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We present recent results on the spectrum of a confining flux tube that is closed around a spatial
torus as a function of its length as well as the spectrum of glueballs. The extraction of the
spectra has been realized by simulating four dimensional 𝑆𝑈 (𝑁) gauge theories and performing
measurements using lattice techniques. Regarding flux-tubes, we have performed calculations for
𝑁 = 3, 5, 6 and for various values of spin, parity and longitudinal momentum. Long flux-tubes
can be thought of as infinitesimally thin strings; hence their spectrum is expected to be described
by an effective string theory. Furthermore, the flux-tube’s internal structure makes possible the
existence of massive states in addition to string modes. Our calculations demonstrate that although
most states exhibit a spectrum which can be approximated adequately by Nambu-Goto there is
strong evidence for the existence of a massive axion on the world-sheet of the QCD flux-tube as
well as a bound state of two such axions. Regarding glueballs, we extracted spectra from 𝑁 = 2
to 𝑁 = 12 which enables us to extrapolate to 𝑁 = ∞. Our main aim was to calculate the lightest
glueball masses for all different configurations of the quantum numbers of spin, parity and charge
conjugation. This provides a major update on the spectrum of glueballs in the planar limit.
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1. Introduction

During the last three decades lattice gauge theory simulations provided useful information
towards the physics of the ’t Hooft’s large-𝑁 limit of gauge theories as well as QCD. In parallel,
the "second superstring revolution" of Maldacena’s AdS/CFT correspondence bloomed leading to
gauge-gravity dualities. Such dualities between weakly coupled string theories and strongly coupled
gauge theories at large-𝑁 , have led to a common interest in what the physics of the large-𝑁 gauge
theories is.

Understanding the large-𝑁 limit of gauge theories requires the investigation of masses of
associated states. The simplest such states one can consider are gluballs and flux-tubes, with
both states reflecting hadronic dynamics. The calculation of the spectrum of these excitations has
been a matter of investigation by both, lattice gauge theories as well as strings including AdS/CFT
duality and effective bosonic string theory. In addition a more straightforward relation between
these two fields has been established: lattice provides data extracted considering first principles for
comparison with strings.

In QCD the quarks are confined in bound states by forming open flux-tubes. Long flux-tubes
behave similarly to thin strings: If you pull the string apart, at some point it breaks; thus the
term confining strings. However, to observe such a phenomenon in a lattice QCD calculation it
requires the introduction of dynamical quarks (sea quarks) in the Markov-chain simulation used in
production of configurations. We consider pure gauge theories where such effects do not appear.
By placing the confining flux-tube in a given position in space we expect 𝐷 − 2 massless modes to
propagate along the string arising from the spontaneously broken translation invariance in the 𝐷−2
directions transverse to the flux. We, thus, expect that there should be a low energy effective string
theory describing such oscillating modes. Although, a flux-tube can be considered effectively as a
thin string, it also has an intrinsic width. This suggests that massive states related to the intrinsic
structure of the tube may exist in the spectrum. One can investigate, whether, such states exist by
extracting the flux-tube spectrum, compare it with an effective string theory model and identify
states which exhibit significant deviations from a theoretical description. A naive expectation would
be that a massive mode has the characteristics of a resonance with energy gap of the order of the
mass gap (scalar glueball mass ∼ 𝑚𝐺) of the theory. For reasons of simplicity, we investigated
the spectrum of the closed flux-tube which winds around the spatial lattice torus, thus the name
"torelon". This set up avoids the consideration of the effect of the static quarks on the spectrum,
and focuses on the dynamics of the flux-tube.

In the past it has been demonstrated [1] that the confining string in 𝐷 = 2 + 1 𝑆𝑈 (𝑁)
gauge theories can be adequately approximated by the Nambu-Goto free string in flat space-time,
from short to long flux-tubes, without any massive excitations showing up. Furthermore, we
demonstrated [2] that the spectrum of the closed flux-tube in 𝐷 = 3+1 consists mostly of string-like
states but in contrast to the 𝐷 = 2 + 1 case a number of excitations with quantum number 𝐽𝑃 = 0−

appeared to be in accordance with the characteristics of a massive excitation. In 2013, Dubovsky
et al, [3] demonstrated that this state arises naturally if one includes a Polyakov topological piece
in the string theoretical action. Our old results were poor - spectrum has been extracted for a few
string lengths, and for low statistics. Recently, we proceeded towards a major improvement of the
previous investigation on 𝐷 = 3+1 by extracting the spectrum of the flux-tube for all the irreducible
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representations expanded by the quantum numbers (QNs) {|𝐽 |, 𝑃⊥, 𝑃 ∥} using three values of color
𝑁 , namely 𝑁 = 3, 5, 6, as well as by probing through a large set of flux-tube lengths.

In addition to flux-tubes we have also improved the older glueball spectra calculations in the
Large-𝑁 limit. Our main aim in this work is to provide a calculation of the low-lying ‘glueball’
mass spectrum for all quantum numbers and all values of 𝑁 . This means calculating the lowest
states in all the irreducible representions, 𝑅, of the rotation group of a cubic lattice, and for both
values of parity 𝑃 and charge conjugation parity 𝐶. We do so by performing calculations in the
corresponding lattice gauge theories over a sufficient range of lattice spacings, and with enough
precision that we can obtain plausible continuum extrapolations. We also put effort to extrapolate
to the 𝑁 = ∞ limit and to compare this to the physically interesting 𝑆𝑈 (3) theory. To do so we have
performed our calculations for 𝑁 = 2, 3, 4, 5, 6, 8, 10, 12 gauge theories.

The structure of these proceedings is the following. First, in Section 2 we provide a short chapter
on the Large-𝑁 limit to remind ourselves the basic properties of the physics on the planar limit.
Then in Section 3 we present the effective string theoretical descriptions suitable for approximating
the spectrum of the confining string. Subsequently in Section 4, we provide a brief description of the
lattice setup, by explaining how one can extract the masses of colour singlets on the lattice as well as
the quantum numbers relevant for the extraction of the flux-tube and glueball spectra. Followingly,
in Section 5 we move to the presentation of the results starting from the spectra of confining strings,
demonstrating the appearance of the worldsheet axion and proceeding to the spectrum of glueballs.
Finally, in Section 6, we conclude.

2. Large-𝑁 limit

Yang-Mills gauge theory has a dimensionless running coupling 𝑔2 and we, thus, might expect
to be able to use the coupling as a general parameter for the theory. However, due to the fact that
the scale invariance is anomalous, setting 𝑔2 to some particular value 𝑔2

𝑠 , we can only hope to use
it as a useful expansion parameter for physics close to the scale 𝑙𝑠 for which the running coupling
takes that value; in other words where 𝑔2(𝑙 = 𝑙𝑠) ≃ 𝑔2

𝑠 .
An alternative but more general expansion might be provided by 1/𝑁 as t’ Hooft suggested,

back in 1974. One can think of expanding 𝑆𝑈 (𝑁) gauge theories in powers of 1/𝑁2 around 𝑆𝑈 (∞):

𝑆𝑈 (𝑁) = 𝑆𝑈 (∞) +𝑂 (1/𝑁2). (1)

