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1. Introduction

The task of constructing (quasi-)de Sitter configurations in string theory is an important topic
of study both for its cosmological applications as well as for the general understanding of the
structure of string theory and quantum gravity. The feasibility of de Sitter vacua in string theory
remains a point of contention, with various proposals and objections, but no complete and explicit
constructions to date [1].

At least part of the challenge in constructing de Sitter space in string theory can be attributed to
the fact that String theory is intrinsically supersymmetric, while de Sitter space is a positive energy
configuration and therefore intrinsically non-supersymmetric. This means that any construction of
de Sitter space within string theory must involve some form of supersymmetry breaking and various
questions of stability and control of corrections must be approached with great care. This is, of
course, also true of other non-supersymmetric scenarios within string theory.

One possible approach to non-supersymmetric scenarios in string theory is to work directly
with a system where supersymmetry is broken already at the string scale [2, 3], however this
gives up much of the computational control that supersymmetry offers and much remains to be
understood in such systems. A more common approach is to have the supersymmetry breaking
occur at lower energies where a lower-dimensional effective theory description is available. The
form of the effective theory is then restricted by supersymmetry and the supersymmetry breaking
itself can be understood in terms of specific string theory ingredients of the compactification.

The possible sources of supersymmetry breaking in 4-d supergravity theories can come in
the form of gauging global symmetries, superpotentials or explicit matter sectors with non-linear
supersymmetry realizations. Of these options, the first is available in minimal as well as extended
supergravity, and can be realized through internal fluxes in type II Calabi-Yau string compactifi-
cations [4–6]. Superpotentials are of course only present in N = 1 supersymmetric theories and
also trace their origins to internal fluxes [7] as well as possible non-perturbative effects [8]. Non-
linear realizations of supersymmetry, in the form of constrained superfields [9–15], occur on the
worldvolumes of anti-branes [16–20] and are a staple ingredient in most proposed stable de Sitter
vacuum constructions [21–24].

In this contribution, we will explore some obstacles to constructing controlled de Sitter states
using these ingredients. N = 1 superpotentials are the least constrained by any general physical
principles, so we will not discuss them here. In section 2, we will present constraints that arise from
combining the strict relationship between gauging in N = 2 supergravity to the scalar potential
with the magnetic Weak Gravity Conjecture, originally studied in [25, 26]. The results reveal an
incompatibility between the Hubble scale of de Sitter critical points with charged but massless
gravitini and the UV cutoff dictated by the conjecture. In section 3 we will turn our attention to
the dynamics of the non-linear supersymmetry sector described by constrained superfields, and
summarize the approach and results of [27], where evidence of a previously unnoticed instability
toward the formation of goldstino condensates was found. This instability potentially greatly alters
the expected properties of string theory configurations involving anti-branes and, depending on its
eventual endpoint, calls for a re-examination of many existing de Sitter constructions.
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2. Extended Supersymmetry and the Weak Gravity Conjecture

The scalar potential in supergravity theories with extended supersymmetry arises entirely from
the gauging. The values of the energy at critical points of the scalar potential is therefore related
to the values of the gauge couplings. On the other hand, general quantum gravity considerations,
stemming primarily from the dynamics of charged black holes, produce some of the most robust
constraints on effective theories that admit a quantum gravity UV completion. One of the most
established such constraint is the Weak Gravity Conjecture (WGC), which can be obtained from the
requirement that extremal black holes should be able to decay [28]. This implies the existence of
particles with𝑈 (1) charge greater than their mass (the electric Weak Gravity Conjecture), but also
implies that the cutoff of any consistent effective theory with an unbroken 𝑈 (1) gauge symmetry
with coupling 𝑔 is bounded by

Λ𝑈𝑉 ≤ 𝑔𝑞𝑀𝑝 (1)

for every non-vanishing charge 𝑞. The latter constraint is called the magnetic Weak Gravity
Conjecture (mWGC). In [25] it was further argued that the mWGC can be used to constrain de
Sitter critical points and quasi-de Sitter configurations, by further demanding that the Hubble scale
lies parametrically below the mWGC cutoff.

𝐻 ≪ Λ𝑈𝑉 (2)

This criterion can be motivated by the observation that, since powers of the Hubble scale govern the
typical magnitude of higher curvature terms in the action, 𝐻/Λ𝑈𝑉 appears as the EFT expansion
parameter. Furthermore, the presence of thermal fluctuations in de Sitter space, whose size is
similarly given by 𝐻, demanding that these fluctuations do not push the system outside the EFT
regime of validity similarly requires parametric separation between the Hubble scale and the mWGC
cutoff.

