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1. Introduction

The inflationary universe scenario [1–3] has been very successful in accounting for key cos-
mological puzzles of the hot Big Bang model, such as the flatness, the horizon and monopole
problems, and in generating the primordial fluctuations that eventually led to the large scale struc-
ture observed today [4]. Furthermore, inflation has gained support by observational data concerning
the anisotropies in the cosmic microwave background radiation. Despite the many successes how-
ever, there are still open questions regarding the UV completion of inflationary models and a lack
of understanding of the initial conditions from first principles. To date there is no complete embed-
ding of phenomenologically viable inflationary models in string theory.∗ We also lack of a definite
understanding of how the Universe could have entered naturally into such an inflationary phase in
the early past. It is likely that a quantum, probabilistic explanation exists, in terms of a wavefunction
that favors suitable conditions to initiate inflation. See e.g. [6–15] for different perspectives and
discussions.

A very appealing possibility to explore is to apply the no-boundary proposal of Hartle and
Hawking [7]. In this context, the wavefunction of the universe is computed via a Euclidean path
integral over all compact four-geometries that end on a particular spatial slice. The induced metric
on this slice and the value of the inflaton field are fixed to be ℎ8 9 and q0, respectively. The four-
geometries summed over should have no boundaries other than that of metric ℎ8 9 . As a result
the wavefunction is expressed as a functional of ℎ8 9 and q0. We refer to this wavefunction as the
“ground state” wavefunction, even though such a denomination may not be appropriate since in
quantum gravity all physical quantum states associated with a closed universe are annihilated by
the Hamiltonian. In fact, the Hartle–Hawking wavefunction can be interpreted as a probability
amplitude to create from nothing a three-dimensional universe with metric ℎ8 9 and inflaton field q0

[8–11, 13]. As argued by Vilenkin [8–11, 13] and also by Linde [12, 16] some time ago, a suitable
continuation to Euclidean time yields probability amplitudes favoring inflation.

In this work we revisit the Hartle–Hawking no-boundary proposal in the context of pure
Einstein’s theory of gravity with a positive cosmological constant Λ > 0. Our goal is to discuss
a number of issues pertaining to this path integral approach to quantum cosmology in a rather
simpler setting, before delving into analyzing more complex cosmological models in the presence
of matter (including inflationary ones). Indeed, in the minisuperspace approximation, where the
universe is taken to be homogeneous and isotropic, the degrees of freedom reduce to a single scale
factor depending only on time. The issues we would like to discuss were recently raised in [17],
in the context of the minisuperspace approximation, and concern i) the proper gauge fixing of the
local symmetry group associated with time-reparametrization invariance; ii) the construction of an
infinite set of “ground state” wavefunctions based on field redefinitions of the scale factor degree
of freedom; iii) the derivation of the corresponding Wheeler–DeWitt equations [6]; and finally, iv)
the equivalence of these prescriptions at the semiclassical level and observable predictions. To our
knowledge, these points have not been adequately addressed in the literature before. We believe they
will prove to be important in properly applying the no-boundary proposal to obtain probabilities in
cosmological, inflationary settings.†

∗See e.g. [5] for seminal work towards this end.
†Previous work on the Hartle–Hawking wavefunction, related to our discussions but with some different results,

2



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
5
9

Wavefunction of the universe: Diffeomeorphism invariance and field redefinitions Hervé Partouche

To illustrate these issues, it is convenient to interpret the minisuperspace model as a non-linear
sigma model, where the Euclidean time parameterizes the base manifold, which is a line segment.
The scale factor parameterizes a one-dimensional target space, which is a half line.

The theory is invariant under time-reparametrizations of the base manifold. In section 2, we
implement the gauge fixing procedure of Euclidean-time reparameterizations. The path integral
over the lapse function reduces to an integral over the modulus of the base manifold, which can be
identified to be the proper length of the line segment. We express the Faddeev–Popov determinant
as a path integral over anticommuting ghost fields, and compute it to be a constant, independent of
the modulus of the line segment. It is important to use gauge invariant measures in both the ghost
and scale factor path integrals to implement the gauge-fixing properly.

Field redefinitions of the scale factor, 0 = �(@), amount to reparameterizations of the target
space and leave the classical sigma model action invariant. At the quantum level, the path inte-
gral measures D0 and D@ are not equivalent in general, since they are related by a non-trivial
Jacobian. Since there is no preferred choice, an infinite number of ground-state wavefunctions
can be constructed, upon implementing the no-boundary proposal (based on the different measures
D@). In section 3, we compute the ground-state wavefunction for each choice of D@, using the
steepest-descent method, expanding around instanton solutions to quadratic order. The path integral
over the fluctuations are obtained by applying the methods of Ref. [28] – see also [29].

