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1. Introduction

The study of AdS3 and AdS2 spaces in String Theory has been of paramount importance towards
achieving our current microscopical understanding of black holes. These spaces describe the
geometries of extremal black holes close to the horizon, and through the AdS/CFT correspondence
have associated dual CFTs where their microscopical degrees of freedom can be identified. The
agreement between the field theory degrees of freedom and the Bekenstein-Hawking entropy
represents one of the most important achievements of String Theory in the last decades.

Recently, remarkable progress has been gained in the construction of AdS3 and AdS2 solutions
to Type II supergravities for which the dual CFTs have also been identified [1]-[26]. These represent
explicit new AdS/CFT pairs where the black hole microscopical counting program can be carried
out in detail. In the AdS2/CFT1 case the well-known problems related to the non-connectedness
of the boundary of AdS2 and the interpretation of the central charge of the dual super-conformal
quantum mechanics (SCQM) have been circumvented through explicit constructions of SCQM
whose degrees of freedom match the Bekenstein-Hawking entropy [2, 20, 22–24].

Low dimensional AdS spaces constitute as well promising candidates to holographic duals of
CFTs describing defects within higher dimensional CFTs. Notable examples of such realisations
have been reported in [19, 21, 24, 27–42]. In these realisations the brane set-ups in which the
defect CFTs live are interpreted as brane intersections ending on bound states, which are described
close to the horizon by higher dimensional AdS spaces. The brane intersections break some of the
isometries of these higher dimensional spaces, giving rise to lower dimensional AdS spaces in the
near horizon limit. These lower dimensional spaces are dual to low dimensional CFTs, that find
an interpretation as defect CFTs within the higher dimensional CFTs living in the bound states on
which the brane intersections end.

In these proceedings we will report on recent progress in the construction of AdS3/CFT2 and
AdS2/CFT1 pairs in massive Type IIA supergravity while paying special attention to the description
of the CFTs and their defect interpretation. The AdS solutions are foliations of AdS3 × 𝑆2 or
AdS2 × 𝑆3 times a CY2 over an interval, preserving 4 supersymmetries1. Remarkably, the CFTs
dual to general subclasses of these solutions have been shown to admit quiver descriptions in the
UV which have been used to compute their degrees of freedom, which have been shown to match
the holographic computations. These solutions thus constitute well-defined string theory settings
where computations such as the corrections to the entropy of five and four dimensional black holes
can be performed.

The approach taken in the construction of the AdS2 solutions is to apply double analytical
continuation techniques on the AdS3 solutions. Compared to other approaches in the literature (see
for instance [20, 22, 24]) this allows to construct AdS2 spaces unrelated to AdS3 ones, and therefore
dual to SCQMs that do not occur as discrete light-cone compactifications of 2d CFTs [43, 44]. Yet,
the explicit dual pairs that we will review show that it is possible to compute the SCQM central
charge from a formula inherited from 2d. This is a striking result that deserves more detailed
investigation.

In this article we will also put our focus on the interpretation of the new dual pairs as describing
defect CFTs within the 5d Sp(N) fixed point theories living in D4-D8 bound states [45], whose

1More concretely, N = (0, 4) in the AdS3/CFT2 case.
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near horizon geometry is the Brandhuber-Oz AdS6 solution to massive Type IIA supergravity [46].
The approach that we take is to relate (a subset of) our solutions with the uplift to massive IIA of
the AdS3 and AdS2 domain wall solutions to 6d minimal gauged supergravity obtained in [38–40].
These solutions asymptote locally to the AdS6 vacuum in the UV, while they are singular in the
IR, due to the presence of lower dimensional brane intersections. Thus, they can be interpreted as
holographic duals of surface (for AdS3) or line (for AdS2) defect CFTs within the 5d Sp(N) fixed
point theory dual to the AdS6 vacuum.

The paper is organised as follows. We start in section 2 by reviewing the AdS3 × 𝑆2 ×CY2 × 𝐼

solutions constructed in [1], with a focus on the subclass for which the dual 2d CFT was identified in
[11–13]2. Then in subsection 2.2 we describe the defect interpretation of these solutions within the
5d Sp(N) fixed point theory, found in [19]. In section 3 we turn to the study of the AdS2×𝑆3×CY2×𝐼
solutions constructed in [2, 18], with special focus on the subclass of solutions for which the dual
SCQM was identified. We devote subsection 3.2 to review a solution in the AdS2 class recently
constructed in [23], by means of a non-Abelian T-duality (NATD) transformation acting on the
AdS3 × 𝑆3 ×CY2 solution of Type IIB string theory. Contrary to previous applications of NATD as
a solution generating technique in supergravity, the NATD takes place in this case with respect to a
non-compact group of isometries, mapping the AdS3×𝑆3×CY2 space onto an AdS2× 𝐼 ′×𝑆3×CY2

solution contained in the class of [2, 18]. We try to connect the previous solution to a black hole
geometry constructed in [47], when non-Abelian T-duality was first introduced at the level of the
string worldsheet. This geometry was found by performing NATD on the principal chiral model with
group SL(2,R), as an illustration of the applicability of NATD with respect to non-compact isometry
groups. Our results in this subsection show that this black hole geometry cannot be embedded within
massive Type IIA supergravity using the class of solutions constructed in [2, 18]. These are new
results in our search for valid string theory backgrounds where the black hole geometry constructed
in [47] could be embedded. In subsection 3.3 we turn to the defect interpretation of (a subclass of)
the AdS2 × 𝑆3 ×CY2 × 𝐼 solutions as line defects within the 5d Sp(N) fixed point theory, following
[19]. Finally in section 4 we summarise the contents of this paper and sketch future new directions
of investigation.

2. AdS3/CFT2 with (0,4) supersymmetries

In [1] a family of AdS3×S2 solutions to massive IIA supergravity with N = (0, 4) supersym-
metry and SU(2)-structure was constructed. These solutions are foliations of AdS3×S2×M4 over
an interval, where M4 is either a CY2 or a 4d Kähler manifold. Both cases were studied in detail in
[1]. In this review article we will focus on the case M4 =CY2, referred as Class I in that reference.

2Here we follow closely [26], where some errors in the field theory description in [11–13] were pointed out and a
more careful analysis of the matching between the field theory and holographic central charges was carried out.
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The Neveu-Schwarz sector of this subclass of solutions reads, in string frame3,

d𝑠2 =
𝑢

√
ℎ4ℎ8

(
d𝑠2

AdS3
+ ℎ8ℎ4

Δ
d𝑠2

S2

)
+
√︂

ℎ4
ℎ8

d𝑠2
CY2

+
√
ℎ4ℎ8
𝑢

d𝑧2, Δ = 4ℎ8ℎ4 + 𝑢′2 ,

𝑒−Φ =
ℎ

3
4
8

2ℎ
1
4
4
√
𝑢

√
Δ , 𝐻3 =

1
2

d
(
−𝑧 + 𝑢𝑢′

Δ

)
∧ volS2 ,

(1)

where Φ is the dilaton and 𝐻3 is the field strength of the Kalb-Ramond antisymmetric tensor, 𝐵2.
The warping functions ℎ8 and 𝑢 have support on the 𝑧 coordinate while ℎ4 has support on (𝑧,CY2).
We have denoted 𝑢′ = 𝜕𝑧𝑢, and the same for the functions ℎ4 and ℎ8 below. The background (1) is
supported by the Ramond-Ramond (RR) fluxes,

𝐹0 = ℎ′8, 𝐹2 = −1
2

(
ℎ8 −

ℎ′8𝑢
′𝑢

Δ

)
volS2 ,

𝐹4 = −
(
d
(
𝑢𝑢′

2ℎ4

)
+ 2ℎ8d𝑧

)
∧ volAdS3 − 𝜕𝑧ℎ4volCY2 − ℎ8(∗4𝑑4ℎ4) ∧ 𝑑𝑧.

(2)

Additionally, supersymmetry demands
𝑢′′(𝑧) = 0, (3)

and away from localised sources, the Bianchi identities demand,

ℎ′′8 (𝑧) = 0, 𝜕2
𝑧 ℎ4 + ℎ8∇2

CY2
ℎ4 = 0. (4)

It was shown in [1] that the background defined by (1)-(2) is a solution of massive IIA supergravity
preserving (0, 4) supersymmetries as long as the ℎ4, ℎ8, 𝑢 functions satisfy the conditions (3)-(4).

The Page fluxes, defined as 𝐹̂ = 𝑒−𝐵2 ∧ 𝐹, are given by,

𝐹̂0 = ℎ′8, 𝐹̂2 = −1
2

(
ℎ8 − ℎ′8(𝑧 − 2𝜋𝑘)

)
volS2 ,

𝐹̂4 = −
(
𝜕𝑧

(
𝑢𝑢′

2ℎ4

)
+ 2ℎ8

)
d𝑧 ∧ volAdS3 − 𝜕𝑧ℎ4volCY2 − ℎ8(∗4𝑑4ℎ4) ∧ 𝑑𝑧.