According to the t’ Hooft’s double line representation for the gluon propagators and the associated
vertices, ignoring for simplicity the difference between𝑈 (𝑁) and 𝑆𝑈 (𝑁), the expansion parameter
can be expressed as 1/𝑁2. As a result, a smooth large-𝑁 limit can be achieved if one keeps the
parameter 𝑔2𝑁 fixed. This can be viewed by considering a gluon loop insertion in the gluon
propagator using the double-line notation as this is pictorially represented on the left panel of
Figure 1. The two vertices give a factor of 𝑔2 and the sum over the colour index in the closed loop
gives a factor of 𝑁 . Hence, such an insertion will produce a factor of 𝑔2𝑁 in the amplitude. To
ensure smooth physics as increasing 𝑁 → ∞ we require that the number of such insertions in the
diagrams dominating the physics of interest are roughly fixed as we alter 𝑁 . The above requires that
we keep 𝜆 = 𝑔2𝑁 fixed. Such diagrams can be mapped on a plane and can, thus, be called planar.
On the other hand diagrams on which glue propagators cross, cannot be mapped on a plane but can
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Figure 1: Left Panel: Example of a planar diagram, Right Panel: Example of a non-planar diagram

be resembled as planar diagrams with handles; an example of such a diagram is presented in the
right panel of Figure 1. This non-planar Feynman diagram has six vertices and just one circulating
loop, which means that the expression will be proportional to ∼ 𝑁𝑔6 = 𝜆3/𝑁2 𝑁→∞−−−−−→ 0. This is
a naive way to demonstrate that the non-planar Feynman diagrams vanish in the large-𝑁 limit. It
is also straightforward to show that a Feynman diagram that contains virtual quark loops will get
suppressed in the large-𝑁 limit. Therefore, at the ’t Hooft limit only planar Feynman diagrams
without quark loops survive.

So far we are making the assumption that there is a confining phase in the large-𝑁 limit.
This is based on numerical evidence. For instance, flux-tubes and glueballs exist and their masses
extrapolate well in the Large-𝑁 limit. We draw this conclusion by performing calculations for
𝑆𝑈 (𝑁) gauge theory and a sequence of finite values of 𝑁 . Of course it would be nice to show that
there is in fact a large-𝑁 confining phase, and that a smooth physics limit does in fact exist.

At this point it should be made clear that there is no expectation that all the physics of 𝑆𝑈 (3)
is close to that of 𝑆𝑈 (∞). We can only make sure that an observable in 𝑆𝑈 (3) is close to that of
𝑆𝑈 (∞) once we perform the calculation. It could be possible that other large-𝑁 limits are more
appropriate for the physics under investigation. For instance in QCD where we have 2 or 3 light
flavours, 𝑁 𝑓 /𝑁 ∼ 1. Hence, it could appear possible that the limit 𝑁 → ∞ by keeping 𝑁 𝑓 /𝑁 fixed
might be more appropriate for some physical quantities [4]. A nice review where several such limits
are being discuss is provided in Ref. [5]

3. Low energy Effective String Theories

Let us imagine a flux-tube as a confining string with length 𝑙 = 𝑎𝐿𝑥 winding around the spatial
torus where 𝑎 the lattice spacing. Imposing fixed spatial position for the string spontaneously breaks
translation symmetry. Therefore, we expect 𝐷 − 2 Nambu-Goldstone massless bosons to appear at
low energies. Such bosons reflect the transverse fluctuations of the flux-tube around its classical
configuration. We would thus, expect a low energy Effective String Theory (EST) describing the
flux-tube spectrum for large enough strings. Of course a flux-tube is not an infinitesimally thin
string, it is an 𝑆𝑈 (𝑁) object and presumably has an intrinsic width 𝑙𝑤 ∝ 1/

√
𝜎. We would therefore

expect that the spectrum of the flux-tube consist not only of string like states but also of massive
excitations. Below, we describe the current theoretical predictions for the excitation spectrum of
the Nambu-Goldston bosons as well as an approach to explain the existence of massive resonances
on the world-sheet of the confining string.
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3.1 The Goddard–Goldstone–Rebbi–Thorn string

In this subsection we describe the spectrum of the Goddard-Goldstone-Rebbi-Thorn (GGRT) [6]
string or in other words the Nambu-Goto (NG) [7] closed string. NG string describes non-critical
relativistic bosonic strings. One can extract the GGRT spectrum by performing light-cone quanti-
zation of the closed-string using the NG action or equivalently the Polyakov action. This model is
Lorentz invariance only in 𝐷 = 26 dimensions. Nevertheless, for reasons that we now understand
better [3] NG can also describe to a good extend the spectrum of strings in 𝐷 = 3 and 4 dimensions.
The expression of the GGRT spectrum is given by:

𝐸𝑁𝐿 ,𝑁𝑅
(𝑞, 𝑙) = 𝜎𝑙

√︄
1 + 8𝜋

(𝑙
√
𝜎)2

(
𝑁𝐿 + 𝑁𝑅

2
− 𝐷 − 2

24

)
+
(

2𝜋𝑞
(𝑙
√
𝜎)2

)2
, (2)

where 2𝜋𝑁𝐿 (𝑅)/𝑙 the total energy and momentum of the left(right) moving phonons with 𝑁𝐿 =∑
𝑘

∑
𝑛𝐿 (𝑘) 𝑘 (𝑛+𝐿 (𝑘) + 𝑛−𝐿 (𝑘)) and 𝑁𝑅 =

∑
𝑘

∑
𝑛𝑅 (𝑘) 𝑘 (𝑛+𝑅 (𝑘) + 𝑛−𝑅 (𝑘)). 𝑛±𝐿 (𝑅) (𝑘) is the number of

left(right) moving phonons of momentum 𝑝𝑘 = 2𝜋𝑘/𝑙, 𝑘 = 0, 1, 2, . . . and angular momentum ±1.
If 𝑝 | | = 2𝜋𝑞/𝑙 is the total longitudinal momentum of the string then, since the phonons provide that
momentum, we must have 𝑁𝐿 − 𝑁𝑅 = 𝑞 (level matching constrain). The angular momentum (spin)
around the string is expressed as 𝐽 =

∑
𝑘,𝑛𝐿 (𝑘) ,𝑛𝑅 (𝑘) 𝑛

+
𝐿
(𝑘) + 𝑛+

𝑅
(𝑘) − 𝑛−

𝐿
(𝑘) − 𝑛−

𝑅
(𝑘).

3.2 Lorentz invariant string approaches

Systematic ways to study Lorentz invariant EST which can describe the confining string were
pioneered by Lüscher, Symanzik, and Weisz in [8] (static gauge) as well as by Polchinski and
Strominger in [9] (conformal gauge). Such approaches produce predictions for the energy of states
as an expansion in 1/𝑙

√
𝜎. Terms in this expansion of𝑂 (1/𝑙 𝑝) are generated by (𝑝 +1) - derivative

terms in the EST action whose coefficients are a priori arbitrary Low Energy Coefficients (LECs).
Interestingly, these LECs were shown to obey strong constraints that reflect a non-linear realization
of Lorentz symmetry [10–12], and so to give parameter free predictions for certain terms in the 1/𝑙
expansion.

The EST approaches can be characterised by the way one performs the gauge fixing of the
embedding coordinates on the world-sheet. This can be either the static gauge [8, 10, 12] or the
conformal gauge [9, 13, 14] with both routes leading to the same results. The starting point of
building the EST is the leading area term which gives rise to the linearly rising potential for large
strings i.e. 𝐸 ≃ 𝜎𝑙. Subsequently comes the Gaussian action which is responsible for the ∝ 1/𝑙
Lüscher term with universal coefficient depending only on the dimension 𝐷. At next step one adds
the 4-derivative terms which yield a correction on the energy spectrum proportional to 1/𝑙3 with a
universal coefficient that also depends on the dimension 𝐷. One can include the 6−derivative terms
and show that for 𝐷 = 3 they yield the fourth universal term proportional to 1/𝑙5 in the energy
spectrum, while for general states in 𝐷 = 4, the coefficient of the 𝑂 (1/𝑙5) term is not universal.
Nonetheless, the energy just for the ground state in the 𝐷 = 4 case is universal. Summarizing the
above information, the spectrum is given by

𝐸𝑛 (𝑙) = 𝜎𝑙 +
4𝜋
𝑙

(
𝑛 − 𝐷 − 2

24

)
− 8𝜋2

𝜎𝑙3

(
𝑛 − 𝐷 − 2

24

)2
+ 32𝜋3

𝜎2𝑙5

(
𝑛 − 𝐷 − 2

24

)3
+𝑂 (𝑙−7). (3)

5



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
8

Confining strings, axions and glueballs in the planar limit

Since we think of the GGRT model as an EST, which may be justified only for long strings [15],
one can expand the associated energy for 𝑙

√
𝜎 ≫ 1. The result of the expansion is the same as the

expression in Equation 3 where for simplicity we have set 𝑞 = 0, and 𝑛 = (𝑁𝐿 + 𝑁𝑅)/2.