We proceed in section 4 to determine the Wheeler–DeWitt equation each ground state wave-
function satisfies. Recall that there is an ambiguity in the exact form of the Wheeler–DeWitt
equation, due to an ordering ambiguity of @ and its conjugate momentum c@ in the quantum Hamil-
tonian. For each D@, we resolve this ambiguity in the Wheeler–DeWitt equation by comparing
with solutions via the WKB approximation. The inner product in each case is determined by
imposing hermiticity of the corresponding Hamiltonian. Despite the fact that the precise form of
the inner product depends on the choice D@, the norms of the wavefunctions at the semiclassical
level turn out to be the same, leading to universal predictions, independent of the D@ prescription.
For the particular model at hand, the norm of the wavefunctions turns out to be logarithmically
divergent. At best, these wavefunctions can be used to discuss relative probabilities. We conclude
in section 5 with further discussion and perspectives. Throughout we work in Planck units, setting
"? =

√
8c� = 1.

2. The ground-state wavefunction as a gauge fixed path integral

The Lorentzian theory is formulated on four-manifolds with space-like boundaries at initial and
final times. The slices at constant time G0 are taken to be compact and closed. In the minisuperspace
approximation, these slices are restricted to be homogeneous and isotropic 3-spheres. As a result,
the physical degrees of freedom reduce to to a single scale factor depending on time, 0(G0). The
metric is given by

dB2 = −# (G0)2(dG0)2 + 0(G0)2 dΩ2
3 , (1)

where # (G0) ≡
√
600(G0) is the lapse function and dΩ3 is the volume element of the unit 3-sphere

of volume E3 = 2c2. Einstein’s action, in the presence of a non-zero positive cosmological constant

includes [18–20]. Further work and applications can be found in [21–27].
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Λ, takes the form

( = 3E3

∫ G0
f

G0
i

dG0 #

[
− 0

#2

( d0
dG0

)2
+ 0 − _203

]
, where _ =

√
Λ

3
. (2)

The classical equations of motion can be obtained by varying the action, keeping the scale factor at
initial and final times, G0

i and G0
f , fixed.

‡

Notice that the kinetic energy term of the scale factor has a negative sign compared to that of
a conventional matter scalar field. This fact motivates us to consider two alternative prescriptions
for the continuation to Euclidean time,

G0 = B 8 G0
E , where B ∈ {1,−1} , (3)

both of which have been advocated in the literature. Hartle and Hawking [7] adopt the conventional
prescription B = −1. In this case, the no-boundary wavefunctions become large as _ → 0, and so
they seem to favor a vanishing cosmological constant [14]. On the other hand, Vilenkin [8–11, 13]
and Linde [12, 16] have argued for B = +1, which favors conditions amenable for inflation. The
Euclidean action (E = −8( in each case is given by

(E [600, 0] = 3BE3

∫ G0
Ef

G0
Ei

dG0
E
√
600

[
0 600

( d0
dG0

E

)2
++ (0)

]
, (4)

where
+ (0) = 0 − _203 . (5)

This potential becomes negative when _0 > 1. When B = −1, the action can become arbitrarily
large and negative due to rapidly oscillating configurations of the scale factor. On the other hand,
for B = 1, there are time-independent configurations, satisfying _0 � 1, that yield arbitrarily large
negative values for the action. We see that both choices yield Euclidean actions, which are not
bounded from below, and thus a suitable continuation will be needed to obtain convergent path
integrals.

Based on the form of the action (E, we interpret the theory as a non-linear f-model. The
base manifold is a line segment of metric 600, parameterized by the Euclidean time G0. The
one-dimensional target space is parameterized by the scale factor 0. The metric is given by

�00 = 6E30 . (6)

The local symmetry group consists of Euclidean-time diffeomorphisms of the base manifold. Under
such a coordinate change, the metric 600 transforms as a tensor and the scale factor as a scalar:

b (G0
E) = G

b0
E , 6

b

00(G
b0
E ) =

( dG0
E

dG b0
E

)2
600(G0

E) , 0 b (G b0
E ) = 0(G

0
E) . (7)

In addition, the action is invariant under field redefinitions of the scale factor, 0 = �(@), which can
be interpreted as reparameterizations of the target space.