(5)

Here we have taken into account large gauge transformations of 𝐵2 of parameter 𝑘 , 𝐵2 → 𝐵2 +
𝜋𝑘volS2 , for 𝑘 = 0, 1, ...., 𝑃, that ensure that it remains in the fundamental region,

1
4𝜋2 |

∫
S2
𝐵2 | ∈ [0, 1] . (6)

These transformations are performed every time a 𝑧-interval 𝑧 ∈ [2𝜋𝑘, 2𝜋(𝑘 + 1)] is crossed.
In the case in which ℎ4 does not depend on the coordinates of the CY2, the conditions (4) leave

us with linear functions for both ℎ8 and ℎ4. The analysis of the dual field theory carried out in

3Note that we are restricting to the case in which the closed and anti-self dual 2-form living on the CY2 also included
in [1] vanishes.
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[11–13] considered functions of the form,

ℎ4(𝑧)=


𝛽0
2𝜋 𝑧 0 ≤ 𝑧 ≤ 2𝜋,

𝛼𝑘+ 𝛽𝑘
2𝜋 (𝑧 − 2𝜋𝑘) 2𝜋𝑘 ≤ 𝑧 ≤ 2𝜋(𝑘 + 1), 𝑘 = 1, ..., 𝑃 − 1

𝛼𝑃 − 𝛼𝑃

2𝜋 (𝑧 − 2𝜋𝑃) 2𝜋𝑃 ≤ 𝑧 ≤ 2𝜋(𝑃 + 1),
(7)

ℎ8(𝑧) =


𝜈0
2𝜋 𝑧 0 ≤ 𝑧 ≤ 2𝜋,

𝜇𝑘 + 𝜈𝑘
2𝜋 (𝑧 − 2𝜋𝑘) 2𝜋𝑘 ≤ 𝑧 ≤ 2𝜋(𝑘 + 1), 𝑘 = 1, ..., 𝑃 − 1

𝜇𝑃 − 𝜇𝑃

2𝜋 (𝑧 − 2𝜋𝑃) 2𝜋𝑃 ≤ 𝑧 ≤ 2𝜋(𝑃 + 1),
(8)

which, being piecewise linear, allow for D4 and D8 sources in the background, as implied by the
expressions for 𝐹̂4 and 𝐹̂0 in (5). Here it has been imposed that ℎ4 and ℎ8 vanish at 𝑧 = 0, where the
space begins, and at 𝑧 = 2𝜋(𝑃 + 1), where the space ends. The singularity structure of the metric
and dilaton at these points is that of a superposition of D2-branes wrapped on AdS3 and smeared
on the CY2 × S2, and D6-branes wrapped on AdS3 × CY24. In turn, 𝑢 needs to be continuous for
preservation of supersymmetry. In this paper we will consider the simplest case 𝑢′ = 0. Those
readers interested in the 𝑢′ ≠ 0 case are referred to [13, 48].

Imposing the continuity of the Neveu-Schwarz sector across the various intervals one finds that
the quantities (𝛼𝑘 , 𝛽𝑘 , 𝜇𝑘 , 𝜈𝑘) must satisfy,

𝛼𝑘 =

𝑘−1∑︁
𝑗=0

𝛽 𝑗 , 𝜇𝑘 =

𝑘−1∑︁
𝑗=0

𝜈 𝑗 . (9)

In turn, the quantised charges are given, in the [𝑧𝑘 , 𝑧𝑘+1] interval, by

𝑄
(𝑘 )
D2 = 𝛼𝑘 =

𝑘−1∑︁
𝑗=0

𝛽 𝑗 , 𝑄
(𝑘 )
D6 = 𝜇𝑘 =

𝑘−1∑︁
𝑗=0

𝜈 𝑗

𝑄
(𝑘 )
D4 = 𝛽𝑘 , 𝑄

(𝑘 )
D8 = 𝜈𝑘 , 𝑄

(𝑘 )
NS5 = 1, (10)

which implies that (𝛼𝑘 , 𝛽𝑘 , 𝜇𝑘 , 𝜈𝑘) must be integer numbers.
In the next subsection we briefly summarise the two dimensional CFTs proposed in [11, 12] as

duals to the family of solutions given by (1)-(2) with ℎ4, ℎ8 given by (7)-(8).

2.1 Two dimensional dual CFTs

The branes that underlie the background defined by equations (1)-(4) are distributed as indicated
in Table 1. The D2- and D6-branes play the role of colour branes, while the D4- and D8-branes are
flavour branes. This interpretation is supported by the study of the Bianchi identities, given by

d𝐹0 =

𝑃∑︁
𝑘=1

( 𝜈𝑘−1 − 𝜈𝑘

2𝜋

)
𝛿(𝑧 − 2𝜋𝑘)d𝑧

d𝐹̂4 =

𝑃∑︁
𝑘=1

( 𝛽𝑘−1 − 𝛽𝑘

2𝜋

)
𝛿(𝑧 − 2𝜋𝑘)d𝑧 ∧ volCY2 , (11)

which show that at the points 𝑧 = 2𝜋𝑘 there are D4 and D8 localised sources.

4In fact, it is also compatible with a superposition of O2-O6 planes. The string theory interpretation of smeared
orientifold fixed planes is however unclear.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D2 x x x
D4 x x x x x
D6 x x x x x x x
D8 x x x x x x x x x
NS5 x x x x x x

Table 1: Brane set-up underlying the background given by (1)-(4). (𝑥0, 𝑥1) are the directions where the two
dimmensional CFT lives. The directions (𝑥2, . . . , 𝑥5) span the CY2, on which the D6- and the D8-branes
are wrapped. The coordinate 𝑥6 is the direction associated with 𝑧. Finally (𝑥7, 𝑥8, 𝑥9) are the orthogonal
directions realising the SO(3) R-symmetry.

∆Q
(1)

D8D8 ∆Q
(2)

D8D8

∆Q
(1)

D4D4 ∆Q
(2)

D4D4

Q
(1)

D2D2

Q
(1)

D6D6 Q
(2)

D6D6

Q
(2)

D2D2

Figure 1: Hanany-Witten brane set-up associated to the solutions with ℎ4, ℎ8 functions given by (7)-(8). The
horizontal lines represent colour branes, in our case D2 and D6 branes, vertical lines represent NS5-branes
and the crosses are flavour branes (D4- and D8-branes).

The previous information can be codified in the Hanany-Witten brane set-up depicted in Figure
1. As shown in [11, 12, 26], the 2d field theories living in these brane intersections are represented
by the quivers depicted in Figure 2, whose dynamics conjecturally flow in the IR to CFTs with small
N = (0, 4) supersymmetry, dual to the AdS3 solutions. The 2d field theory lives in the D2 and D6
colour branes and there are adequate flavour groups coming from D4 and D8 branes, that give rise
to non-anomalous quivers.

The quiver dynamics was first studied in [11, 12], and later analysed in deeper detail in [26],
where the explicit quantisation of the open strings connecting the different branes in the set-up
was carried out. This detailed analysis led to corrections to some of the results in [11, 12], not
changing however significantly the main conclusions in these papers. The multiplets that arise from
the quantisation of open strings are summarised in Table 2. The quivers depicted in Figure 2 are
then described in terms of (0, 4) vector multiplets and (0, 4) adjoint hypermultiplets, associated
to the gauge nodes (depicted by circles and grey lines starting and ending on the same gauge
group, respectively), (4, 4) twisted hypermultiplets in the bifundamental representation of two
gauge groups (depicted by black lines), (0,4) bifundamental hypermultiplets (grey lines) and (0,2)
bifundamental Fermi multiplets (dashed lines).

As discussed in [11, 12, 26], the cancellation of gauge anomalies constrains, for generic U(𝛼𝑘)

6
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α3 αK

µK

α1

F1 F2 F3 FK

F̃1 F̃2 F̃3 F̃K

α2

µ1 µ2 µ3

Figure 2: Quivers encoding the two dimensional field theories living in the D2-D4-D6-D8-NS5 brane
intersections depicted in Figure 1.