3.3 The topological term action

In 2013, Dubovsky et al. worked out an approach for extracting the spectrum of the confining
string for short as well as for long lengths. The idea was based on the fact that the GGRT string
provides the best approximation for the flux-tube spectrum and that Equation 2 can be re-expressed
as 𝐸𝑁𝐿 ,𝑁𝑅

=
√
𝜎E(𝑝𝑘/

√
𝜎, 1/𝑙

√
𝜎) where 𝑝𝑘 are the momenta of individual phonons in units of

2𝜋/𝑙 comprising the state quantised. The naive expansion in terms of 1/𝑙
√
𝜎 is the combination of

two different expansions; the first is an expansion in the softness of individual quanta compared to the
string scale, i.e. in 𝑝𝑘/

√
𝜎 and the second expansion is a large volume expansion, i.e. an expansion

in 1/𝑙
√
𝜎. To disentangle the two expansions the following procedure is being adopted. First,

one calculates the infinite volume 𝑆-matrix of the phonon collisions. This is done perturbativelly
given that the center of mass energy of the colliding phonons is small in string units; this is called
the momentum expansion. Followingly, the authors extracted the finite volume energies from this
𝑆-matrix by using approximate integrability and the Thermodynamic Bethe Ansatz (TBA). This
allows to extract the winding effects on the energy from virtual quanta traveling around the circle
as well as the winding corrections due to phonon interactions.

The authors argued that when a state has only left-moving phonons the GGRT winding correc-
tions in the string spectrum are small and, therefore, one expects the spectrum to be close to that of
the free theory. On the contrary, for states containing both left- and right-moving phonons, energy
corrections are larger. The above is in a good agreement with most of the states in 𝐷 = 4 but fails
to provide an explanation for the anomalous behaviour of the pseudoscalar level 0−− firstly demon-
strated in [2, 16], suggesting that an additional action term is required in order to describe such
excitations. The most straightforward way to do this is the introduction of a massive pseudoscalar
particle 𝜑 on the world-sheet. The leading interaction compatible with non-linearly realized Lorentz
invariance for such a state is a coupling to the topological invariant known as the self-intersection
number of the string 𝑆int =

𝛼
8𝜋

∫
𝑑2𝜎𝜑𝐾 𝑖

𝛼𝛾𝐾
𝑗𝛾

𝛽
𝜖 𝛼𝛽𝜖𝑖 𝑗 with 𝐾 𝑖

𝛼𝛾 being the extrinsic curvature of the
world-sheet, 𝛼 the associated coupling and 𝜎𝑖 , 𝑖 = 1, 2 the world-sheet coordinates. Adapting the
above interaction term to our old results for 𝑆𝑈 (3), 𝛽 = 6.0625 yields a mass of𝑚𝜑/

√
𝜎 ≃ 1.85+0.02

−0.03
and a coupling of 𝛼 = 9.6 ± 0.1.

4. Lattice calculation

4.1 The lattice gauge theory

We define the 𝑆𝑈 (𝑁) gauge theory on a 𝐷 = 4 Euclidean space-time lattice which has been
compactified along all directions with volume 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 × 𝐿𝑇 . The length of the flux-tube is
equal to 𝐿𝑥 , while 𝐿𝑦 , 𝐿𝑧 and 𝐿𝑇 were chosen to be large enough to avoid finite volume effects. For
the calculation of the confining string spectra we choose the transverse lattice extents 𝐿𝑦 = 𝐿𝑧 = 𝐿⊥
uniformly so that we ensure rotational symmetry around the string axis while for glueballs we choose
all spatial directions to be equal i.e. 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 for similar reasons. We perform Monte-Carlo
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simulations using the standard Wilson plaquette action

𝑆 =
∑︁
□

𝛽

[
1 − 1

𝑁
ReTr(𝑈□)

]
, (4)

where the sum runs over all the plaquettes (□), the basic square Wilson loop one can construct
with side one lattice spacing 𝑎 as well as with inverse coupling 𝛽 = 2𝑁

𝑔2 (𝑎) . In order to keep the
value of the lattice spacing 𝑎 approximately fixed for different values of 𝑁 we keep the ’t Hooft
coupling 𝜆(𝑎) = 𝑁𝑔2(𝑎) approximately fixed, so that 𝛽 ∝ 𝑁2. From a technical point of view,
the simulation algorithm materialized for such investigations, combines standard heat-bath and
over-relaxation steps in the ratio 1:4; these are implemented by updating 𝑆𝑈 (2) subgroups using
the Cabibbo-Marinari algorithm [17].

4.2 Mass Extraction and Quantum Numbers

Flux-tubes and glueballs are colour singlet states. Masses of colour singlet states can be
calculated using the standard decomposition of a Euclidean correlator of some operator 𝜙(𝑡), with
high enough overlap onto the physical states in terms of the energy eigenstates of the Hamiltonian
of the system 𝐻:

⟨𝜙†(𝑡 = 𝑎𝑛𝑡 )𝜙(0)⟩ = ⟨𝜙†𝑒−𝐻𝑎𝑛𝑡𝜙⟩ =
∑︁
𝑖

|𝑐𝑖 |2𝑒−𝑎𝐸𝑖𝑛𝑡

𝑡→∞
= |𝑐0 |2𝑒−𝑎𝐸0𝑛𝑡 , (5)

where the energy levels are ordered, 𝐸𝑖+1 ≥ 𝐸𝑖 , with 𝐸0 that of the ground state. The only states that
contribute in the above summation are those that have non zero overlaps i.e. 𝑐𝑖 = ⟨vac|𝜙† |𝑖⟩ ≠ 0.
We, therefore, need to match the quantum numbers of the operator 𝜙 to those of the state we are
interested in. In this work we are interested in glueballs and closed flux-tubes, thus, we need to
encode the right quantum properties within the operator 𝜙 which will enable us to project onto the
aforementioned states.

The extraction of the ground state relies on how good the overlap is onto this state and how
fast in 𝑡 we obtain the exponential decay according to Eq. (5). The overlap can be maximized by
building operator(s) which "capture" the right properties of the state, in other words by projecting
onto the right quantum numbers as well as onto the physical length scales of the relevant state. In
order to achieve a decay behaviour setting in at low values of 𝑡 one has to minimize contributions
from excited states. To this purpose we employ the variational calculation or GEVP (Generalized
Eigenvalue Problem) [18, 19] applied to a basis of operators built by several lattice path in different
blocking levels [20–22]. This reduces the contamination of excitation states onto the ground state
and maximizes the overlap of the operators onto the physical length scales.