‡The boundary action cancels upon integrating by parts a bulk term that involves the second derivative of the scale
factor, see e.g. [17] for details.
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In order to implement the no-boundary proposal, we take the initial boundary 3-sphere to
have vanishing radius, 0(G0

Ei) ≡ 0i = 0, and fix the radius of the final sphere to an arbitrary value:
0(G0

Ef) ≡ 0f = 00. We then define the ground-state wavefunction to be given by the following
Euclidean path integral [7]

Ψ(00) =
∫ D600

Vol(Diff [600])

∫
0i = 0, 0f = 00

D0 4− 1
ℏ
(E [600,0] , (8)

where we kept explicit the reduced Planck constant ℏ. According to Vilenkin, the wavefunction
thus defined can be interpreted as the probability amplitude for creating a 3-dimensional spherical
universe of radius 00 from nothing [8–11]. Notice that we have divided the measure D600 in the
path integral by the volume of the local symmetry group, Vol(Diff [600]), in order to take care
of the overcounting of physical configurations, yielded by diffeomorphism-equivalent metrics 600.
The measureD0 must be invariant under Euclidean-time diffeomorphisms. Such a gauge-invariant
measure, however, is far from being unique. As we will see later on, field redefinitions of the
scale factor provide us with an infinite set of inequivalent diffeomorphism-invariant measures,D@,
leading to an infinite set of alternative definitions for the ground state wavefunction.

We proceed now to discuss the gauge-fixing procedure, which allows us to express the wave-
function Eq. (8) as an integral over physically distinct configurations. First notice that not all
metrics 600 are diffeomorphism-equivalent, since the proper length ℓ of the line segment remains
invariant under such transformations

ℓ =

∫ GEf

GEi

dG0
E
√
600 =

∫ b (GEf )

b (GEi)
dG b0

E

√
6
b

00 . (9)

Thus, the proper length ℓ behaves as a modulus, and its value can be used to distinguish the classes
of diffeomorphism-equivalent metrics. In [17] we show that the line segment has no other moduli
than the proper length ℓ. Let 6̂00 [1], defined on a domain [Ĝ0

Ei, Ĝ
0
Ef], be a fiducial metric representing

the class ℓ = 1. Then all the other equivalence classes can be represented by fiducial metrics of the
form 6̂00 [ℓ] = ℓ26̂00 [1], defined on the same interval [Ĝ0

Ei, Ĝ
0
Ef].

§

Choosing such a metric 6̂00 [ℓ] for each equivalence class, we insert in Eq. (8) a gauge fixing
condition

1 = ΔFP [600]
∫ +∞

0
dℓ

∫
Diff [6̂00 [ℓ ] ]

Db X
[
600 − 6̂ b00 [ℓ]

]
, (10)

where ΔFP [600] is the Faddeev–Popov determinant, which is gauge invariant. Then integrating over
600 fixes the metric to be 6̂ b00 [ℓ] (defined on [b (Ĝ

0
Ei), b (Ĝ

0
Ef)]), as implied by the Dirac X-functional,

while integrating over the gauge orbits, together with gauge invariance, lead to the cancellation of
the volume of the local symmetry group Vol(Diff [600]). The wavefunction simplifies as follows

Ψ(00) =
∫ +∞

0
dℓ ΔFP [6̂00 [ℓ]]

∫
0 ( Ĝ0

Ei)=0, 0 ( Ĝ0
Ef )=00

D0 4− 1
ℏ
(E [6̂00 [ℓ ],0] , (11)

where the integral over the modulus ℓ is an ordinary integral.

§The Killing group of metric isometries reduces to a discrete Z2 group, generated by the transformation that reverses
the orientation of the line segment.
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The Faddeev–Popov determinant appearing in the expression above can be related to a path
integral over the diffeomorphisms that are connected to the identity as follows¶

1
ΔFP [6̂00 [ℓ]]

= 2
∫ +∞

0
dℓ′

∫
Diff [6̂00 [ℓ′] ]Id

Db X
[
6̂00 [ℓ] − 6̂ b00 [ℓ

′]
]
. (12)

To compute it, we first examine the total variation of the metric 6̂00 [ℓ] under infinitesimal diffeo-
morphisms in the vicinity of the identity and small changes of the modulus field,

X6̂00 [ℓ] ≡ 6̂Id+X b
00 [ℓ + Xℓ] − 6̂00 [ℓ] = −2∇̂0XGE0 + 26̂00 [ℓ]