String Interval Multiplet Representation
D2-D2 Same N = (0, 4) vector + N = (0, 4) hyper Adjoint
D2-D2 Adjacent N = (4, 4) twisted hyper bi-fundamental
D6-D6 Same N = (0, 4) vector + N = (0, 4) hyper Adjoint
D6-D6 Adjacent N = (4, 4) twisted hyper bi-fundamental
D2-D6 Same N = (0, 4) hyper bi-fundamental
D2-D6 Adjacent N = (0, 2) Fermi bi-fundamental
D2-D4 Same N = (4, 4) twisted hyper bi-fundamental
D4-D6 Same N = (0, 2) Fermi bi-fundamental
D2-D8 Same N = (0, 2) Fermi bi-fundamental
D6-D8 Same N = (4, 4) twisted hyper bi-fundamental

Table 2: Summary of the multiplets arising from the different strings stretching between branes in the brane
set-up. The interval column determines whether the branes lie in the same interval or in adjacent intervals.
For strings that do not contribute massless modes we have ignored their contribution in the table, for example
D4-D4 strings.

and U(𝜇𝑘) colour groups, the ranks of the respective flavour groups to be,

𝐹𝑘 = 𝜈𝑘−1 − 𝜈𝑘 , 𝐹̃𝑘 = 𝛽𝑘−1 − 𝛽𝑘 , (12)

exactly as implied by (11). Moreover, the field theory and holographic central charges can be shown
to match in the holographic limit. Indeed, the right-moving central charge of the IR SCFT can be
calculated using its relation with the U(1)𝑅 current two-point function,

𝑐𝑅 = 3Tr[𝛾3𝑄2
𝑅], (13)

where the trace is over the Weyl fermions of the theory and 𝛾3 is the chirality matrix in 2d. Keeping
in mind the R-charges and fermion content of the different multiplets, summarised in Table 3, this

7
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leads to
𝑐𝑅 = 6(𝑛ℎ𝑦𝑝 − 𝑛𝑣𝑒𝑐), (14)

where 𝑛ℎ𝑦𝑝 is the number of (0, 4) hypermultiplets and 𝑛𝑣𝑒𝑐 is the number of (0, 4) vector multiplets.
Note that (0,4) twisted hypermultiplets and (0,2) Fermi multiplets do not contribute to the R-
symmetry anomaly, and therefore they do not contribute either to the central charge. For the quivers
depicted in Figure 2 the central charge is then given by

𝑐𝑅 = 6
𝑃∑︁
𝑘=1

𝛼𝑘𝜇𝑘 . (15)

Multiplet (0, 2) Origin Number of Fermions Chirality R-charge of Fermion
(0, 4) hyper 2 × Chiral 2 R.H. -1

(0, 4) twisted hyper 2× Chiral 2 R.H. 0
(0, 4) vector (0,2) vector 1 L.H. 1

(0,2) Fermi 1 L.H. 1
(0, 2) Fermi - 1 L.H. 0

Table 3: R-charges and fermion content of the multiplets.

In turn, the holographic central charge for the geometries defined by (1) is given by

𝑐ℎ𝑜𝑙 =
3𝜋

2𝐺𝑁

VolCY2

∫ 2𝜋 (𝑃+1)

0
ℎ4ℎ8d𝑧 =

3
𝜋

∫ 2𝜋 (𝑃+1)

0
ℎ4ℎ8d𝑧. (16)

Here we have used that 𝐺𝑁 = 8𝜋6, with 𝑔𝑠 = 𝛼′ = 1, and that VolCY2 = 16𝜋4. For the functions ℎ4,
ℎ8 displayed in (7)-(8) this gives

𝑐ℎ𝑜𝑙 =

𝑃∑︁
𝑘=1

(
6𝛼𝑘𝜇𝑘 + 3(𝛼𝑘𝜈𝑘 + 𝛽𝑘𝜇𝑘) + 2𝛽𝑘𝜈𝑘

)
. (17)

As discussed in [26], this quantity has to be matched with the combination of left-moving and
right-moving central charges of the field theory,

𝑐ℎ𝑜𝑙 =
𝑐𝐿 + 𝑐𝑅

2
. (18)

The left-moving central charge can be computed from the field theory using that

𝑐𝐿 − 𝑐𝑅 = Tr𝛾3. (19)

This gives for the quivers depicted in Figure 2,

𝑐𝐿 − 𝑐𝑅 =

𝑃∑︁
𝑘=1

(
𝛼𝑘 (𝜇𝑘+1 − 𝜇𝑘) + 𝜇𝑘 (𝛼𝑘+1 − 𝛼𝑘)

)
, (20)

8
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and finally
𝑐𝐿 + 𝑐𝑅

2
=

𝑃∑︁
𝑘=1

(
6𝛼𝑘𝜇𝑘 +

1
2
(𝛼𝑘 (𝜇𝑘+1 − 𝜇𝑘) + 𝜇𝑘 (𝛼𝑘+1 − 𝛼𝑘))

)
. (21)

Comparing this expression to the expression (17) for the holographic central charge one can see that
they agree exactly to leading order. As discussed in [26] it is expected that higher order corrections
to the gravity computation will yield an exact matching between the two quantities.

In the next subsection we summarise the results found in [19], which show that a subclass of
the previous solutions with CY2 = 𝑇4 can be interpreted as describing two dimensional defects
within the 5d CFT dual to the AdS6 background of Brandhuber-Oz [46].

2.2 Defect interpretation

In [19] the full brane solutions whose near horizon geometries are the AdS3 × 𝑆2 × 𝑇4 × 𝐼

backgrounds discussed in the previous subsections were constructed. They were interpreted in
terms of D2-NS5-D6 branes ending on D4-D8 bound states. Furthermore, a parametrisation was
obtained that allowed to relate a subclass of the AdS3 geometries to 6d domain walls that asymptote
locally to AdS6. This allowed to propose a dual interpretation of these AdS3 solutions as surface
defect CFTs within the 5d Sp(N) CFT dual to the Brandhuber-Oz AdS6 background.

The brane intersection constructed in [19] reads

𝑑𝑠2
10 = 𝐻

−1/2
D4 𝐻

−1/2
D8

[
𝐻

−1/2
D6 𝐻

−1/2
D2 𝑑𝑠2

R1,1 + 𝐻
1/2
D6 𝐻

1/2
D2 𝐻NS5(𝑑𝑟2 + 𝑟2𝑑𝑠2

𝑆2)
]

+ 𝐻
1/2
D4 𝐻

1/2
D8 𝐻

−1/2
D6 𝐻

−1/2
D2 𝐻NS5𝑑𝑧

2 + 𝐻
1/2
D4 𝐻

−1/2
D8 𝐻

−1/2
D6 𝐻

1/2
D2 (𝑑𝜌2 + 𝜌2𝑑𝑠2

𝑆̃3) ,
(22)

and

𝐶3 = 𝐻D8 𝐻
−1
D2 volR1,1 ∧ 𝑑𝑧 ,

𝐶5 = 𝐻D6 𝐻NS5 𝐻
−1
D4 𝑟

2 volR1,1 ∧ 𝑑𝑟 ∧ vol𝑆2 ,

𝐶7 = 𝐻D4 𝐻
−1
D6 𝜌

3 volR1,1 ∧ 𝑑𝑧 ∧ 𝑑𝜌 ∧ vol𝑆̃3 ,

𝐵6 = 𝐻D8 𝐻D4 𝐻
−1
NS5 𝜌

3 volR1,1 ∧ 𝑑𝜌 ∧ vol𝑆̃3 ,

𝑒Φ = 𝐻
−5/4
D8 𝐻

−1/4
D4 𝐻

−3/4
D6 𝐻

1/2
NS5 𝐻

1/4
D2 ,

(23)

with the 𝐶9 potential for D8 branes defining the Romans mass as 𝐹0 = 𝑚.
In this intersection the D2 and the NS5 branes are taken to be smeared over the space transverse

to the D4-branes, i.e. 𝐻𝐷2 = 𝐻𝐷2(𝑟) and 𝐻𝑁𝑆5 = 𝐻𝑁𝑆5(𝑟). The Bianchi identities read

𝜕𝑧𝐻D8 = 𝑚 , 𝐻NS5 = 𝐻D6 = 𝐻D2 , ∇2
R3
𝑟
𝐻NS5 = 0 . (24)

Imposing the relations (24), the Bianchi identities for 𝐹(4) and the equations of motion collapse to
the equation describing the D4-D8 system [49],

𝐻D8 ∇2
𝑇4 𝐻D4 + 𝜕2

𝑧 𝐻D4 = 0 . (25)

Finally a particular solution can be written down as

𝐻NS5(𝑟) = 1 + 𝑄NS5
𝑟

, 𝐻D6(𝑟) = 1 + 𝑄D6
𝑟

, 𝐻D2(𝑟) = 1 + 𝑄D2
𝑟

, (26)
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where 𝑄D6 = 𝑄D2 = 𝑄NS5 for (24) to be satisfied.
It was shown in [19] that this solution gives rise to the AdS3 × 𝑆2 × 𝑇4 × 𝐼 solutions discussed

in the previous subsections (restricted to the case 𝑢′ = 0) in the near horizon limit, i.e. when
𝑟 → 0. Furthermore, it was shown that the AdS3 backgrounds asymptote locally to the AdS6

vacuum associated to the D4-D8 system. This could be achieved through a change of variables
that allowed to map the AdS3 solutions to the uplift to massive IIA of the domain wall solutions
to 6d N = (1, 1) minimal gauged supergravity found in [38]. These domain wall solutions were
shown to asymptote locally to the AdS6 vacuum of 6d supergravity, and therefore, upon uplift, to
the Brandhuber-Oz AdS6 solution of massive IIA supergravity. This goes as follows.

In [38] the following 6d background was considered,

𝑑𝑠2
6 = 𝑒2𝑈 (𝜇)

(
4 𝑑𝑠2

𝐴𝑑𝑆3
+ 𝑑𝑠2

𝑆2

)
+ 𝑒2𝑉 (𝜇)𝑑𝜇2 ,

B2 = 𝑏(𝜇) vol𝑆2 ,

𝑋6 = 𝑋6(𝜇) .