The above argument, combined with the connection between the scalar potential and gauging in
extended supergravity, opens the door for some strict constraints on de Sitter critical points in these
theories. Indeed in [25] it was noticed that many of the de Sitter critical points that one can obtain
in models containing only vector multiplets have a Hubble scale on the order of the mWGC cutoff
and therefore suffer a breakdown of their EFT description. It was further noted that these examples
involved a vanishing gravitino mass matrix, and so it was conjectured that massless gravitini could
serve as a signal for the breakdown of effective field theory descriptions. This idea was further
elaborated in [29, 30] connecting massless gravitini with the swampland distance conjecture [31].
For a more detailed discussion of the connections between de Sitter space, the mWGC and other
swampland conjectures, we refer to the contribution to these proceedings by Niccolò Cribiori [32]
and references therein. Finally, in [26], the analysis of [25] was extended to models with both
vector and hypermultiplets and a rigorous proof was given that any de Sitter critical point in N = 2
supergravity with charged massless gravitini will have an energy on the order of or above the cutoff
dictated by the mWGC.

In the rest of this section we will review the general proof of the main result as well as give
two examples one of which illustrates the result in action while the other provides an example of de
Sitter critical points that evade exclusion on mWGC grounds, due to the lack of an unbroken 𝑈 (1)
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and a non-vanishing gravitino mass matrix. Both examples also illustrate some subtleties related to
possible gauge group enhancements at certain points in field space.

2.1 The general result

Here we prove that de Sitter critical point inN = 2 supergravity with charged massless gravitini
do not have parametric separation between the Hubble scale and the mWGC cutoff. Recall that the
gravitino mass and charge matrices can be written as

𝑆𝑖 𝑗 = 𝑖𝑃
𝑥
Λ𝐿

Λ(𝜎𝑥)𝑘𝑖 𝜖 𝑗𝑘

(𝑄𝐴) 𝑗𝑖 =
1
2
EΛ
𝐴

(
𝑃0
Λ
𝛿
𝑗

𝑖
+ 𝑃𝑥Λ(𝜎

𝑥) 𝑗
𝑖

) (3)

where 𝐿Λ denotes the choice of covariantly holomorphic section that specifies the scalar manifold
for the vector multiplets and 𝑃0,𝑥

Λ
denote the prepotentials, which are computed from the killing

vectors that specify the scalar manifold isometries gauged by the available vector fields. The “gauge
vielbein" EΛ

𝐴
defines the canonically normalized charges and is related to the gauge-kinetic matrix

I by
EΛ
𝐴E

Σ
𝐵𝛿

𝐴𝐵 = −I−1 |ΛΣ (4)

This means that the eigenvalues of𝑄𝐴 are the physical gravitino charges, which are to be used when
applying the mWGC. Meanwhile, the scalar potential is a sum of three terms

V = V1 + V2 + V3 (5)

with
V1 = 𝑔𝐼 𝐽 𝑘

𝐼
Λ𝑘

𝐽
Σ �̄�

Λ𝐿Σ

V2 = 4ℎ𝑢𝑣𝑘𝑢Λ𝑘
𝑣
Σ𝐿

Λ �̄�Σ

V3 = (𝑈ΛΣ − 3𝐿Λ �̄�Σ)𝑃𝑥Λ𝑃
𝑥
Σ

(6)

where 𝑔𝐼 𝐽 is the metric on the scalar manifold for the vector multiplets, ℎ𝑢𝑣 is the metric on the scalar
manifold of the hypermultiplets and 𝑈ΛΣ = 𝑔𝐼 𝐽∇𝐼𝐿Λ∇𝐽 �̄�Σ = − 1

2 (I
−1)ΛΣ − �̄�Λ𝐿Σ. A vanishing

mass matrix 𝑆𝑖 𝑗 requires 𝑃𝑥
Λ
𝐿Λ = 0. This simplifies the expression for the scalar potential to