4.2.1 Quantum numbers of the confining string

The energy states of the closed flux-tube in 𝐷 = 3 + 1 are characterised by the irreducible
representations of the two-dimensional lattice rotation symmetry around the principal axis denoted
by𝐶4 [23]. The above group is a subgroup of𝑂 (2) corresponding to rotations by integer multiples of
𝜋/2 around the flux-tube propagation axis. This splits the Hilbert space in four orthogonal sectors,
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namely: 𝐽mod 4 = 0, 𝐽mod 4 = ±1, 𝐽mod 4 = 2. Furthermore, parity 𝑃⊥ which is associated with
reflections around the axis ⊥̂1 can be used to characterise the states. Applying 𝑃⊥ transformations,
flips the sign of 𝐽. Therefore, one can choose a basis in which states are characterised by their value
of 𝐽 (𝐽 = ±), or by their value of |𝐽 | and 𝑃⊥. We adopt the latter. In the continuum, states with 𝐽 ≠ 0
are parity degenerate, however, on the lattice this holds only for the odd values of 𝐽. In practice,
we describe our states with the following 5 irreducible representations 𝐴1, 𝐴2, 𝐸 , 𝐵1 and 𝐵2 of 𝐶4
group whose 𝐽 and 𝑃⊥ assignments are: {𝐴1 : |𝐽mod 4 | = 0, 𝑃⊥ = +} , {𝐴2 : |𝐽mod 4 | = 0, 𝑃⊥ = −},
{𝐸 : |𝐽mod 4 | = 1, 𝑃⊥ = ±}, {𝐵1 : |𝐽mod 4 | = 2, 𝑃⊥ = +} and {𝐵2 : |𝐽mod 4 | = 2, 𝑃⊥ = −}.

Furthermore, there is the longitudinal momentum 𝑝 | | carried by the confining string along
its axis (which is quantized in the form 𝑝 | | = 2𝜋𝑞/𝐿𝑥; 𝑞 ∈ 𝑍) and the parity 𝑃 | | with respect
to reflections across the string midpoint. Since 𝑃 | | and 𝑝 | | do not commute, we can use both to
simultaneously characterise a state only when 𝑞 = 0. The energy does not depend on the sign of
momentum 𝑞 and we, thus, focused on those with 𝑞 ≥ 0.

𝑇 − 𝑡

𝑡

𝜙
†
𝑖

𝜙 𝑗

Figure 2: A pictorialisation of the torelon correlation function in 𝐷 = 2 Euclidean dimensions.

Flux-tube energies are extracted by making use of correlation matrices𝐶𝑖 𝑗 = ⟨𝜙†
𝑖
(𝑡)𝜙 𝑗 (0)⟩ with

𝑖, 𝑗 = 1...𝑁op in combination with GEVP where 𝑁op the number of operators. A pictorialisation
of a correlation function between closed flux-tube operators is provided in Figure 2. We construct
operators 𝜙𝑖 which encode shapes that lead to particular values of 𝐽, 𝑃⊥, 𝑃 | |, and 𝑞. We do so by
choosing linear combinations of Polyakov loops the paths of which consist of various transverse
deformations and various smearing and blocking levels [20]. All the transverse paths used for
the construction of the operators are shown in Figure 3 and all together, including smearing and
blocking levels, form a basis of around 𝑁op = 1000 operators with approximately 50− 200 for each
different irreducible representation. To build an operator which encodes a certain value of angular
momentum 𝐽mod 4 we begin the construction with a sub-operator 𝜙𝛼 which has a deformation
extending in angle 𝛼 within the plane of transverse directions. Then we repeat the same procedure
by rotating the sub-operator by integer values of 𝜋/2. Finally, we can construct the operator 𝜙(𝐽)
belonging to a specific representation of 𝐶4 by using the formula 𝜙(𝐽) =

∑
𝑛=1,2,3,4 𝑒

𝑖𝐽𝑛 𝜋
2 𝜙𝑛 𝜋

2
.

Thus 𝜙(0) belongs to 𝐴1 and 𝐴2, 𝜙(1) to 𝐸 and, finally, 𝜙(2) to 𝐵1 as well as 𝐵2. Lastly, it is

8



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
8

Confining strings, axions and glueballs in the planar limit

Figure 3: All the different paths used for the construction of the torelon operators.

required to encode certain values of 𝑃⊥ and 𝑃 | | by summing and subtracting reflections of the initial
sub-operator 𝜙(𝐽) over the transverse and parallel parity planes. Such an example is pictorialized
in Equation 6 for an operator with 𝐽mod 4 = 0.

𝜙 = Tr

[
j

i

k

]
. (6)

For the combination 𝑖 = 𝑗 = 𝑘 = +1, 𝜙 projects onto {𝐴1, 𝑃 | | = +}, for 𝑖 = +1, 𝑗 = 𝑘 = −1 onto
{𝐴2, 𝑃 | | = +}, for 𝑖 = −1, 𝑗 = +1, 𝑘 = −1 onto {𝐴1, 𝑃 | | = −} and finally, for 𝑖 = 𝑗 = −1, 𝑘 = +1,
onto {𝐴2, 𝑃 | | = −}.

4.2.2 The Quantum Numbers of glueballs

The glueballs like the flux-tubes are color singlets and, thus, an operator projecting onto a
glueball state is obtained by taking the ordered product of 𝑆𝑈 (𝑁) link matrices however now
around a contractible loop and then taking the trace. To retain the exact positivity of the correlators
we use loops that contain only spatial links. The real part of the trace projects on 𝐶 = + and the
imaginary part on 𝐶 = −. We sum all spatial translations of the loop so as to obtain an operator
with momentum 𝑝 = 0. We take all rotations of the loop and construct the linear combinations that
transform according to the irreducible representations, 𝑅, of the rotational symmetry group of our
cubic spatial lattice. We always choose to use a cubic spatial lattice volume (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧) that
respects these symmetries. For each loop we also construct its parity inverse so that taking linear
combinations we can construct operators of both parities, 𝑃 = ±. The correlators of such operators
will project onto glueballs with 𝑝 = 0 and the 𝑅𝑃𝐶 quantum numbers of the operators concerned.
All the 12 paths used for the construction of the glueball operators are provided in Figure 4.

9



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
8

Confining strings, axions and glueballs in the planar limit

Figure 4: The 12 different closed loops used for the construction of the glueball operators.

The irreducible representations 𝑅 of our subgroup of the full rotation group are usually labelled
as 𝐴1, 𝐴2, 𝐸, 𝑇1, 𝑇2. Mind that these representations are different than those for the group 𝐶4 of the
confining-string . The 𝐴1 is a singlet and rotationally symmetric, so it will contain the 𝐽 = 0 state
in the continuum limit. The 𝐴2 is also a singlet, while the 𝐸 is a doublet and 𝑇1 and 𝑇2 are both
triplets. Since, for example, the three states transforming as the triplet of 𝑇2 are degenerate on the
lattice, we average their values and treat them as one state in our estimates of glueball masses and
we do the same with the 𝑇1 triplets and the 𝐸 doublets.

Once more, the glueball energies are extracted by making use of correlation matrices 𝐶𝑖 𝑗 =

⟨𝜙†
𝑖
(𝑡)𝜙 𝑗 (0)⟩ with 𝑖, 𝑗 = 1...𝑁op in combination with GEVP where 𝑁op the number of operators.

The scalar channel 𝐴++
1 has a non-zero projection onto the vacuum. In this case it can be convenient

to use the vacuum-subtracted operator 𝜙𝑖 − ⟨𝜙𝑖⟩, which will remove the contribution of the vacuum
in Equation 5, so that the lightest non-trivial state appearing in the aforementioned sum, is the
leading term in the expansion of states.