Xℓ

ℓ
+ · · · , (13)

where ∇̂ is the covariant derivative with respect to 6̂00 [ℓ]. Then we introduce anticommuting ghost
fields. Two such fields are needed, 20 corresponding to XGE0 and 100 corresponding to the tensor
field V00 needed to express the X-functional as a Fourier integral [17]. Moreover, one introduces
an anticommuting variable _ corresponding to Xℓ. Berezin integration over _ yields the following
path integral expression [17]

ΔFP [6̂00 [ℓ]] = 28cU
∫
20 ( Ĝ0

Ei)=0, 20 ( Ĝ0
Ef )=0
D2

∫
D1

(
1,
6̂[ℓ]
ℓ

)
ℓ

exp
{
48c (1, ∇̂2)ℓ

}
, (14)

where U is an irrelevant constant and the tensor inner product is given by

( 5 , ℎ)ℓ ≡
∫ Ĝ0

Ef

Ĝ0
Ei

dĜ0
E

√
6̂00 [ℓ] 5 00 ℎ00 . (15)

The ghost path integrals can be readily computed by expanding the ghost fields in Fourier
modes on the interval [Ĝ0

Ei, Ĝ
0
Ef]. To achieve this, we must take into account the boundary conditions

and use gauge invariant measures – we refer the reader to [17] for the detailed computations. The
Faddeev–Popov determinant turns out to be a constant, independent of the modulus ℓ. This is to be
contrasted with the case of a base manifold with the topology of a circle, where the Faddeev–Popov
determinant is non-trivial, being proportional to 1/ℓ, where ℓ is the proper length of the circle. As
a result the wavefunction further simplifies to the following gauge-fixed path-integral expression

Ψ(00) = ΔFP

∫ +∞

0
dℓ

∫
0 ( Ĝ0

Ei)=0, 0 ( Ĝ0
Ef )=00

D0 4− 1
ℏ
(E [6̂00 [ℓ ],0] , (16)

where ΔFP is an irrelevant constant.

3. Scale factor path integral and field redefinitions

Next we compute the path integral over the scale factor and the integral over the modulus ℓ.
Since the path-integral expression (16) for the wavefunction is gauge invariant, we choose to work
in a convenient gauge, setting the lapse function to be a constant,

6̂00 [ℓ] (g) = ℓ2 defined on [Ĝ0
Ei, Ĝ

0
Ef] = [0, 1] . (17)

¶Due to the fact that the orientation reversal is the only Killing isometry, the path integral over all diffeomorphisms
is twice the contribution of the diffeomorphisms connected to the identity.
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The Euclidean-time coordinate Ĝ0
E is denoted by g. This time variable is proportional to the

“cosmological Euclidean time CE,” which satisfies dCE = ℓ dg. The wavefunction becomes

Ψ(00) = ΔFP

∫ +∞

0
dℓ

∫
0 (0)=0, 0 (1)=00

D0 4− 1
ℏ
(E [ℓ2,0] , (18)

with the action (4) written as

(E [ℓ2, 0] = 3BE3

∫ 1

0
dg

[
0

ℓ

(d0
dg

)2
+ ℓ + (0)

]
. (19)

This action is not quadratic, and so we will approximate the path integral via the method of steepest-
descent. To this end, we first expand the action around its extrema to quadratic order, and then
carry out the resulting Gaussian integrals over the fluctuations. This steepest-descent approximation
becomes accurate in the semiclassical limit, where ℏ→ 0.

Let us denote an extremum of the action by (ℓ̄2, 0̄), where we require the solution 0̄ to satisfy
the boundary conditions 0̄(0) = 0 and 0̄(1) = 00. Varying with respect to the modulus ℓ gives

0 =
d(E
dℓ

����
(ℓ̄2,0̄)

= 3BE3

∫ 1

0
dg

[
− 0̄
ℓ̄2

(d0̄
dg

)2
++ (0̄)

]
, (20)

while the equation of motion of the scale factor can be integrated to be

− 0̄

ℓ̄2

(d0̄
dg

)2
++ (0̄) = E

3E3
, (21)

where E is an arbitrary integration constant. Eq. (20) implies 0 = BE, and so it suffices to solve the
Friedmann equation in order to determine the extrema of the action.