(27)

This background is described by the set of BPS equations,

𝑈′ = −2 𝑒𝑉 𝑓6 , 𝑋 ′
6 = 2 𝑒𝑉 𝑋2

6 𝐷𝑋 𝑓6 , 𝑏′ =
𝑒𝑈+𝑉

𝑋2
6

, (28)

together with the duality constraint

𝑏 = −𝑒𝑈 𝑋6
𝑚

, (29)

and the superpotential 𝑓6

𝑓6(𝑚, 𝑔, 𝑋6) =
1
8

(
𝑚𝑋−3

6 +
√

2𝑔𝑋6

)
, with 𝑚 =

√
2

3
𝑔. (30)

This flow preserves 8 real supercharges (BPS/2 in 6d). In order to obtain an explicit solution of
(28), the parametrisation of the 6d geometry

𝑒−𝑉 = 2 𝑋2
6 𝐷𝑋 𝑓6 (31)

was chosen. The system (28) could then be integrated out easily [38], to give

𝑒2𝑈 = 2−1/3𝑔−2/3
(

𝜇

𝜇4 − 1

)2/3
, 𝑒2𝑉 = 8 𝑔−2 𝜇4(

𝜇4 − 1
)2 ,

𝑏 = − 24/3 3 𝑔−4/3 𝜇4/3

(𝜇4 − 1)1/3 , 𝑋6 = 𝜇 ,

(32)

with 𝜇 running between 0 and 1.
One can see that for 𝜇 → 1 the 6d background is such that

R6 = −20
3

𝑔2 +𝑂 (1 − 𝜇)2/3 , 𝑋6 = 1 +𝑂 (1 − 𝜇) , (33)

where R6 is the scalar curvature. These are the curvature and scalar fields reproducing the AdS6

vacuum. In turn, the 2-form gauge potential gives non-zero sub-leading contributions in this limit.

10
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This implies that the asymptotic geometry for 𝜇 → 1 is only locally AdS6. In the opposite limit
𝜇 → 0, the 6d background is manifestly singular. This is due to the presence of the D2-NS5-D6
brane sources.

The uplift of the 6d domain wall solution reads

𝑑𝑠2
10 = 𝑠−1/3 𝑋−1/2

6 Σ
1/2
6 𝑒2𝑈

(
4 𝑑𝑠2

𝐴𝑑𝑆3
+ 𝑑𝑠2

𝑆2

)
+ 𝑠−1/3 𝑋−1/2

6 Σ
1/2
6 𝑒2𝑉𝑑𝜇2

+ 2𝑔−2𝑠−1/3Σ1/2
6 𝑋

3/2
6 𝑑𝜉2 + 2𝑔−2 𝑋

−3/2
6 Σ

−1/2
6 𝑠−1/3 𝑐2 𝑑𝑠2

𝑆̃3 ,

𝐹4 = −4
√

2
3

𝑔−3 𝑠1/3 𝑐3 Σ−2
6 𝑈 𝑑𝜉 ∧ vol𝑆̃3 − 8

√
2 𝑔−3 𝑠4/3 𝑐4 Σ−2

6 𝑋−3
6 𝑋 ′

6 𝑑𝜇 ∧ vol𝑆̃3

− 8
√

2 𝑔−1 𝑠1/3 𝑐 𝑋4
6 𝑏′ 𝑒𝑈−𝑉 𝑑𝜉 ∧ vol𝐴𝑑𝑆3 − 8𝑚 𝑠4/3 𝑏 𝑋−2

6 𝑒𝑈+𝑉 𝑑𝜇 ∧ vol𝐴𝑑𝑆3 ,

𝐹2 = 𝑚 𝑠2/3 𝑏 vol𝑆2 , 𝐻3 = 𝑠2/3 𝑏′ 𝑑𝜇 ∧ vol𝑆2 + 2
3
𝑠−1/3 𝑐 𝑏 𝑑𝜉 ∧ vol𝑆2 ,

𝑒Φ = 𝑠−5/6 Σ1/4
6 𝑋

−5/4
6 , 𝐹(0) = 𝑚 ,

(34)

with 𝑐 = cos 𝜉, 𝑠 = sin 𝜉 , Σ6 = 𝑋6 𝑐
2 + 𝑋−3

6 𝑠2 and 𝑈 given by

𝑈 = 𝑋−6
6 𝑠2 − 3𝑋2

6 𝑐
2 + 4𝑋−2

6 . (35)

It was shown in [19] that the background (34) takes exactly the form of the AdS3 solutions defined
by (1)-(2), upon the change of coordinates

𝑧 =
3 𝑠2/3 𝑒𝑈 𝑋6√

2 𝑔 𝑄NS5
, 𝜌 =

√
2 𝑐 𝑒3𝑈/2

𝑔 𝑄
3/2
NS5 𝑋

1/2
6

. (36)

The AdS3 solution is then specified by the functions

𝐻D8 =
𝑠2/3 𝑒𝑈 𝑋6
𝑄NS5

, 𝐻D4 =
𝑄5

NS5 𝑒
−5𝑈

Σ6
, (37)

which can be shown to satisfy the Bianchi identities given by (4), with 𝐻𝐷8 = ℎ8 and 𝐻𝐷4 = ℎ4.
We have thus shown that the AdS3 backgrounds describing the near-horizon limit of D2-NS5-

D6 branes ending on the D4-D8 brane system, reproduce locally the AdS6 vacuum of [46] for
𝐻D8, 𝐻D4 given by (37). This vacuum geometry comes out thanks to a non-linear mixing of the
(𝑧, 𝜌) coordinates, that relates the near-horizon geometry to a 6d domain wall admitting AdS6 in
its asymptotics. The presence of the 2-form does not allow however to globally recover the vacuum
in this limit. This is seen explicitly at the level of the uplift (34), where one notes that the 𝐹2 and
𝐻3 fluxes break the isometries of the D4-D8 vacuum. This is the manifestation of the D2-NS5-D6
defect, that underlies as well the singular behaviour of the 6d domain wall in its IR regime.

In the next section we summarise a new class of AdS2 solutions to massive Type IIA supergravity
obtained from the solutions reviewed in this section via a double analytical prescription. We describe
the superconformal quantum mechanics dual to these solutions, together with a very similar defect
interpretation within AdS6 to the one presented in this subsection.
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𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

D0 x
D4 x x x x x
D4′ x x x x x
D8 x x x x x x x x x
F1 x x

Table 4: Brane set-up associated to the solutions (40)-(41). 𝑥0 is the time direction of the ten dimensional
spacetime, 𝑥1, . . . , 𝑥4 are the coordinates spanned by the CY2, 𝑥5 is the direction where the F1-strings are
stretched, and 𝑥6, 𝑥7, 𝑥8, 𝑥9 are the coordinates where the SO(4) R-symmetry is realised.

3. AdS2/CFT1 with 4 supersymmetries

We start this section reviewing the new class of AdS2×S3×CY2×I solutions to massive Type IIA
supergravity studied in [2, 18]. These solutions were obtained via a double analytical continuation
from the solutions reviewed in Section 2. This double analytical continuation changes the AdS3

and S2 factors of the backgrounds in (1)-(2) as,

d𝑠2
AdS3

→ −d𝑠2
S3 , d𝑠2

S2 → −d𝑠2
AdS2

. (38)

In order to get well-defined supergravity fields the ℎ8, ℎ4 and 𝑢 functions need to be also analytically
continued as,

𝑢 → −𝑖𝑢, ℎ4 → 𝑖ℎ4, ℎ8 → 𝑖ℎ8, (39)

together with 𝑧 → 𝑖𝑧. In this way, one finds a class of AdS2×S3×CY2×I solutions to massive Type
IIA supergravity with 4 supercharges, with NS-NS sector given by5

d𝑠2 =
𝑢

√
ℎ4ℎ8

(
ℎ4ℎ8

Δ̃
d𝑠2

AdS2
+ d𝑠2

S3

)
+
√︂

ℎ4
ℎ8

d𝑠2
CY2

+
√
ℎ4ℎ8
𝑢

d𝑧2 , Δ̃ = 4ℎ4ℎ8 − 𝑢′2,

𝑒−2Φ =
ℎ

3/2
8 Δ̃

4ℎ1/2
4 𝑢

, 𝐵2 = −1
2

(
𝑧 + 𝑢𝑢′

Δ̃

)
volAdS2 ,

(40)

and RR fluxes,

𝐹0 = ℎ′8 , 𝐹2 = −1
2

(
ℎ8 +

ℎ′8𝑢
′𝑢

Δ̃

)
volAdS2 ,

𝐹4 =

(
−d

(
𝑢′𝑢

2ℎ4

)
+ 2ℎ8d𝑧

)
∧ volS3 − 𝜕𝑧ℎ4volCY2 − ℎ8(∗4𝑑4ℎ4) ∧ 𝑑𝑧 .