V = −1
2
I−1 |ΛΣ (

𝑃0
Λ
𝑃0
Σ + 𝑃𝑥Λ𝑃

𝑥
Σ

)
+ 4ℎ𝑢𝑣𝑘𝑢Λ𝑘

𝑣
Σ𝐿

Λ �̄�Σ (7)

where in the first term we used the relations between the killing vectors 𝑘 𝐼
Λ
, their corresponding

prepotentials 𝑃0
Λ
, and the gauge-kinetic matrix to rewrite V1. V3 itself simplifies to a similar

looking form, but involving the prepotentials associated to the hypermultiplet scalar manifold. The
last term is simply V2 and is positive definite. Since we are interested in finding a lower bound on
the scalar potential we can drop this term and write

V ≥ 1
2
𝛿𝐴𝐵

(
𝑃0
𝐴𝑃

0
𝐵 + 𝑃𝑥𝐴𝑃

𝑥
𝐵

)
=

1
2
𝛿𝐴𝐵

(
𝛿
𝑗

𝑖
𝑃0
𝐴 + 𝜎

𝑥 𝑗

𝑖
𝑃𝑥𝐴

) (
𝛿
𝑗

𝑖
𝑃0
𝐵 + 𝜎𝑥 𝑗

𝑖
𝑃𝑥𝐵

)
(8)

where we traded the gauge indicesΛ, Σ for their “flat" counterparts 𝐴, 𝐵 using E𝐴
Λ

that we introduced
earlier. In the second equality, we re-expressed the sum over the 0, 𝑥 in terms of the traces of
products of Pauli matrices (along with the identity). We recognize the terms in the parentheses as
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the expressions for the gravitino charge matrix given in (3). In particular, we can choose E𝐴
Λ

such
that the𝑈 (1) charge that we intend to use for the mWGC lies along the 𝐴 = 1 direction and we can
thus write the lower bound

V ≥ 1
2

Tr(𝑄1𝑄1) = 𝑞2
1 + 𝑞

2
2 (9)

where 𝑞1 and 𝑞2 are the physical charges of the individual gravitini, which themselves provide an
upper bound on the UV cutoff from the mWGC 𝑞2

1 + 𝑞
2
2 ≥ Λ2

𝑈𝑉
. The final conclusion is that we

have
V ≥ 𝑞2

1 + 𝑞
2
2 ≥ Λ2

𝑈𝑉 =⇒ 𝐻 ≥ Λ𝑈𝑉/
√

3 (10)

Thus the Hubble scale associated to the value of the potential is bounded below by an energy of
order the mWGC cutoff, invalidating the EFT description of such critical points. 1

A couple of remarks are in order here. First, the proof assumes that the full mass matrix
vanishes, i.e. that both gravitini are massless. This assumption completely removes the negative
contributions to the potential, allowing us to place the lower bounds in the way that we do. Second,
the proof does not assume that we are precisely at a critical point of the potential, except for the
last step where the Hubble scale is determined from the potential. This means that the conclusion
should also be valid for quasi-de Sitter backgrounds, as long as the notion of a cosmological horizon
and a corresponding Hubble scale makes sense. We will see both these considerations at play in
the second example presented in the next subsection.

Finally an important note is that our result is contained within the “Festina-Lente" bound,
which places a lower bound on the masses of all charged particles in a de Sitter background. This
bound can be derived from considering the evaporation process of large black holes in de Sitter
space and its connection to the Weak Gravity Conjecture has also been discussed [33–35]. It is
a non-trivial cross check that at least a sub-statement of this bound can also be derived purely on
mWGC grounds.

2.2 Examples and Caveats

As an illustrative example of our result at work, as well as of its caveats and possible extensions
we will present two very similar models, which have the same matter content, but differ in the
gauging. A distinguishing feature of the first example is a flat direction that tunes the gravitino
mass, interpolating between regions that respect or violate the mWGC. The second example has
several critical points, which exhibit either non-abelian enhancement of the gauge group, or its
complete breaking, both of which are obstacles to applying the mWGC. Additional examples with
interesting properties can be found in [25, 26], including fully stable de Sitter critical points, whose
EFT validity are however ruled out by the mWGC. Earlier works on finding de Sitter critical points
in extended supergravity include [36–38]

The models we are going to consider will have the following scalar manifolds

M𝑆𝐾 =
SU(1,3)

SU(3) × U(1)
, M𝑄𝐾 =

SO(4,2)
SO(4) × SO(2)

, (11)

1An analogous proof for N = 8 supergravity was also given in [26]. One can reasonably expect that the result holds
for all extended supergravity theories, but the full proof is currently unavailable.
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with holomorphic section

𝑍 =

©«
1
𝑧𝐼

−𝑖/2
𝑖𝑧𝐼/2

ª®®®®¬
, 𝐼 = 1, 2, 3 . (12)