It is useful to write the Friedmann equation in the form(
d(_0̄)
d(_ℓ̄g)

)2
+ (_0̄)2 = 1 , (22)

with solution _0̄(g) = ± sin(_ℓ̄g + cst.). The boundary conditions 0̄(0) = 0, 0̄(1) = 00 set the
constant to be zero and fix the modulus ℓ̄. In this work and in [17], we consider the case

0 < _00 < 1 , (23)

leaving the case _00 > 1 for future work. Then, there are two real instanton solutions

_0̄ n (g) = sin(_ℓ̄n g) , n ∈ {+1,−1} ,
where _ℓ̄+ = arcsin(_00) , _ℓ̄− = c − arcsin(_00) , (24)

corresponding to parts of a 4-sphere of radius 1/_. The n = +1 solution describes a cap smaller than
a hemisphere, while the n = −1 solution describes a cap bigger than a hemisphere. The instanton
actions are given by

(̄nE = B
2E3

_2

[
1 − n

(
1 − (_00)2

) 3
2
]
. (25)

We now proceed to expand the action around the extremal solutions. We set

7
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ℓ = ℓ̄n + Xℓ , 0(g) = 0̄ n (g) + X0(g) , (26)

where the fluctuation X0(g) satisfies the boundary conditions X0(0) = 0 and X0(1) = 0. Thus,
X0(g) is an element of the Hilbert space of square integrable real functions on [0, 1], vanishing at
the boundary points. This space of functions is equipped with the inner product

(X01, X02)ℓ̄n =
∫ 1

0
dgℓ̄n X01 X02 . (27)

As a result, X0(g) can be expanded in terms of the orthonormal sine Fourier series{√
2/ℓ̄n sin(:cg), : ∈ N∗

}
. (28)

To quadratic order in the fluctuations, the action (19) can be written as follows

(E [ℓ2, 0] = (̄nE + 3BE3

∫ 1

0
dgℓ̄n

[
X0Sn X0 + 2 X0+0 (0̄ n )

Xℓ

ℓ̄n
+ Xℓ
ℓ̄n
+ (0̄ n )

Xℓ

ℓ̄n

]
+ O(X3) . (29)

where the linear operator Sn , given by

Sn = −
0̄ n

ℓ̄2
n

d2

dg2 −
1
ℓ̄2
n

d0̄ n
dg

d
dg
− 2_20̄ n , (30)

is self-adjoint with respect to the inner product (27): (X01,Sn X02)ℓ̄n = (Sn X01, X02)ℓ̄n . Here also,
+0 ≡ d+/d0. Moreover, as will be seen later on, this operator is invertible when 0 < _00 < 1, a
fact that allows us to diagonalize the integrand in Eq. (29). For this purpose we set‖

X0Sn X0 + 2 X0+0 (0̄ n )
Xℓ

ℓ̄n
+ Xℓ
ℓ̄n
+ (0̄ n )

Xℓ

ℓ̄n
= X0̌Sn X0̌ +

Xℓ

ℓ̄n

[
+ (0̄ n ) −+0 (0̄ n )S−1

n +0 (0̄ n )
] Xℓ
ℓ̄n
,

where X0̌ = X0 + Xℓ
ℓ̄n
S−1
n +0 (0̄ n ) . (31)

Using Eq. (31) and defining

Kn =
∫ 1

0
dgℓ̄n

[
+ (0̄ n ) −+0 (0̄ n )S−1

n +0 (0̄ n )
]
, (32)

we obtain the following expression for the wavefunction (18) in the steepest-descent approximation,

Ψ(00) = ΔFP
∑
n=±1

4−
1
ℏ
(̄n

E /n (00)
∫

dXℓ exp
{
− 3BE3

ℏ
Kn

( Xℓ
ℓ̄n

)2}
(1 + O(ℏ))

where /n (00) =
∫
X0̌ (0)=0, X0̌ (1)=0

DX0̌ exp
{
− 3BE3

ℏ
(X0̌,Sn X0̌)ℓ̄n

}
. (33)

The operator Sn is self-adjoint and so it can be diagonalized in an orthonormal basis. Let us
denote its eigenvectors by qn

:
and the corresponding eigenvalues by an

:
. These satisfy

Sn qn: = a
n
: q

n
: , : ∈ N

∗ , where (qn: , q
n
:′)ℓ̄n = X::′ , a

n
: ∈ R . (34)

‖We consider the odd periodic extension of the function +0 (0̄n ) on the real line, so that both X0 and X0̌ can be
expanded in terms of the same sine Fourier series.
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Then we may expand the scale factor fluctuation as

X0̌(g) =
∑
:≥1

X0̌: q
n
: (g) , (35)

and use zeta regularization to get

/n (00) =
∏
:≥1

∫
3X0̌: 4

− 3BE3
ℏ
an
:
(X0̌: )2 =

∏
:≥1

√
ℏ c

3BE3 a
n
:

=

(
3BE3
ℏ c

) 1
4 1
√

detSn
. (36)

In order to define the Gaussian integrals, we have used the following prescription: The Fourier
mode X0̌: is integrated from −∞ to +∞ when Ban

:
> 0, and from −8∞ to +8∞ when Ban

:
< 0. There

is no vanishing eigenvalue, an
:
= 0, since Sn is invertible (see below). In fact, detS+ and detS−

turn out to have opposite signs, independently of the sign of B. Hence, rotating some contours of
integration along the imaginary axis is necessary for both /+(00) and /−(00) to exist, irrespectively
of the choice of continuation to Euclidean time.

The determinant of Sn can be computed via the method of Ref. [28]. It is given by

detSn = Nn in0 (1) , (37)

whereNn is a universal constant and the function in0 (g) (to be evaluated at g = 1) solves the system
Sn in0 (g) = 0 ,

in0 (gn ) = 0 ,
din0
dg
(gn ) = 1 .

(38)

Here, gn ∈ (0, 1) is a regulator to be sent to 0 at the end of the calculations. The universal constant
Nn can be obtained by finding the determinant of an operator that is identical to Sn up to terms
involving no derivatives. The computations of Nn and in0 (1) have been carried out in great detail
in [17], giving the net result

detSn = 2
( \∗
_

) 1
4 ln

1
\∗
× n 0

1
4
0

√
1 − (_00)2 , (39)

where \∗ = _ℓ̄n gn is to be sent to zero. Note that

detS+ > 0 , detS− < 0 , when 0 < _00 < 1 , (40)

demonstrating that both S+ and S− are invertible.
The integral over the fluctuation Xℓ is Gaussian. To evaluate it we need to determine Kn

given in Eq. (32), which requires to find the function S−1
n +0 (0̄ n ), or equivalently the function 5n

satisfying Sn 5n = +0 (0̄ n ) along with the boundary conditions 5n (gn ) = 5n (1) = 0. These yield
the following net result [17]∫

dXℓ exp
{
− 3BE3

ℏ
Kn

( Xℓ
ℓ̄n

)2}
=

√
cℏ

3BE3
ln

1
\∗
, (41)
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where the domain of integration is from −∞ to +∞ for B = +1, and from −8∞ to +8∞ for B = −1.
Collecting all results in the expression for the wavefunction, Eq. (33), we obtain the result

Ψ(00) = CB (\∗)
∑
n=±1

1
√
n

exp
[
n B

2E3

ℏ_2
(
1 − (_00)2

) 3
2
]

0
1
8
0

(
1 − (_00)2

) 1
4

(1 + O(ℏ)) , 0 < _00 < 1 , (42)

where
CB (\∗) = U

√
8c

( cℏ
3BE3

) 1
4 exp

[
−B 2E3

ℏ_2

] ( _
\∗

) 1
8 (43)

is a regulator-dependent coefficient, which is irrelevant once Ψ(00) is normalized or when we
discuss relative probabilities.

Field Redefinitions: Let us now discuss the issue of field redefinitions. As we have already
remarked, they leave the classical action invariant. They can be thought of as reparameterizations
of the target space. Let us consider such a field redefinition

0 = �(@) ⇐⇒ @ = &(0) , (44)

where & = �−1 is an invertible function defined for 0 > 0. The field @(g) satisfies the following
fixed boundary conditions

@(1) ≡ @0 = &(00) , @(0) = &(0) . (45)

The fluctuations around the instanton solutions satisfy

X0 = �′(@̄ n )X@ + O((X@)2) , where @̄ n = &(0̄ n ) , (46)

where a prime denotes a derivative.
At the quantum level, the path integral measures D0 and D@ will not be equivalent in

general, since they will be related by a non-trivial Jacobian. As a result, we can define a quantum
wavefunction, as in Eq. (18),

Ψ̃(@0) = ΔFP

∫ +∞

0
dℓ

∫
@ (0)=& (0) , @ (1)=@0

D@ 4− 1
ℏ
(̃E [ℓ2,@ ] , (47)

based on the gauge invariant path-integral measure D@. The tilde action satisfies

(E [ℓ2, 0] ≡ (̃E [ℓ2, @] . (48)

Following similar steps as before, we may calculate Ψ̃(@0) in the semi-classical limit to get [17]