(41)

These backgrounds are associated to D0-F1-D4-D4′-D8 brane intersections that preserve N = 4
supersymmetries in one dimension. The corresponding brane set-up is depicted in Table 4.

5As in section 2 we have restricted to the case in which the closed and anti-self dual 2-form living on the CY2
vanishes.

12



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
2

AdS3/CFT2 and AdS2/CFT1 Yolanda Lozano

As in the AdS3×S2 solutions we restrict to the case in which ℎ4 does not depend on the
coordinates of the CY2. In this case the functions ℎ8, ℎ4 and 𝑢 have support on 𝑧, and satisfy the
constraints imposed for supersymmetry and the Bianchi identities, away from localised sources,
given by expressions (3) and (4), with ∇2

CY2
ℎ4 = 0. Thus ℎ8, ℎ4 and 𝑢 are again linear functions of

𝑧.
The Page fluxes are given by,

𝐹̂0 = ℎ′8 , 𝐹̂2 = −1
2

(
ℎ8 − ℎ′8(𝑧 − 2𝜋𝑘)

)
volAdS2 ,

𝐹̂4 =

(
2ℎ8d𝑧 − d

(
𝑢′𝑢

2ℎ4

))
∧ volS3 − ℎ′4volCY2 ,

(42)

where we have included large gauge transformations of 𝐵2 of parameter 𝑘 , 𝐵2 → 𝐵2 + 𝜋𝑘volAdS2 ,
as discussed in [2].

In the next subsection we summarise the dual SCQM of the backgrounds (40)-(41) for the
choice of piecewise linear functions (7)-(8). We consider the case 𝑢′ = 0 and discuss a concrete
example with 𝑢′ ≠ 0, constructed in [23], in subsection 3.2.

3.1 The dual quiver quantum mechanics

In [2] a proposal for a superconformal quantum mechanics living in the D0-D4-D4′-D8-F1
brane set-up depicted in Table 4 was given in terms of a generalisation of the ADHM quantum
mechanics described in [50]6. The quantum mechanics was interpreted as describing the interactions
between brane instantons and Wilson lines in the five dimensional theory with eight Poincaré
supersymmetries living in the D4’-D8 brane intersection. For this purpose the complete D0-D4-
D4′-D8-F1 brane system was split into two subsystems, D4-D4′-F1 and D0-D8-F1, that were
first studied separately. The first subsystem was interpreted as describing BPS F1 Wilson lines
introduced in the 5d theory living in the D4’-branes by D4-branes [53]. Similarly, the D0-D8-F1
subsystem was interpreted as describing F1 Wilson lines introduced in the worldvolume of the
D8-branes by D0-branes [54]. Indeed, both subsystems are displayed exactly as in the D3-D5-F1
brane configuration that describes Wilson lines in antisymmetric representations in 4d N = 4 SYM,
studied in [55, 56].

The quantised charges derived from the Page Fluxes (42) for the piecewise linear functions
defined in (7)-(8) are given by,

𝑄
𝑒 (𝑘 )
D4 = 𝛼𝑘 =

𝑘−1∑︁
𝑗=0

𝛽 𝑗 , 𝑄
𝑒 (𝑘 )
D0 = 𝜇𝑘 =

𝑘−1∑︁
𝑗=0

𝜈 𝑗

𝑄
𝑚(𝑘 )
D4′ = 𝛽𝑘 , 𝑄

𝑚(𝑘 )
D8 = 𝜈𝑘 , 𝑄

𝑒 (𝑘 )
F1 = 1, (43)

in the [2𝜋𝑘, 2𝜋(𝑘 + 1)] interval. Here, the superscripts 𝑒 and 𝑚 indicate electric and magnetic
charges, as discussed in [2].

The previous information can be summarised in the Hanany-Witten brane set-up depicted in
Figure 3. In order to see the interpretation as Wilson lines one can map the brane configuration
onto a F1-D3-NS5-NS7-D1 system in Type IIB via a T+S duality transformation, perform suitable

6And of the quiver proposals discussed in [51, 52].
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α1 D4 α2 D4 αP D4

ν0 D8

β0 D4
′

ν1 D8

β1 D4
′

νP−1 D8

βP−1 D4
′

µ1 D0 µ2 D0 µP D0

z

Figure 3: Hanany-Witten brane set-up associated to the solutions (40)-(41) for the choice of ℎ4, ℎ8 linear
functions given by (7)-(8).

ν0 D8

β0 D4′

νP−1 D8

β1 D4′

βP−1 D4′

µ1 D0 µ2 D0 µP D0

z

ν0 F1

β0 F1 β0 F1

β1 F1

β0 F1

β1 F1

βP−1 F1

α1 D4 α2 D4 αP D4

Figure 4: Brane configuration equivalent to the Hanany-Witten brane set-up depicted in Figure 3 after a
T+S+T duality transformation and suitable Hanany-Witten moves.

Hanany-Witten moves and then go back to Type IIA via a further T-duality. This set of operations
is carefully explained in [2]. One then obtains the configuration depicted in Figure 4, which
can be interpreted as describing U(𝛼𝑘) and U(𝜇𝑘) Wilson lines in the completely antisymmetric
representations (𝛽0, 𝛽1, . . . , 𝛽𝑘−1) of U(𝛼𝑘) and (𝜈0, 𝜈1, . . . , 𝜈𝑘−1) of U(𝜇𝑘), respectively. Given
that the Wilson lines are in the completely antisymmetric representations the D4-D4’-F1 and
D0-D8-F1 subsystems describe in fact baryon vertices [57].

This is consistent with an interpretation of the AdS2 solutions as describing backreacted baryon
vertices within the 5dN = 1 QFT living in the D4’-D8 branes. In this interpretation the dual SCQM
arises in the very low energy limit of a D4’-D8 brane configuration, dual to a 5d QFT, where D4
and D0 brane baryon vertices are introduced. In the low energy limit the gauge symmetry on
both the D4’ and D8 branes becomes global, shifting them from colour to flavour branes, with the
D4 and D0 defect branes becoming the new colour branes of the backreacted configuration. This
defect interpretation is in agreement with the results found in [19], that we summarise in subsection
3.3, where the AdS2 geometries were shown to asymptote locally to the AdS6 background of
Brandhuber-Oz [46].

The superconformal quantum mechanics dual to the AdS2 solutions was analysed in detail in
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β0 − β1 β1 − β2

ν0 − ν1 ν1 − ν2

µ2

α2α1

µ1

βk−1 − βk

νk−1 − νk

µk

αk

Figure 5: One dimensional quiver field theory whose IR limit is dual to the AdS2 backgrounds (40)-(41).

[2]. In the UV it is encoded in the quiver construction depicted in Figure 5. In these quivers the gauge
groups are associated to the colour D0- and D4-branes and the flavour groups to the D4′- and D8-
branes. The quantised charges are the ones computed in (43). The dynamics is described in terms
of (4,4) vector multiplets (circles), (4,4) hypermultiplets in the adjoint representations (semicircles)
and (4,4) hypermultiplets in the bifundamental representations (vertical lines). The connection
between colour and flavour branes is through twisted (4,4) bifundamental hypermultiplets (bent
lines) and (0,2) bifundamental Fermi multiplets (dashed lines). This follows directly from the
analysis in Appendix B of [2]. Note that as in that reference we use 2d N = (0, 4) notation to
actually refer to the 1d N = 4 multiplets.

Checking the agreement between the field theory and holographic central charges in SCQMs is
less direct than in the 2d cases discussed in the previous section. Indeed, in a one dimensional field
theory the energy momentum tensor has only one component, which must thus vanish if the theory
is conformal. A possible way to interpret the central charge is then as counting the ground states
of the conformal quantum mechanics. This quantity is the one that is compared to the holographic
central charge, which can be computed as usual from the volume of the internal manifold. In our
case it reads

𝑐hol =
3𝑉𝑖𝑛𝑡
4𝜋𝐺𝑁

=
3
𝜋

∫ 2𝜋 (𝑃+1)

0
ℎ4ℎ8 d𝑧. (44)

As discussed in [2], this result suggests that the same expression used in section 2.1 for the central
charge of a 2d N = (0, 4) CFT gives the number of ground states of a N = 4 SCQM, with 𝑛ℎ𝑦𝑝

counting now the number of (untwisted) 1d N = 4 hypermultiplets and 𝑛𝑣𝑒𝑐 the number of 1d
N = 4 vector multiplets. Again, perfect agreement was found in the holographic limit between this
definition of the quantum mechanics central charge and the holographic central charge given by
(44).

As emphasised in [2] this is a striking result, since the superconformal quantum mechanics dual
to the AdS2 solutions does not have a priori any relation to a 2d CFT. Comparing with results in the
literature for the dimension of the Higgs branch of N = 4 quantum mechanics with gauge groups∏

𝑣 U(𝑁𝑣) connected by bifundamentals [58], one can see that the expression 𝑐𝑐 𝑓 𝑡 = 6(𝑛ℎ𝑦𝑝−𝑛𝑣𝑒𝑐)
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may be interpreted as an extension of the formulas therein to more general N = 4 quivers including
flavours. This is an interesting result that deserves further investigation.