There is an 𝑆𝑂 (3) isometry of M𝑆𝐾 , which rotates the 𝑧𝐼 into each other, given by the killing
vectors

𝜅𝐼1 =
©«

0
𝑧3

−𝑧2

ª®®¬ , 𝜅𝐼2 =
©«
−𝑧3

0
𝑧1

ª®®¬ , 𝜅𝐼3 =
©«
𝑧2

−𝑧1

0

ª®®¬ (13)

while M𝑄𝐾 has an 𝑆𝑂 (3) isometry generated by 𝑇12, 𝑇13, 𝑇23, an 𝑂 (1, 1) generated by 𝑇46 and a
𝑈 (1) isometry generated by 𝑇56, where

(𝑇𝑎𝑏)𝑐𝑑 = 𝜂𝑐 [𝑎𝛿
𝑑

𝑏] (14)

are the 𝑆𝑂 (4, 2) generators used in the construction of M𝑄𝐾 .
The M𝑆𝐾 isometries are gauged by the three vector multiplets as

𝑘 𝐼Λ = 𝑒1
(
0 , 𝜅𝐼1 , 𝜅

𝐼
2 , 𝜅

𝐼
3
)
. (15)

and the SO(3)×O(1,1) isometry of M𝑄𝐾 are gauged as

𝑘𝑢Λ =
(
𝑒0𝑘

𝑢
𝑇46
, 𝑒1𝑘

𝑢
𝑇12
, 𝑒1𝑘

𝑢
𝑇13
, 𝑒1𝑘

𝑢
𝑇23

)
. (16)

i.e. the 𝑆𝑂 (3) isometry is still gauged by the three vector multiplets, with the same charge 𝑒1 as the
M𝑆𝐾 isometries, while the𝑂 (1, 1) is gauged by the graviphoton with charge 𝑒0. The corresponding
prepotentials given by

𝑃𝑥0 =
©«
0
0
0

ª®®¬ , 𝑃𝑥1 =
©«
𝑒1

0
0

ª®®¬ , 𝑃𝑥2 =
©«

0
𝑒1

0

ª®®¬ , 𝑃𝑥3 =
©«

0
0
𝑒1

ª®®¬ , (17)

The resulting scalar potential has a critical point at the center of field space with

V = 2 𝑒2
0 + 3 𝑒2

1 (18)

and scalar masses related to the value of the potential as

𝑚2
(𝑚𝑢𝑙𝑡.) =

(
0(1) , 2(𝑒2

0 − 𝑒
2
1) (3) , 4𝑒2

0 (1) , 4𝑒2
1 (2) ,

𝑥1 (1) , 𝑥2 (1) , 𝑥3 (1)

𝑒2
1 +

√︃
4𝑒4

0 − 4𝑒2
0𝑒

2
1 + 9𝑒4

1 (2)
,

𝑒2
1 −

√︃
4𝑒4

0 − 4𝑒2
0𝑒

2
1 + 9𝑒4

1 (2)

)
×V

(19)
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Λ
U
V
/H
,m

3
/2
/H

z

Figure 1: The ratios Λ𝑈𝑉/𝐻 (solid) and 𝑚3/2/𝐻 (dot-dashed) as a function of the modulus 𝑧. For small
values of 𝑧 the gravitino mass vanishes and the Hubble scale is above the cut-off. The shaded gray region
denotes where the effective theory is increasingly well controlled; in the dark gray part 𝐻 ≪ Λ𝑈𝑉 . The
gravitino mass is always below the cut-off, approaching it as 𝑧 approaches the boundary of moduli space.

where 𝑥1, 𝑥2, 𝑥3 are the solutions to

𝑥3 + 6𝑒1𝑥
2 + (4𝑒2

0𝑒
2
1 − 4𝑒4

0)𝑥 − (16𝑒4
0𝑒

2
1 − 16𝑒2

0𝑒
4
1 + 32𝑒6

1) = 0 (20)

Note that the critical point is unstable and its mass spectrum marginally respects the de Sitter
conjecture. If we further choose 𝑒0 = 𝑒1 the scalar potential develops a flat direction along the
imaginary directions of each of the 𝑧𝐼 . Moving along any one of these flat directions will break the
𝑆𝑂 (3) isometry to a𝑈 (1), with the corresponding gravitino charge given by