Ψ̃(@0) = C̃B (\∗)
∑
n=±1

1√
n sign(& ′)

exp
[
n B

2E3

ℏ_2
(
1 − (_00)2

) 3
2
]

0
1
8
0 |& ′(00) |

1
4
(
1 − (_00)2

) 1
4

(1 + O(ℏ)) , 0 < _00 < 1 , (49)

where C̃B (\∗) is a regulator-dependant coefficient

C̃B (\∗) = U
√
8c

( cℏ
3BE3

) 1
4 exp

[
−B 2E3

ℏ_2

] ( _
\∗

) 1
8
���& ′( sin \∗

_

)���− 1
4
. (50)
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The wavefunction can also be expressed in terms of @0. The expression is

Ψ̃(@0) = C̃B (\∗)
∑
n=±1

1√
n sign(�′)

exp
[
n B

2E3

ℏ_2
(
1 − (_�(@0))2

) 3
2
]

�(@0)
1
8 |�′(@0) |−

1
4
(
1 − (_�(@0))2

) 1
4
(1 + O(ℏ)) . (51)

We conclude that there are infinitely many prescriptions to define the “ground state” wavefuc-
tion. In the next section we will show that these yield identical observable predictions.

4. Wheeler–DeWitt equation and universality

For each choiceD@, the corresponding ground-state wavefunction satisfies a Wheeler–DeWitt
equation. To see this let us first note that the path integral of a total functional derivative must
vanish

0 =
∫ D#

Vol(Diff [#2])
X

X# (G0)
48(̃ [#

2,@ ] , for all G0 . (52)

In this formula, (̃ is the Lorentzian action expressed in terms of the field @ and corresponding to
the classical Lagrangian

!̃ (#, @, ¤@) = 3E3

(
− �(@)�

′(@)2
#

¤@2 + #+̃ (@)
)
. (53)

Using this expression, it is easy to see that Eq. (52) further yields the constraint identity

0 = −8
∫
C

D# D@
Vol(Diff [#2])

�̃

#

�����
G0

48(̃ [#
2,@ ] , (54)

where

�̃ = #

(
− 1

12E3

c2
@

��′2
− 3E3+̃

)
(55)

is the classical Hamiltonian. Here, c@ is the momentum conjugate to @ given by

c@ =
m!̃

m ¤@ = −6E3
��′2

#
¤@ . (56)

The implication of the constraint identity is the vanishing of all matrix elements of the quantum
Hamiltonian divided by the lapse function. Equivalently, the quantum Hamiltonian (divided by the
lapse function) must annihilate all physical states. The corresponding wavefunctions must satisfy
the Wheeler–DeWitt equation.

As usual, the canonical quantization of the classical expression for �̃/# can be obtained by
replacing

@ −→ @0 , c@ −→ −8ℏ
d

d@0
, (57)

which satisfy the canonical commutation relation [@, c@] = 8ℏ. However, because the first term
in the classical expression of �̃/# involves a product of functions @ and c@, there are ordering
ambiguities in constructing the quantum operator. These ambiguities are induced in the precise

11
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form of the Wheeler–DeWitt equation. They can be parameterized in terms of two functions of @,
d̃ and l̃, as follows [17]

�̃

#
Ψ̃C ≡

ℏ2

12E3

1
��′2

[
1
d̃

d
d@0

(
d̃

dΨ̃C
d@0

)
+ l̃Ψ̃C

]
− 3E3+̃Ψ̃C = 0 , (58)

where ΨC denotes a generic solution. Setting

Ψ�C (00) ≡ Ψ̃C (&(00)) , (59)

we may alternatively write the above equation in terms of the scale factor as

�̃

#
Ψ̃C ≡

��

#
Ψ�C ≡

ℏ2

12E3

1
00

[
1
d�

d
d00

(
d�

dΨ�C
d00

)
+ l�Ψ�C

]
− 3E3+Ψ�C = 0 ,

where d�(00) =
d̃(&(00))
|& ′(00) |

, l�(00) = l̃(&(00))& ′(00)2 . (60)

We can lift the ambiguity in the form of the Wheeler–DeWitt equation by imposing that the
ground-state wavefunctions have to satisfy it. Indeed, the generic solutions at the semi-classical
can be obtained by applying the WKB method [30], which leads to [17]

Ψ̃C (@0) =
∑
n=±1

#Cn

exp
[
n B

2E3

ℏ_2
(
1 − (_�(@0))2

) 3
2
]

| d̃(@0) |
1
2 �(@0)