3.2 A concrete AdS2 example from non-Abelian T-duality

In this section we review a concrete example in the previous classification constructed in [23]
via non-Abelian T-duality acting on a non-compact, freely acting, SL(2,R) group.

The idea to study non-Abelian T-duality as a solution generating technique in supergravity was
put forward in [59]. Since then, NATD has been successfully used in the context of holography
to generate new AdS backgrounds (see [59]-[77] for a set of interesting examples and [17, 22] for
more recent ones). Nevertheless, previous to [23] the dualisation had been carried out with respect
to a freely acting SU(2) subgroup of the total symmetry group of the background.

The main purpose of [23] was to develop NATD as a solution generating technique in super-
gravity with respect to a freely acting non-compact SL(2,R) group, and to apply the procedure to
the D1-D5 near horizon system as an illustrative example. The resulting geometry was shown to
belong to the AdS2×S3×CY2 class of solutions given by (40)-(41). This allowed to construct an
explicit completion of the quiver quantum mechanics proposed in [2].

The starting point is a Type II background with a NS-NS sector invariant under SL(2,R)×
SL(2,R),

𝑑𝑠2 =
1
4
𝑔𝜇𝜈 (𝑥)𝐿𝜇𝐿𝜈 + 𝐺𝑖𝜇 (𝑥)𝑑𝑥𝑖𝐿𝜇 + 𝐺𝑖 𝑗 (𝑥)𝑑𝑥𝑖𝑑𝑥 𝑗 , Φ = Φ(𝑥)

𝐵2 =
1
8
𝑏𝜇𝜈 (𝑥)𝐿𝜇 ∧ 𝐿𝜈 + 1

2
𝐵𝑖𝜇 (𝑥)𝑑𝑥𝑖 ∧ 𝐿𝜇 + 𝐵𝑖 𝑗 (𝑥)𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ,

(45)

where 𝑖, 𝑗 = 1, 2, ..., 7, and 𝐿𝜇 are the SL(2,R) left-invariant Maurer-Cartan forms given by
𝐿𝜇 = −𝑖Tr(𝑡𝜇𝑔−1d𝑔). A string propagating in such background is described by a sigma model that
can be dualised with respect to the full SL(2,R) isometry group acting on the left (or on the right),
following the rules first given in [78]. The first step is to gauge the global symmetry, replacing
ordinary derivatives with covariant derivatives, 𝑑𝑔 → 𝐷𝑔 = 𝑑𝑔−𝐴𝑔. Then, the Lagrange multiplier
term −𝑖Tr(𝑣𝐹) needs to be added in order to enforce a flat connection, with 𝐹 = 𝑑𝐴 − [𝐴, 𝐴] and
𝑣 a vector that takes values in the Lie algebra of the SL(2,R) group. After integrating by parts the
Lagrange multiplier term and fixing the gauge, that we do by setting 𝑔 = I, one obtains the NATD
sigma model. As the variables parametrising the SL(2,R) group are replaced by the Lagrange
multipliers 𝜈𝑖 , which by construction span the vector space R3, the AdS3 space is replaced in a
suitable parametrisation by AdS2 × R+. More details on this dualisation can be found in [47].

In [23] the dualisation was performed on the AdS3×S3×CY2 geometry that arises as the near
horizon limit of the D1-D5 system,

𝑑𝑠2 = 4𝐿2𝑑𝑠2
AdS3

+ 𝑀2𝑑𝑠2
CY2

+ 4𝐿2𝑑𝑠2
S3 , 𝑒2Φ = 1, 𝐹3 = 8𝐿2(volS3 + volAdS3). (46)

In this case due care must be taken of the RR sector, which was dualised following the prescription
in [59] (the reader is referred to [23] for more details). Parametrising the dual coordinates as
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(𝑧,AdS2) the background generated reads,

𝑑𝑠2 =
𝐿2𝑧2

𝑧2 − 4𝐿4 𝑑𝑠
2
AdS2

+ 4𝐿2𝑑𝑠2
S3 + 𝑀2𝑑𝑠2

CY2
+ 𝑑𝑧2

4𝐿2 , 𝑒2Φ =
4

𝐿2(𝑧2 − 4𝐿4)
,

𝐵2 = − 𝑧3

2(𝑧2 − 4𝐿4)
volAdS2 , 𝐹0 = 𝐿2, 𝐹2 = − 𝐿2𝑧3

2(𝑧2 − 4𝐿4)
volAdS2 ,

𝐹4 = −𝐿2(𝑀4volCY2 − 2𝑧d𝑧 ∧ volS3).

(47)

Notice that from the original SO(2, 2) � SL(2,R)𝐿 × SL(2,R)𝑅 isometry group just one SL(2,R)
subgroup survives after the dualisation. This group is geometrically realised by a warped AdS2×R+

subspace. As anticipated, it is easy to see that the background (47) fits locally in the class of AdS2

solutions given by (40)-(41), with the choices,

𝑢 = 4𝐿4𝑀2𝑧, ℎ4 = 𝐿2𝑀4𝑧, ℎ8 = 𝐹0𝑧 . (48)

In this case due to the 𝑧 dependence of 𝑢 there is a singularity at 𝑧 = 𝑧0 = 2𝐿2, where the metric
and dilaton behave as

𝑑𝑠2 ∼ 𝑎1
𝑧 − 𝑧0

𝑑𝑠2
AdS2

+ 𝑎2𝑑𝑠
2
S3 + 𝑀2𝑑𝑠2

CY2
+ 𝑎3𝑑𝑧

2, 𝑒Φ ∼ 𝑎4(𝑧 − 𝑧0)−1/2. (49)

This behaviour can be interpreted in terms of F1-strings with AdS2 worldvolume smeared over the
𝑆3

7. The metric has the correct signature and the dilaton is well-defined when 𝑧 ∈ [𝑧0,∞).
The brane intersection associated to the new solution can be read from the Page fluxes, which

are given by

𝐹̂0 =𝐿2, 𝐹̂2 = −𝐿2𝑘𝜋volAdS2 , 𝐹̂4 = −𝐿2(𝑀4volCY2 − 2𝑧 d𝑧 ∧ volS3), (50)

where we have taken into account the large gauge transformations 𝐵2 → 𝐵2 + 𝜋𝑘volAdS2 as in
[2]. These give rise to the D0-D4-D4′-D8-F1 brane intersection depicted in Table 4. The D0 and
D4-branes can then be interpreted as instantons carrying electric charge,

𝑄𝑒
D0 = −𝑘 𝑄𝑚

D8, 𝑄𝑒
D4 = −𝑘 𝑄𝑚

D4′ , (51)

while the D4′ and D8-branes find an interpretation as magnetically charged branes where the
instantons lie, with charges

𝑄𝑚
D8 = 2𝜋𝐿2, 𝑄𝑚

D4′ = −2𝜋𝐿2𝑀4, (52)

in the interval [𝑧𝑘 , 𝑧𝑘+1]. On top of this there are fundamental strings electrically charged with
respect to the 3-form 𝐻3,

𝑄𝑒
F1 =

1
(2𝜋)2

∫
AdS2×I𝑧

𝐻3 =
1
𝜋
𝐵2

����𝑧𝑘+1

𝑧𝑘

= 1. (53)

7Note that it is also compatible with an orientifold fixed plane with F1-charge smeared on the 𝑆3. The string theory
interpretation of such object is however unclear.
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The holographic central charge is obtained from the volume of the internal manifold, giving

𝑐hol =
3𝐿4𝑀4

𝜋

∫ ∞

𝑧0

(𝑧2 − 4𝐿4) d𝑧. (54)

However, in order to obtain a finite value from this expression the dual background has first to be
defined globally. The global completion proposed in [23] ended the geometry with F1-strings at a
certain value 𝑧2𝑃, with 𝑃 ∈ Z, and glued the ℎ4, ℎ8 linear functions associated to the solution at 𝑧𝑃
in a symmetric fashion

ℎ4(𝑧)
𝐿2𝑀4 =

{
𝑧 𝑧0 ≤ 𝑧 ≤ 𝑧𝑃 ,

𝑧0 − (𝑧 − 𝑧2𝑃) 𝑧𝑃 ≤ 𝑧 ≤ 𝑧2𝑃,

ℎ8(𝑧)
𝐿2 =

{
𝑧 𝑧0 ≤ 𝑧 ≤ 𝑧𝑃,

𝑧0 − (𝑧 − 𝑧2𝑃) 𝑧𝑃 ≤ 𝑧 ≤ 𝑧2𝑃 .

