi )with i = 1,2
together with the corresponding coordinate system (u, xi) that satisfies

nµ =
∂xµ

∂u
, eµi =

∂xµ

∂xi
. (78)

Again there is no canonical way to split the null direction from the spatial directions, since orthog-
onality with respect to qµν is preserved under eµi → eµi + hi nµ. Nonetheless qµν unambiguously
projects to a non-degenerate two-dimensional euclidean metric

qi j = eµi eνi qµν , ∂uqi j = 0 , (79)

whose time-independence follows from (76). The relations (77) thus become

Γ
k
i j =

1
2

qkl (∂iqjl + ∂jqil − ∂lqi j
)
, Γ

i
uu = Γ

i
u j = Γ

u
uu = Γ

u
ui = 0 . (80)

The purely spatial components are the Levi-Civita coefficients associated with the spatial metric qi j
induced on S2. All time components are zero, except Γuij which is left completely undetermined.
At null infinity Γuij is closely related to the shear tensor Ci j as explicitly shown in (60). It therefore
encodes non-universal information about gravitational radiation in asymptotically flat spacetimes.

As a final but important remark, we now explicitly see that the quantity

DµAν , ∀Aµ s.t. Aµnµ = 0 , (81)

does not involve any of the undetermined connection coefficients. Thus the covariant derivative of
covectors orthogonal to nµ is free of any ambiguity or indeterminacy, and simply coincides with
the lift of the covariant derivative on the two-dimensional base space S2. A formula which makes
this property explicit was given by Geroch [30],

DµAν = ∂[µAν] +
1
2
LB qµν , (82)

where Bµ is any vector field satisfying Bµqµν = Aν.
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