The above representations of the rotational symmetry reflect our cubic lattice formulation. As
we approach the continuum limit these states will approach the continuum glueball states which
belong to representations of the continuum rotational symmetry. In other words they fall into
degenerate multiplets of 2𝐽 + 1 states. In determining the continuum limit of the low-lying glueball
spectrum, it is clearly more useful to be able to assign the states to a given spin 𝐽, rather than
to the representations of the cubic subgroup which have a much less fine ‘resolution’ since all of
𝐽 = 1, 2, 3 . . . ,∞, are mapped to just 5 cubic representations. The way 2𝐽 +1 states for a given 𝐽 are
distributed amongst the representations of the cubic symmetry subgroup is given, for the relevant
low values of 𝐽, in table 1. For instance, the seven states corresponding to a 𝐽 = 3 glueball will
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be distributed over a singlet 𝐴2, a degenerate triplet 𝑇1 and a degenerate triplet 𝑇2, so seven states
in total. These 𝐴2, 𝑇1 and 𝑇2 states will be split by 𝑂 (𝑎2) lattice spacing corrections. So once
the lattice spacing 𝑎 is small enough these states will be nearly degenerate and one can use this
near-degeneracy to identify the continuum spin.

continuum 𝐽 ∼ cubic 𝑅
𝐽 cubic 𝑅
0 ∼ 𝐴1
1 ∼ 𝑇1
2 ∼ 𝐸 + 𝑇2
3 ∼ 𝐴2 + 𝑇1 + 𝑇2
4 ∼ 𝐴1 + 𝐸 + 𝑇1 + 𝑇2
5 ∼ 𝐸 + 2𝑇1 + 𝑇2
6 ∼ 𝐴1 + 𝐴2 + 𝐸 + 𝑇1 + 2𝑇2
7 ∼ 𝐴2 + 𝐸 + 2𝑇1 + 2𝑇2
8 ∼ 𝐴1 + 2𝐸 + 2𝑇1 + 2𝑇2

Table 1: Projection of continuum spin 𝐽 states onto the cubic representations 𝑅.

5. Results

5.1 The spectrum of the confining string and the world-sheet axion

At this section of the manuscript we present results for the spectrum of the confining string
extracted from calculations on five different gauge groups. Namely, we investigated 𝑁 = 3 at
𝛽 = 6.0625 (𝑎 ≃ 0.09fm) and 𝛽 = 6.338 (𝑎 ≃ 0.06fm), 𝑁 = 5 at 𝛽 = 17.630 (𝑎 ≃ 0.09fm)
and 𝛽 = 18.375 (𝑎 ≃ 0.06fm) as well as 𝑁 = 6 at 𝛽 = 25.550 (𝑎 ≃ 0.09fm). Critical slowing
down [24, 25], as one moves towards the continuum (𝑎 → 0) and the large-𝑁 limit (𝑁 → ∞),
prohibits the investigation of gauge groups with 𝑁 ≥ 6 and 𝑎 < 0.09fm. Nevertheless, the above
configuration of measurements is enough to determine whether significant lattice artifacts as well
as 1/𝑁2 corrections are affecting our statistically more accurate 𝑁 = 3 calculations. As a matter
of fact our investigation demonstrates that such effects are of minor importance and do not play a
significant role in the interpretation of the spectrum. The energy spectrum we extracted is compared
to the predictions of the GGRT string. Namely, we fit the absolute ground state (|𝐽mod 4 |𝑃⊥𝑃| | = 0++)
for all calculations using Equation 2 as a function of the length for 𝑙

√
𝜎 > 2.5 and extract the string

tension 𝑎
√
𝜎. Once the string tension has been extracted, Equation 2 can be used as a parameter

free prediction for higher string excitations with 𝑁𝐿 + 𝑁𝑅 > 0.

5.1.1 The energy spectrum for 𝑞 = 0 and the world-sheet axion

We begin by presenting our results for the 𝑞 = 0 longitudinal momentum sector in Figures 5,
6, 7, 8 and 9. In Figure 5, the lowest energy level corresponds to the absolute ground state
|𝐽mod 4 |𝑃⊥𝑃| | = 0++ which is used to set the scale of the NG string, hence, the nearly perfect
agreement with the GGRT string. Furthermore in Figure 5, we plot the first excited state of 0++ as
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well as the ground states of 2++, 2−+ and 0−− for 𝑆𝑈 (3) at 𝛽 = 6.0625. We compare the above data
with the GGRT prediction for 𝑁𝑅 = 𝑁𝐿 = 1. This string state is expected to be four-fold degenerate
with levels with continuum quantum numbers 0++, 0−−, 2++ and 2−+ . While 0++, 2++ and 2−+

flux-tube excitations appear to exhibit small deviations for short values of 𝑙
√
𝜎 and for larger strings

become consistent with GGRT, 0−− ground state appears to demonstrate significant deviations from
the GGRT string. In Figure 6 we present the ground and in addition the first excited state with
quantum numbers 0−− for all gauge groups considered in this work. It appears that both states are
only mildly affected by lattice artifacts and 1/𝑁2 corrections. The 0−− ground state appears to have
characteristics of a resonance i.e. a constant mass term coupled to the absolute ground state. This is
more obvious by subtracting the absolute ground state 0++ where this excitation exhibits a plateau;
this is presented in Figure 7 for 𝑆𝑈 (3) at 𝛽 = 6.0625. As has already being explained in Section 3.3
this state can be well interpreted as an axion on the world-sheet of the flux-tube with an associated
mass of 𝑚𝜑/

√
𝜎 = 1.85+0.02

−0.03 for 𝑆𝑈 (3) at 𝛽 = 6.0625; This value is in good agreement with the
plateau in Figure 7. If the 0−− flux-tube ground state corresponds to the axion, the next excitation
level would correspond to the string-like state with 𝑁𝐿 = 𝑁𝑅 = 1 rather than 𝑁𝐿 = 𝑁𝑅 = 2. As one
can see in the right panel of Figure 5, and Figure 7 the 0−− first excitation state does not approach
the GGRT 𝑁𝐿 = 𝑁𝑅 = 2 state but instead it slowly approaches the 𝑁𝐿 = 𝑁𝑅 = 1 string state. This
strengthens the scenario of 0−− ground state being the world-sheet axion.

axion fit
gs 0−−gs 2−+
gs 2++

1st ex 0++
gs 0++

l
√
σ

E
/√

σ

87654321

10

8

6

4

2

0

GGRT, NL = NR = 0

GGRT
NL = NR = 1

Figure 5: The spectrum of the absolute ground state and first excited state for |𝐽mod 4 |𝑃⊥ ,𝑃| | = 0++ as well as
the ground states for 2++, 2−+ and the "anomalous" 0−− for 𝑞 = 0 and 𝑆𝑈 (3) at 𝛽 = 6.0625; the black lines
correspond to the GGRT predictions and the light blue line to the prediction of the EFT with the axionic part
of the action included within.

5.1.2 A state of two axions

In Figure 8 we present the second excitation state with quantum numbers 0++. Above this
energy level we get a plethora of states which reflect the multifold degeneracy of the GGRT string
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SU(6) β = 25.550
SU(5) β = 18.375
SU(5) β = 17.630
SU(3) β = 6.3380
SU(3) β = 6.0625
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Figure 6: The energies of the ground state and first excited state for |𝐽mod 4 |𝑃⊥ ,𝑃| | = 0−−, 𝑞 = 0 for all gauge
groups considered in this work.

for 𝑁𝐿 = 𝑁𝑅 = 2. Strikingly, this state appears to exhibit the same resonance behaviour as the
0−− ground state: it appears as a constant term coupled to the absolute ground state. This is more
obvious if we subtract from this energy level the contribution of the absolute ground state as this
appears in Figure 9. Namely, we observe that this is in agreement with a resonance of mass twice
that of the axion. This raises the question whether such a relation is accidental or it has some deeper
interpretation. A reasonable expectation would be that this state is a bound state of two axions with
a very low binding energy; this scenario is in agreement with the quantum numbers of the state.