(55)

Indeed, one can check that the NS sector is continuous at 𝑧𝑃 when 𝑧𝑃 =
𝑧0+𝑧2𝑃

2 , thus leading to
a symmetric configuration. The quantised charges associated to this choice of linear functions,
displayed in Table 5, are such that the D0 and D4 charges increase linearly in the 0 ≤ 𝑘 ≤ 𝑃 region
while they decrease in the 𝑃 ≤ 𝑘 ≤ 2𝑃 region. Given the continuity of the ℎ4 and ℎ8 functions in

𝑄𝑚
D8 𝑄𝑒

D0 𝑄𝑚
D4′ 𝑄𝑒

D4

0 ≤ 𝑘 ≤ 𝑃 2𝜋𝐿2 𝑘 𝑄𝑚
D8 2𝜋𝐿2𝑀4 𝑘 𝑄𝑚

D4′

𝑃 ≤ 𝑘 ≤ 2𝑃 2𝜋𝐿2 (2𝑃 − 𝑘) 𝑄𝑚
D8 2𝜋𝐿2𝑀4 (2𝑃 − 𝑘) 𝑄𝑚

D4′

Table 5: Page charges of the completed non-Abelian T-dual solution –here we are expressing the absolute
value of the charges

the two regions there are no D4’-D8 flavour branes at any of the associated nodes. The exception
is at 𝑧 = 𝑧𝑃, where they jump as

Δ𝑄𝑚
D4′ = 4𝜋𝐿2𝑀4, Δ𝑄𝑚

D8 = 4𝜋𝐿2. (56)

The associated quiver has been depicted in Figure 6. The interpretation of the quiver quantum
mechanics is as describing backreacted D0-D4 baryon vertices in the completely antisymmetric
representation of the gauge groups U(𝑘𝑄𝑚

D8)×U(𝑘𝑄𝑚
D4′) associated to a 5d intersection of D4’-D8

branes. The brane set-up associated to the quiver becomes after T+S duality, suitable Hanany-Witten
moves and a further T-duality, the one depicted in Figure 7.

One can check that, as expected, the holographic and field theory central charges, given by

𝑐ℎ𝑜𝑙 = 𝑄𝑚
D4′𝑄

𝑚
D8(4𝑃

3 − 12𝑃 + 8), (57)
𝑐 𝑓 𝑡 = 𝑄𝑚

D4′𝑄
𝑚
D8(4𝑃

3 + 2𝑃), (58)

coincide in the 𝑃 → ∞, holographic, limit.
Before we close this subsection we would like to report on recent progress in trying to connect

the solution just discussed with the three dimensional black hole constructed in [47]. The afore-
mentioned black hole was constructed by dualising the Principal Chiral Model with group manifold
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Figure 6: Completed quiver associated to the NATD solution.
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Figure 7: Brane set-up describing the baryon vertex interpretation of the quiver depicted in Figure 6.

SL(2,R) with respect to its whole isometry group, acting on the left. This is an AdS3 geometry
consisting on just metric which is not a good string theory background, since it does not satisfy
the 10d equations of motion. Given that the same holds after dualisation, the black hole geometry
constructed in [47] had limited applicability. In the remainder of this subsection we exploit the
similarities between the construction carried out in [47] and the one pursued in this subsection to
try to embed the black hole geometry of [47] in a valid string theory background. As we show this
is not possible due to the sick behaviour of the dilaton.

Following [47] we can try to find a black hole geometry embedded in the non-Abelian T-dual
solution given by (47) by writing it in terms of the Lagrange multipliers, 𝑣𝑖 , and defining two different
parametrisations for the regions 𝜈2 > 0 and 𝜈2 < 0, where 𝑣2 = 𝜂𝑖 𝑗𝑣𝑖𝑣 𝑗 with 𝜂𝑖 𝑗 = (+,−, +). These
two regions are interpreted as the interior and the exterior of the black hole construction in [47].

19



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
2

AdS3/CFT2 and AdS2/CFT1 Yolanda Lozano

The solution (47) reads in terms of the Lagrange multipliers8,

𝑑𝑠2 =
(𝑑𝑣2

1 − 𝑑𝑣2
2 + 𝑑𝑣2

3) − (𝑣1𝑑𝑣1 − 𝑣2𝑑𝑣2 + 𝑣3𝑑𝑣3)2

1 − (𝑣2
1 − 𝑣2

2 + 𝑣2
3)

+ 4𝑑𝑠2
S3 + 𝑀2𝑑𝑠2

CY2
,

𝑒−2Φ = (𝑣2
1 − 𝑣2

2 + 𝑣2
3) − 1, 𝐵2 =

𝑣3𝑑𝑣1 ∧ 𝑑𝑣2 − 𝑣2𝑑𝑣1 ∧ 𝑑𝑣3 + 𝑣1𝑑𝑣2 ∧ 𝑑𝑣3

(𝑣2
1 − 𝑣2

2 + 𝑣2
3) − 1

,

𝐹0 = 1, 𝐹2 =
(𝑣3𝑑𝑣1 ∧ 𝑑𝑣2 − 𝑣2𝑑𝑣1 ∧ 𝑑𝑣3 + 𝑣1𝑑𝑣2 ∧ 𝑑𝑣3)

(𝑣2
1 − 𝑣2

2 + 𝑣2
3) − 1

,

𝐹4 = −𝑀4volCY2 + 8(𝑣1𝑑𝑣1 − 𝑣2𝑑𝑣2 + 𝑣3𝑑𝑣3) ∧ volS3 .

(59)

Following [47] we then use the parametrisations9

𝑣𝐼𝑖 = (√𝜌 cos 𝜙 cosh 𝜉,
√
𝜌 sinh 𝜉,

√
𝜌 sin 𝜙 cosh 𝜉),

𝑣𝐼 𝐼𝑖 = (√𝜌 cos 𝜙 sinh 𝜉,
√
𝜌 cosh 𝜉,

√
𝜌 sin 𝜙 sinh 𝜉),

(60)

in the two different regions

(𝑣𝐼 )2 = 𝜌 > 0, (𝑣𝐼 𝐼 )2 = −𝜌 < 0. (61)

Note that both parametrisations in (60) are related under 𝜉 → 𝜉 − 𝑖 𝜋2 and 𝜌 → −𝜌.
The geometry in region I reads,

𝑑𝑠2
𝐼 =

𝜌

1 − 𝜌
(−𝑑𝜉2 + cosh2 𝜉 𝑑𝜙2) + 𝑑𝜌2

4𝜌
+ 𝑀2𝑑𝑠2

CY2
+ 4𝑑𝑠2

S3 , 𝑒−2Φ = 𝜌 − 1,

𝐵2 = − 𝜌3/2

(𝜌 − 1) cosh 𝜉 𝑑𝜙 ∧ 𝑑𝜉, 𝐹0 = 1, 𝐹2 = − 𝜌3/2

(𝜌 − 1) cosh 𝜉 𝑑𝜙 ∧ 𝑑𝜉,

𝐹4 = −𝑀4volCY2 + 4 𝑑𝜌 ∧ volS3 ,

(62)

while in region II it is given by

𝑑𝑠2
𝐼 𝐼 =

𝜌

𝜌 + 1
(sinh2 𝜉 𝑑𝜏2 + 𝑑𝜉2) − 𝑑𝜌2

4𝜌
+ 𝑀2𝑑𝑠2

CY2
+ 4𝐿2𝑑𝑠2

S3 , 𝑒−2Φ = −(𝜌 + 1) ,

𝐵2 = − 𝜌3/2

𝜌 + 1
sinh 𝜉 𝑑𝜏 ∧ 𝑑𝜉, 𝐹0 = 1, 𝐹2 = − 𝜌3/2

𝜌 + 1
sinh 𝜉 𝑑𝜏 ∧ 𝑑𝜉,

𝐹4 = −𝑀4volCY2 − 4 𝑑𝜌 ∧ volS3 .

(63)

In turn, the Ricci scalars in both regions read,

𝑅𝐼 = − 𝜌2 − 6𝜌 + 33
2(𝜌 − 1)2 , 𝑅𝐼 𝐼 = − 𝜌2 + 6𝜌 + 33

2(𝜌 + 1)2 . (64)

As for the black hole in [47] there is a singularity in region I at 𝜌 = 1, while the behaviour at
𝜌 = 0 is that of an event-horizon. This is reflected in the change of signature of the metric, going
from (+,+,-,+,+,+,+,+,+,+) in region II to (+,-,+,+,+,+,+,+,+,+) in region I, and (-,+,+,+,+,+,+,+,+,+)
beyond 𝜌 = 1. A detailed study of the causal structure associated to this geometry could now be

8In this subsection we take 𝐿 = 1.
9Note that 𝜌 = 4−1𝐿−2𝑧2 with 𝑧 in (47).
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carried out following [47]. Note however that there is a fundamental obstruction that invalidates
a similar analysis to that in [47], since the dilaton is ill-defined both in region II (the would-be
exterior of the black hole) and in region I when 𝜌 < 1 (the would-be interior of the black hole).
This implies that the black hole constructed in [47] cannot be embedded within our supergravity
background. The same conclusion is reached if one attempts to embed the black hole onto a more
general solution in the class reviewed in section 2. In this case the Ricci scalar is singular when Δ̃

vanishes, say at 𝜌∗. According to the interpretation in [47] 𝜌 ∈ [0, 𝜌∗] would parametrise the black
hole interior, and 𝜌 < 0 the exterior, which is again where Δ̃ < 0 and the dilaton is ill-defined.