1
2 |�′(@0) |

1
2
(
1 − (_�(@0))2

) 1
4
(1+O(ℏ)) , 0 < _�(@0) < 1 ,

(61)
where #Cn are two integration constants. Comparing with Eq. (51) we find d̃,

d̃(@0) = �(@0)−
3
4 |�′(@0) |−

3
2 . (62)

Notice that the unknown function l̃ is absorbed in O(ℏ) terms, and so it cannot be determined at
the semi-classical level. The expression for d� is

d�(00) = 0
− 3

4
0 |&

′(00) |
1
2 . (63)

Both d̃(@0) and d�(00) are positive for 0 < _00 < 1. The values #n of the mode coefficients #Cn
that select the corresponding ground-state wavefunction are given by

#n =
1√

n sign(& ′)
. (64)

Quantum equivalence at the semi-classical level: A natural question that arises is whether
different wavefunction prescriptions based on the path integral measuresD@, and the corresponding
Wheeler–DeWitt equations, define different quantum gravity models with same classical limits.
The answer to this question is negative. The reason is that all these prescriptions yield the same
observable predictions at the semi-classical level.

Indeed to obtain probability amplitudes, we need to define a suitable inner product in each
Hilbert space. This takes the form

〈Ψ�1,Ψ�2〉� =
∫ +∞

0
d00 `�(00)Ψ�1(00)∗Ψ�2(00) , (65)
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for some real positive measure `�.
Based on the form of the inner product, we obtain the following identity

〈
Ψ�1,

��

#
Ψ�2

〉
=

〈�†
�

#
Ψ�1,Ψ�2

〉
+ ℏ2

12E3

[
d�

(
`�

00d�
Ψ∗�1

dΨ�2
d00

− d
d00

( `�

00d�
Ψ∗�1

)
Ψ�2

)]+∞
0

,

(66)
where integration by parts gives

�
†
�

#
Ψ�C ≡

ℏ2

12E3

1
00

[
00
`�

d
d00

(
d�

d
d00

( `�

00d�
Ψ�C

)
+ l�Ψ�C

]
− 3E3+Ψ�C . (67)

Imposing hermiticity of the Hamiltonian gives rise to a differential equation, which determines `�
in terms of d� [17]:

`�(00) = 00 d�(00) . (68)

It has been shown that thismeasure yields consistently the classical Friedmann-Lemaître-Robertson-
Walker cosmological evolution in the ℏ→ 0 limit [31]. Furthermore the Wheeler–DeWitt equation
ensures the vanishing of the boundary term in Eq. (66).

It follows that at the semi-classical level, the probability amplitudes √`�Ψ�C are universal,
since

√
`�(00)Ψ�C (00) =

∑
n=±1

#Cn

exp
[
n B

2E3

ℏ_2
(
1 − (_00)2

) 3
2
]

(
1 − (_00)2

) 1
4

(1 + O(ℏ)) , 0 < _00 < 1 . (69)

This universality relation can be extended also for _00 > 1 [17]. So all probabilities and relative
probabilities are independent of the choice of the path integral measure D@, at least at the semi-
classical level.

An important consequence however is that none of the solutions of the Wheeler–DeWitt
equation is normalizable. Indeed by examining the large 00 behavior of these functions, we can
infer that |

√
`�(00)Ψ�C (00) |2 scales as 1/00 in this limit, giving rise to a logarithmically divergent

norm. So at best we can use these wavefunctions to define relative probabilities, in terms of ratios
of the probability densities evaluated at different points of minisuperspace in this model. It would
be interesting to extend the analysis to more realistic cases, in the presence of matter, in order to see
if normalizable wavefunctions, based on the no-boundary proposal, can be constructed. Interesting
attempts to extract observables in quantum cosmology includes Refs. [13, 32–35].

5. Conclusions

In this work we have considered the Hartle–Hawking wavefunction for spatially closed uni-
verses, with positive cosmological constant Λ > 0. We focused on the simpler minisuperspace
version, considering homogeneous and isotropic universes. The system can be seen as a non-linear
f-model with a line segment for the base and a one-dimensional target space parameterized by
the scale factor. The gauge fixing of time reparameterizations is achieved by integrating over the
proper length of the line-segment base, introducing the necessary Faddeev–Popov determinant,
which turns out to be trivial, and using gauge invariant measures for the scale factor path integral.
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The reparametrizations of the scale factor, that is the coordinate of the target space, yield different
gauge invariant measures and path integrals, but the corresponding Hilbert spaces are equivalent,
at least semi-classically.
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