5.1.3 The 𝑞 ≠ 0 sector and the appearance of the world-sheet axion

In this section we present our results for the 𝑞 = 1 and 𝑞 = 2 momentum sectors. In the left
panel of figure 10 we demonstrate the spectrum for 𝑞 = 1, 𝑆𝑈 (3) and 𝛽 = 6.338. Since, the string
ground state 𝑁𝐿 = 1, 𝑁𝑅 = 0 can only be created by a single phonon, it has 𝐽 = 1. The flux-tube
ground state with quantum numbers 1±, 𝑞 = 1 appears to be in good agreement with the prediction
of the GGRT string. This is in accordance with the results of Ref [3]. The next string excitation
level, corresponding to 𝑁𝐿 = 2 and 𝑁𝑅 = 1 should be seven-fold degenerate. This should consist
of one 0+, one 0−, three 1±, one 2+ and a 2− state. In the left panel of Figure 10 we show the
flux-tube ground state with quantum numbers 2+, the ground state with 2−, the ground state for 0+

as well as the first and second excited states with 1±. All the above five states appear to cluster
around the GGRT prediction. Furthermore, we demonstrate the ground state for 0− which appears
to exhibit large deviations from the GGRT string. Since, this state has the same quantum numbers
as the pseudoscalar massive excitation the first assumption one could make is that this reflects to
the axion. A naive comparison of this state with a relativistic sum of the absolute ground state
plus an axion with momentum 2𝜋/𝑙 is provided in the same figure, demonstrating an approximate
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Figure 7: The energy levels of the ground and first excited states for a closed flux-tube with quantum
numbers 0−−, 𝑞 = 0 and the zeroth energies subtracted for 𝑆𝑈 (3), 𝛽 = 6.0625. The horizontal purple band
corresponds to the mass of the axion as this has been extracted in [3].

agreement with our data for large flux-tubes. This strengthens the scenario of this state being the
world-sheet axion.

In the right panel of Figure 10 we show results for 𝑞 = 2, 𝑆𝑈 (3) and 𝛽 = 6.338. The string
ground state 𝑁𝐿 = 2, 𝑁𝑅 = 0 is expected to be four-fold degenerate. Namely, it is expected to
be occupied by states with quantum numbers 0+, 1±, 2+ and 2−. We, thus, extract the flux-tube
ground states with the above quantum numbers and observe that they all cluster around the GGRT
prediction. The next string excitation level is multi-fold degenerate and should also include a 0−

state which encodes the quantum numbers of the axion. We extract the flux-tube ground state with
quantum numbers 0− and we observe a very similar behaviour as for the case of 𝑞 = 1; namely it
diverges greatly from the GGRT prediction.

5.2 The spectrum of glueballs in the planar limit

At this section of the manuscript we present results for the spectrum of glueballs in 𝑆𝑈 (𝑁)
gauge theories at the continuum limit 𝑎 → 0 as well as their extrapolations to the 𝑁 = ∞ limit.
These spectra have been extracted from calculations on 𝑆𝑈 (2) and 6 values of the lattice spacing
(𝛽 = 2.2986, 2.3714, 2.427, 2.509, 2.60, 2.70), on 𝑆𝑈 (3) and 8 values of the lattice spacing
(𝛽 = 5.6924, 5.80, 5.8941, 5.99, 6.0625, 6.235, 6.3380, 6.50), on 𝑆𝑈 (4) and 6 values of the
lattice spacing (𝛽 = 10.70, 10.85, 11.02, 11.20, 11.40, 11.60), on 𝑆𝑈 (5) and 5 values of the
lattice spacing (𝛽 = 16.98, 17.22, 17.43, 17.63, 18.04, 18.375), on 𝑆𝑈 (6) and 6 values of the
lattice spacing (𝛽 = 24.67, 25.05, 25.32, 25.55, 26.22, 26.71), on 𝑆𝑈 (8) and 6 values of the
lattice spacing (𝛽 = 44.10, 44.85, 45.50, 46.10, 46.70, 47.75), on 𝑆𝑈 (10) and 5 values of the
lattice spacing (𝛽 = 69.20, 70.38, 71.38, 72.40, 73.35) and finally on 𝑆𝑈 (12) and 5 values of the
lattice spacing (𝛽 = 99.86, 101.55, 103.03, 104.55, 105.95). As before, critical slowing down
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Figure 8: The ground, first excited and second excited state for |𝐽mod 4 |𝑃⊥ ,𝑃| | = 0++ and all the gauge groups
used in this work.

introduces systematic errors which should be addressed carefully. Since this refers to technical
aspects of the calculation and is, thus, beyond the scope of this presentation, we refer the reader to
the actual publication [24].

For the gauge groups presented above, we calculated glueball masses from the correlators
of suitable operators which have been encoded zero momentum 𝑝 = 0 by imposing translation
invariance. These operators are chosen to have quantum numbers 𝑅𝑃𝐶 as this has been presented
in Section 4.1. 12 different closed loops on the lattice have been used to facilitate the Generalized
Eigenvalue Problem; all the loops are presented in Figure 4. For each different loop all 24 rotations
as well as their linear combinations of the traces that transform irreducibly under 𝑅 have been
constructed. By taking the real and imaginary parts of the traces separately, we build operators
with 𝐶 = ± respectively. We also calculate the parity inverses of each of these 12 closed loops, and
of their rotations, and by adding and subtracting appropriate operators from these two sets we form
operators for each configuration of the quantum numbers 𝑅 with 𝑃 = ±. Once more, states in cubic
representations 𝐴1 and 𝐴2 appear to be one-dimensional, meaning that for each energy level we
have only one such state. States in the 𝐸 representation are doubly degenerate (two-dimensional)
and in the 𝑇1 and 𝑇2 are triply degenerate (three-dimensional).

Lattice simulations are computationally intensive, and for reasons of computational economy
we wish to perform calculations on lattice volumes that are small but, at the same time, large
enough so that any finite volume effects do not interfere with the physics under investigation. The
computational cost of simulating and calculating in 𝑆𝑈 (𝑁) gauge theories increases approximately
as ∝ 𝑁3 due to the multiplication of two 𝑁 × 𝑁 matrices. Since finite volume corrections are
expected to decrease as powers of 1/𝑁 , we reduce the size in physical units of our lattices as we
increase 𝑁 . Due to the technical nature of this topic we refer the reader to our longer manuscript in
Ref [24].
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Figure 9: The second excited state for |𝐽mod 4 |𝑃⊥ ,𝑃| | = 0++ with the absolute ground state being subtracted
for 𝑆𝑈 (3) at 𝛽 = 6.0625.

axion coupled to ground state
gs 0−
gs 2−
gs 2+
gs 0+

2nd ex 1±
1st ex 1±

gs 1±

l
√
σ

E
/√

σ

7654321

10

8

6

4

2

0

GGRT
NL = 1, NR = 0

GGRT
NL = 2, NR = 1

GGRT

NL = 3, NR = 2

gs 0−
gs 2−
gs 2+
gs 1±
gs 0+

l
√
σ

E
/√

σ

7654321

10

8

6

4

2

0

GGRT
NL = 2, NR = 0

GGRT
NL = 3, NR = 1

Figure 10: Left Panel: The ground, first excited and second excited 1± states as well as the ground states
0+, 0−, 2+, 2− for a flux-tube with 𝑞 = 1 in 𝑆𝑈 (3), 𝛽 = 6.338. Right Panel: The ground states with quantum
numbers 0+, 0−, 1±, 2+, 2− for a flux-tube with 𝑞 = 2 at 𝑆𝑈 (3), 𝛽 = 6.338.