3.3 Defect interpretation

In this subsection we show that it is possible to provide a defect interpretation to the solutions
described in this section in complete analogy with the analysis performed in subsection 2.2. In this
case the brane solutions whose near horizon geometries are the AdS2 × 𝑆3 × 𝑇4 × 𝐼 backgrounds
were worked out in [40], and further analysed in [19], where they were interpreted in terms of
D0-F1-D4 branes ending on D4’-D8 bound states. As in subsection 2.2 a parametrisation was
obtained that allowed to relate a subclass of the AdS2 geometries to a 6d domain wall solution to 6d
N = (1, 1) minimal gauged supergravity that asymptotes locally to AdS6. This allowed to propose
a dual interpretation of these AdS2 solutions as line defect CFTs within the 5d Sp(N) CFT dual to
the Brandhuber-Oz AdS6 background.

As in the calculation in subsection 2.2, allowing the D4’-branes to be completely localised
in their transverse space it is possible to recover a near-horizon geometry describing a D4’-D8
system wrapping an AdS2 × 𝑆3 geometry, to which D0-F1-D4 branes need to be added to preserve
supersymmetry [40]. The near-horizon reads

𝑑𝑠2
10 = 𝐻

−1/2
D4′ 𝐻

−1/2
D8

[
𝑄1

(
𝑑𝑠2

AdS2
+ 4𝑑𝑠2

𝑆3

)
+ 𝐻D4′𝐻D8𝑑𝑧

2 + 𝐻D4′
(
𝑑𝜌2 + 𝜌2 𝑑𝑠2

𝑆̃3

)]
, (65)

with 𝑄1 a parameter related to the defect charges of D0-F1-D4 branes. One can check that this
background is included in the classification reviewed in this section, for CY2 = 𝑇4 locally and
𝑢′ = 0.

As already mentioned, the previous brane intersection was linked to a 6d charged domain
wall characterised by an AdS2 slicing flowing asymptotically to the AdS6 vacuum of 6d Romans
supergravity. This domain wall is of the form

𝑑𝑠2
6 = 𝑒2𝑈 (𝜇)

(
𝑑𝑠2

𝐴𝑑𝑆2
+ 4𝑑𝑠2

𝑆3

)
+ 𝑒2𝑉 (𝜇)𝑑𝜇2 ,

𝐵2 = 𝑏(𝜇) vol𝐴𝑑𝑆2 ,

𝑋6 = 𝑋6(𝜇) ,

(66)

and, consistently with the whole picture, can be obtained through double analytical continuation
from the domain wall solution in (27). The BPS equations for this background preserve 8 real
supercharges and take the same form of (28) and (29). In analogy with the AdS3 analysis, the 6d
solution (66) reproduces locally in the limit 𝜇 → 1 the geometry of the AdS6 vacuum, together with
a singularity in the 𝜇 → 0 limit. Using the uplift formulas to massive IIA given in [19] one can
check that the resulting domain wall solution in 10d is related to the near horizon geometry (65)
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through the change of coordinates [40]

𝑧 =
3 𝑠2/3 𝑒𝑈 𝑋6√

2 𝑔 𝑄1/2
1

, 𝜌 =

√
2 𝑐 𝑒3𝑈/2

𝑔 𝑄
3/4
1 𝑋

1/2
6

. (67)

The AdS2 solution is then specified by

𝐻D8 =
𝑠2/3 𝑒𝑈 𝑋6

𝑄
1/2
1

, 𝐻D4′ =
𝑄

5/2
1 𝑒−5𝑈

Σ6
, (68)

with ℎ8 = 𝐻D8 and ℎ4 = 𝐻D4′ . These conditions are analogous to (36)-(37) for AdS3, which is
obviously related to the fact that the AdS2 solutions and the AdS3 backgrounds are related by double
analytical continuation. In this case the solution is interpreted as a D0-F1-D4 line defect within the
5d Sp(N) fixed point theory.

4. Discussion

In these proceedings we have reviewed recent progress in the construction of AdS3/CFT2

and AdS2/CFT1 dual pairs in massive Type IIA string theory. These dual pairs represent new
well-controlled string theory settings where the microscopical counting program of five and four
dimensional black holes can be further developed. On a different note, our solutions allow for a
defect interpretation in terms of surface or line defects within the 5d Sp(N) fixed point theory. In
general grounds having at our disposal the holographic description of these defect CFTs allows to
apply holographic methods to the computation of central charges, correlators and other observables
of the defect CFT.

Notably, other AdS/CFT pairs have been constructed in the recent literature that can also be
taken as set-ups where to carry out the microscopical counting program of black holes as well as
the holographic study of defect CFTs. The most direct extensions of the solutions here presented
are the AdS3 × 𝑆2 × 𝑀4 × 𝐼 and AdS2 × 𝑆3 × 𝑀4 × 𝐼 solutions to massive IIA supergravity with
𝑀4 a Kähler manifold, constructed in [1, 2, 18]. These solutions have been left out of our analysis
because the corresponding field theory duals have only been partially explored or not explored at
all. In the AdS3 case, when 𝐼 = 𝑆1 and there are no D4-branes present, these solutions are related
to the class discussed in [4] via Abelian T-duality. Therefore, the dual CFTs are described in terms
of D3-branes wrapping complex curves in elliptically fibrered CY3 manifolds. More general field
theory settings related to these solutions have not yet been explored, neither have their possible
realisations as defects within higher dimensional CFTs. These constitute interesting new research
avenues to explore.

In [18] AdS3 × 𝑆3 × 𝑀4 × 𝐼 solutions to M-theory where 𝑀4 is either a CY2 or a Kähler
manifold have been constructed. These solutions preserve the same number of supersymmetries as
the solutions here presented, and for 𝑀4 = CY2 are dual to quiver CFTs similar to the ones reviewed
in subsection 2.1, which in this case describe M-strings (see [79, 80]). In [19] it was shown that
a subset of these solutions can be interpreted as surface defects within 6d (1,0) CFTs living in
M5-branes probing ALE singularities. Moreover, upon reduction these solutions give rise to a new
class of AdS3 × 𝑆3 × 𝑆2 × Σ2 solutions, with Σ2 a 2d Riemann surface, that can be interpreted as

22



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
2

AdS3/CFT2 and AdS2/CFT1 Yolanda Lozano

defects within the 6d (1,0) CFT dual to the AdS7 solution to massless Type IIA supergravity. The
description of the dual 2d CFT in terms of quivers embedded in the 6d quiver associated to the
D6-NS5 intersection was also worked out in [19]. Similarly, new classes of AdS3×𝑆2×𝑆2×𝑆1×Σ2

solutions with the same number of supersymmetries have been constructed in Type IIB supergravity
[21], some of which admit a defect interpretation within the 5d Sp(N) fixed point theory (this time
realised in a Type IIB brane intersection) and/or describe holographic duals of D3-brane boxes, as
the ones discussed in [81]. The readers are referred to [21] for the details of these constructions.
More recently, the parallel in Type IIB of the general classification of AdS3 spaces with N = (0, 4)
supersymmetries in [1] has been carried out in [82]. The readers can again find the details of these
constructions in the original reference. An interesting open line to explore is the construction of
the 2d CFTs dual to these solutions, along the lines of [11, 12, 26].

Similarly, new classes of AdS2 solutions in Type IIB with 4 supersymmetries have been
constructed in [20], acting with Abelian T-duality on the AdS3 subspace of the solutions reviewed
in section 2. These solutions are dual, by construction [43, 44], to SCQMs realised as discrete
light-cone compactifications of the 2d dual CFTs reviewed in this paper. Further solutions of the
type AdS2 × 𝑆2 ×CY2 ×Σ2 with Σ2 an annulus have been constructed in [22], via Abelian T-duality
acting on the AdS2 solutions reviewed in section 3. The SCQMs dual to these solutions are thus
the same as the ones reviewed in that section, and allow for a similar defect interpretation, this time
as backreacted D1-D3 baryon vertices within the 5d Sp(N) fixed point theory, now realised on a
D5-NS5-D7 brane web. More recently, new classes of AdS2 solutions with the same number of
supersymmetries have been constructed in both Type IIA and Type IIB supergravities that allow a
description in terms of backreacted baryon vertices within 4d N = 4 SYM or orbifolds thereof. In
this case the solutions are asymptotically locally AdS5 × 𝑆5/Z𝑘 (or its Abelian T-dual in the IIA
case). The reader is referred to [24] for more details on these constructions.

An obviously interesting avenue to pursue is to investigate the CFT duals to the broader class
of AdS3 solutions constructed in [1] for which there is a dependence on the internal structure of
the CY2 manifold. This would allow to extend the 2d and 1d CFTs discussed in this paper by
further exploiting the interplay between string theory dualities and the AdS/CFT correspondence,
as described in the previous paragraphs. We expect to report progress in these directions in the near
future.
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