Special attention has been given in ensuring that finite volume effects do not affect the spectrum
of the glueballs. There are two types of such finite volume corrections. The first arises when the
propagating glueball emits a virtual glueball which propagates around the spatial torus. The shift
caused by the virtual gluballs in the mass of the propagating glueball decreases exponentially in
𝑚𝐺𝑙𝑥 with 𝑙𝑥 being the length of the spatial torus. For the glueball calculation we choose 𝑙𝑥 so
that 𝑎𝑚𝐺 × 𝑙𝑥/𝑎 is large enough and, thus, we can expect this correction to be small. Details on
the choice of 𝑙𝑥 can be found in Ref. [24]. Similar source of finite volume effects is also present in
the confining-string spectrum where in order to ensure that such effects are under control we have
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chosen the transverse directions of the lattice 𝑙𝑦 = 𝑙𝑧 to be adequately large.
The second type of finite volume effects in the glueball spectrum includes states composed of

several flux-tubes winding around a spatial torus in a singlet state. The lightest of these states will
be composed of one winding flux-tube together with a conjugate winding flux-tube and we, thus,
refer to it as a ‘ditorelon’. These states have a non-zero overlap onto the loops (Figure 4) we use
as our glueball operators. Therefore, it can appear as a state in our extracted glueball spectrum.
Neglecting interactions between the flux-tubes, the lightest ditorelon will consist of each flux tube
in its ground state with zero momentum and will have an energy, 𝐸𝑑 , that is twice that of the flux
tube absolute ground state 𝐸gs, 𝐸𝑑 = 2𝐸gs. In principle we expect interactions to shift the energy
but this shift should be small on the volumes we have chosen. Hence, we shall use 𝐸𝑑 ≃ 2𝐸gs as a
rough estimate in searching for these states. The ditorelon ground state contributes only to the 𝐴++

1
and 𝐸++ representations. If we allow one or both of the component flux tubes to be excited and/or
to have non-zero equal and opposite transverse momenta we can populate other representations
and produce towers of states. However, these excited ditorelon states will be considerably heavier
on the lattice volumes we use. Ditorelon contributions in the 𝐴++

1 and 𝐸++ channels have been
investigated in detail in the longer write-up. Namely, operators which have been constructed in
such a way so that they maximise the overlap onto ditorelon states have been used. This enabled
us to identify ditorelon states which appeared in the calculated glueball spectra and ensure that the
quoted glueball spectrum consists solely of glueball states.

5.2.1 Continuum masses

For each value of 𝑁 for 𝑆𝑈 (𝑁) we have extracted the low-lying glueball spectra for a range of
values of 𝑎(𝛽). All the masses are expressed in lattice units 𝑎𝑀 , and to transform that to physical
units we can take the ratio to the string tension, 𝑎

√
𝜎, that we have simultaneously calculated. We

can then extrapolate this ratio to the continuum limit using the standard Symanzik effective action
analysis that tells us that for our lattice action the leading correction at tree-level is 𝑂 (𝑎2):

𝑎𝑀 (𝑎)
𝑎
√︁
𝜎(𝑎)

=
𝑀 (𝑎)√︁
𝜎(𝑎)

=
𝑀 (0)√︁
𝜎(0)

+ 𝑎2𝜎(𝑎) +𝑂 (𝑎4). (7)

In the above expression we have used the calculated string tension, 𝑎2𝜎(𝑎), as the𝑂 (𝑎2) correction.
Clearly, we could use any other calculated energy, and this would differ at 𝑂 (𝑎4) in Equation (7).
We choose to use 𝑎2𝜎(𝑎) since we can extract it with small errors.

In the left panel of Figure 11 we demonstrate our extrapolations of the lightest two 𝐴++
1 , 𝐸++ and

𝑇++
2 states for 𝑆𝑈 (4). These states are of particular importance because, as explained in Section 4.2.2,

they correspond to the lightest two 𝐽𝑃𝐶 = 0++ and 2++ states. As can be seen all the fits appear to
be linear, confirming the expression provided in Equation 7. In the middle panel of Figure 11 we
show the corresponding plot for 𝑃 = − which corresponds to the lightest two 𝐽𝑃𝐶 = 0−+ and 2−+

states. The lightest states have very plausible continuum extrapolations, although the excited states,
which are heavier than those for 𝑃 = +, begin to show a large scatter character indicating a poor fit.
In the right panel of Figure 11 we present the continuum extrapolations of various 𝑇𝑃𝐶

1 states that
correspond to 𝐽 = 1, and again we observe that the fits appear to be convincing for the lighter states
and quite plausible for the heavier states. Clearly, we can safely state that most of the states exhibit
small lattice artifacts since the slopes of the continuum extrapolations appear to be small.

17



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
8
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Figure 11: Left Panel: Lightest two glueball masses in the 𝐴++
1 (•), 𝐸++ (♦) and 𝑇++

2 (♢) sectors, in units of
the string tension. Lines are linear extrapolations to the continuum limit. In that limit the 𝐴++

1 states become
the lightest two 𝐽𝑃𝐶 = 0++ scalar glueballs while the doublet 𝐸++ and triplet 𝑇++

2 pair up to give the five
components of each of the lightest two 𝐽𝑃𝐶 = 2++ glueballs. Middle Panel: Lightest two glueball masses in
the 𝐴−+

1 (•), 𝐸−+ (♦) and 𝑇−+
2 (♢) sectors, in units of the string tension. Lines are linear extrapolations to the

continuum limit. In that limit the 𝐴−+
1 states become the lightest two 𝐽𝑃𝐶 = 0−+ pseudoscalar glueballs while

the doublet 𝐸−−+ and triplet 𝑇−+
2 pair up to give the five components of each of the lightest two 𝐽𝑃𝐶 = 2−+

glueballs. Right Panel: Lightest two glueball masses in the 𝑇+−
1 (•) representation and the lightest ones in

the 𝑇−+
1 (♦) and 𝑇−−

1 (♢) representations, in units of the string tension. Lines are linear extrapolations to the
continuum limit. In that limit the 𝑇+−

1 states become the lightest two 𝐽𝑃𝐶 = 1+− glueballs while the other
two becomes the 1−+ and 1−− ground state glueballs. All three plots for 𝑆𝑈 (4).

Finally, in the left column of Figure 13 we provide the extrapolated results for, the phenomeno-
logically most interesting case of 𝑆𝑈 (3) and all the different irreducible representations configured
by representations 𝐴1, 𝐴2, 𝐸 , 𝑇1 and 𝑇2 as well as by 𝑃 = ± and 𝐶 = ±.

5.2.2 Large-𝑁 extrapolations

Undoubtedly, from a phenomenological point of view, the most interesting calculation of
glueball spectra is that for 𝑆𝑈 (3) presented in the left panel of Figure 13. Thus, a whole paper to
that case [25] has been devoted. However, from a theoretical point of view, the most interesting
glueball spectra are those of the 𝑆𝑈 (𝑁 → ∞) theory since the theoretical simplifications in that
limit make it the most likely case to be accessible to analytic solution, whether complete or partial.

To extract the 𝑁 = ∞ spectrum from the data obtained for the sequence of values of 𝑁 , one
can use the fact that in the pure gauge theory, as explained in Section 2, the leading correction is
𝑂 (1/𝑁2). So we can extrapolate the continuum mass ratios using the formula

𝑀𝑖√
𝜎

����
𝑁

=
𝑀𝑖√
𝜎

����
∞
+ 𝑐𝑖

𝑁2 +𝑂
(

1
𝑁4

)
. (8)

The results of the extrapolation to the 𝑁 → ∞ are presented in the right column of Figure 13 as
well as in Table 2.

Most of the fits are for 𝑁 ≥ 2 or for 𝑁 ≥ 3 but some fits are over a more restricted range of 𝑁
mainly for technical reasons. For instance, the 𝐴++

2 ground state, has been fitted to 𝑁 ≥ 4, the 𝑇−+
2
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Figure 12: Left Panel: Continuum masses of the lightest (•) and first excited (■) 𝐽𝑃𝐶 = 0++ scalars and of
the lightest (◦) and first excited (□) 0−+ pseudoscalars, in units of the string tension. The state denoted by ♦ is
either the 4++ ground state or the second excited 0++. With extrapolations from values in the range 𝑁 ∈ [2, 12]
to 𝑁 = ∞. Middle Panel: Continuum masses of the lightest (•) and first excited (◦) 𝐽𝑃𝐶 = 2++ tensors, the
lightest (■) and first excited (□) 2−+ pseudotensors, the lightest 2+− (∗), and the lightest 2−− (♦), all in units
of the string tension. With extrapolations to 𝑁 = ∞ from 𝑁 ≤ 12. Right Panel: Continuum masses of the
lightest (•) and first excited (◦) 𝐽𝑃𝐶 = 2++ tensors, the lightest (■) and first excited (□) 2−+ pseudotensors,
the lightest 2+− (∗), and the lightest 2−− (♦), all in units of the string tension. With extrapolations to 𝑁 = ∞
from 𝑁 ≤ 12.

second excited state, has been fitted to 𝑁 ≥ 4, the 𝑇−−
2 ground state, has been fitted to 𝑁 ≥ 4, and

finally the 𝐴+−
2 ground has been fitted to 𝑁 ≤ 8.

From the practical point of view the most important extrapolations are for those states to which
we are able to assign a continuum spin. The extrapolation of these states are presented in the
three panels of Figure 12 for states with 𝐽 = 0, 2, 1 respectively. Furthermore, the extrapolated
corresponding glueball masses are given in Table 3.

Judging by the behaviour of the extrapolations, the mass ratios appear to be described to an
adequate level by Equation 8 with slopes which are relatively small. This suggests that, glueball
spectrum in 𝑆𝑈 (3) can be approximated to a good extent by the spectrum of 𝑆𝑈 (∞).

6. Conclusions

In this work we have improved extensively the extraction of and, thus, our knowledge on the
spectrum of the closed confining string. The majority of the states appearing in the spectrum are
string-like, in the sense they can be adequately approximated by a low energy effective string theory.
In addition a small sector of the excitation spectrum appears to be massive resonances which can
be interpreted as an axion on the world-sheet of the theory. We concluded to the above by the
resonance character of the 0−−, 𝑞 = 0 ground state which appears to be an axion coupled to the
string’s absolute ground state, by the 0++ second excited state which can be interpreted as a bound
state of two axions with a very low binding energy coupled to the absolute ground state as well
as by the 0− 𝑞 = 1, 2 ground states which also have an axion character. Furthermore, states with
axionic character can also be identified in other irreducible representations such as |𝐽mod 4 |𝑃⊥ = 1±;

19



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
8

Confining strings, axions and glueballs in the planar limit

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0

𝑆𝑈 (3) 𝑆𝑈 (∞)

𝑃 = +, 𝐶 = + 𝑃 = +, 𝐶 = +

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0
𝑃 = +, 𝐶 = − 𝑃 = +, 𝐶 = −

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0
𝑃 = −, 𝐶 = + 𝑃 = −, 𝐶 = +

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0

M
/√

σ

T2T1EA2A1

12

10

8

6

4

2

0
𝑃 = −, 𝐶 = − 𝑃 = −, 𝐶 = −

Figure 13: Glueball Masses for 𝑆𝑈 (3) (left panel) and 𝑆𝑈 (∞) (right panel) for the five irreducible repre-
sentations of the cubic group of rotations as well as for the configuration of quantum numbers 𝑃,𝐶.

20



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
6
8

Confining strings, axions and glueballs in the planar limit

𝑅 𝑃 = +, 𝐶 = + 𝑃 = −, 𝐶 = + 𝑃 = +, 𝐶 = − 𝑃 = −, 𝐶 = −
𝐴1 3.072(14) 4.711(25) 9.26(16) 10.10(18)

5.805(31) 7.050(68) 10.14(23)
7.294(63)

𝐴2 7.40(12) 9.73(12) 7.142(75) 8.61(13)
9.14(14) 11.12(24) 8.77(10) 11.38(21)

𝐸 4.582(14) 6.108(44) 8.63(10) 7.951(53)
6.494(33) 8.051(60) 9.14(15) 9.55(13)
7.266(50) 9.84(12)

𝑇1 7.250(47) 8.412(76) 5.760(25) 7.134(86)
7.337(60) 8.79(10) 7.020(39) 8.65(9)
9.142(82) 9.08(12) 7.470(55) 9.81(17)

8.422(84)
𝑇2 4.578(11) 5.965(28) 6.957(41) 7.96(8)

6.579(30) 7.883(57) 7.93(11) 8.22(8)
7.121(45) 8.45(14) 8.63(7) 10.26(10)
7.122(76)

Table 2: Continuum glueball masses in units of the string tension, in the limit 𝑁 → ∞. Labels are 𝑅 for the
representations of the rotation symmetry of a cube, 𝑃 for parity and 𝐶 for charge conjugation.

𝐽 𝑃 = +, 𝐶 = + 𝑃 = −, 𝐶 = + 𝑃 = +, 𝐶 = − 𝑃 = −, 𝐶 = −
0 gs 3.072(14) 4.711(26) ≥ 9.26(16) ≥ 10.10(18)
0 ex 5.845(50) 7.050(68)
2 gs 4.599(14) 6.031(38) 8.566(76) 7.910(56)
2 ex 6.582(36) 7.936(54) ≥ 9.14(15) ≥ 9.55(13)
1 gs ≥ 9.14(9) 8.415(76) 5.760(25) 7.26(11)
1 ex 7.473(57) ≥ 8.65(9)
3 gs 7.263(56) ≥ 9.73(12) 6.988(41) ≥ 8.61(13)
4 gs 7.182(71) ≥ 8.79(10) ≥ 9.26(16) ≥ 10.10(18)

Table 3: Large-𝑁 extrapolation of continuum glueball masses, in units of the string tension, for those
configurations of 𝐽𝑃𝐶 we can identify, with lower bounds in those cases where this is not possible. Ground
state denoted by gs, first excited state by ex.

this is a matter of presentation in the longer write-up [27]. Finally, the spectrum of the confining
string, including the axionic modes appears to have insignificant large-𝑁 effects.

Additionally, this manuscript presents the calculation of the glueball spectra of a range of 𝑆𝑈 (𝑁)
gauge theories, in the continuum limit as well as their extrapolations to the theoretically interesting
𝑁 → ∞ limit. This investigation provided the first calculation of the masses of the ground states in
all the 𝑅𝑃𝐶 irreducible representations, as well as some excited states in most such channels, in the
continuum limit of the 𝑆𝑈 (∞). These results have improved existing calculations [20, 28, 29] while
largely confirming existing results. The main conclusion of this work is that 𝑆𝑈 (3) is close enough
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to 𝑆𝑈 (∞). Namely, the 𝐽𝑃𝐶 = 0++ scalar ground state has a mass of 𝑀0++ ∼ 3.41
√
𝜎 for 𝑆𝑈 (3) to

𝑀0++ ∼ 3.07
√
𝜎 for 𝑆𝑈 (∞), the next heavier glueballs are the tensor with a mass of 𝑀2++ ∼ 1.5𝑀0++

and the pseudoscalar 0−+ which appears to be nearly degenerate with the tensor. Moving higher in
energies, we encounter the 1+− with 𝑀1+− ∼ 1.85𝑀0++ , and this is the only relatively light 𝐶 = −
state. With approximately the same mass comes the first excited 0++ state and then the lightest
pseudotensor with 𝑀2−+ ∼ 1.95𝑀0++ follows. All other states are heavier than twice the lightest
scalar, with most of the 𝐶 = − ground states being very much heavier.
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