𝑞𝑈 (1) = ±

√︄
1 + 𝑧2

1 − 𝑧2 (21)

where 𝑧 is the magnitude of the imaginary part of the scalar that parametrizes our chosen flat
direction. This 𝑈 (1) physical charge, and therefore the mWGC cutoff, interpolates between 1 and
infinity as 𝑧 grows from 0 to 1. Meanwhile, the gravitino mass along this direction is given by

𝑆𝑖 𝑗 =
©«
𝑒1

𝑧√
1−𝑧2

0

0 𝑒1
𝑧√

1−𝑧2

ª®¬ (22)

which vanishes as 𝑧 → 0 and diverges as 𝑧 → 1. This flat direction thus offers a perfect opportunity
to illustrate the onset of the mWGC violation as we approach the massless point. Indeed, computing
the mWGC cutoff in units of the Hubble scale as a function of 𝑧 we can see that the well-controlled
regime appears precisely as 𝑧 → 1, where the gravitini are heavy, while the massless gravitino limit
has the Hubble scale on the same order as the mWGC cutoff (see Figure 1). Finally we also note
that at 𝑧 = 0 the unbroken gauge symmetry gets enhanced to 𝑆𝑂 (3), which is non-abelian and so
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the mWGC does not directly apply. However, since points along the flat directions are excluded
by the mWGC arbitrarily close to the central critical point, we may conclude by continuity that the
central point is similarly excluded.

As our second example, we may choose instead to gauge the 𝑈 (1) isometry on M𝑄𝐾 instead
of the 𝑂 (1, 1), i.e. choose

𝑘𝑢Λ =
(
𝑒0𝑘

𝑢
𝑇56
, 𝑒1𝑘

𝑢
𝑇12
, 𝑒1𝑘

𝑢
𝑇13
, 𝑒1𝑘

𝑢
𝑇23

)
. (23)

with the rest of the model exactly as before. In particular the prepotentials are still given by (17).
With this choice of gauging, the central critical point still exists and has energy

V = 3𝑒2
1 (24)

with the mass spectrum

𝑚2
(𝑚𝑢𝑙𝑡.) =

(
−2

3 (6)
,

4
3
𝑟2
(2) ,

4
3
(𝑟2 + 1) (6)

)
×V (25)

The vanishing of 𝑃𝑥0 implies that the gravitini are uncharged under the separate𝑈 (1) isometry. They
do have charges ± 1√

2
𝑒1 under the three generators of the 𝑆𝑂 (3) isometry. However this isometry is

non-abelian, so it isn’t clear that the mWGC constraint can be applied. Furthermore, we no longer
have the flat direction that allows us to break it to a single𝑈 (1).

A possible way around this problem is to consider time-dependent trajectories, which have as
initial boundary conditions points near, but not quite at, the central critical point, in such a way that
the 𝑆𝑂 (3) symmetry is broken down to 𝑈 (1) as in the previous example. In this case, the charge
under this 𝑈 (1) will still be approximately equal to ± 1√

2
𝑒1 and the energy, at least for some short

time before the runaway due to the tachyonic directions takes over, will be above the mWGC cutoff,
so we expect the EFT description around these trajectories to break down. By considering a limit
of such runaway trajectories such that their initial conditions approach the critical point, we might
wish to again conclude by continuity that the critical point itself also suffers a breakdown of its EFT
description.

An important caveat to the above argument is that since the masses of the tachyons are
comparable to the energy itself and therefore does not satisfy slow-roll conditions, it isn’t clear that
the mWGC criterion applies to such trajectories in the first place, since one can not meaningfully
assign a Hubble radius to this solution. This question deserves further investigation.

Finally, a second interesting feature of this model is the presence of a second family of critical
points located at

Re 𝑧𝐼 = ±1
2
, Im 𝑧𝐽 = ±1

2
𝐼 ≠ 𝐽 . (26)

This critical point completely breaks the 𝑆𝑂 (3) gauge symmetry, and the gravitino 𝑈 (1) charge
continutes to vanish. The scalar mass spectrum is

𝑚2
(𝑚𝑢𝑙𝑡.) =

(
0(3) ,−1(2) , 8(1) , 2 + 4𝑟2 − 2𝑟 (2) , 𝛽2 + 𝛽(2) , 𝛽2 − 𝛽(2) , 2 + 2𝑟 + 4𝑟2

(2)

)
×V (27)

and thus again has tachyons satisfying the de Sitter criterion. This critical point can therefore not
be excluded by this criterion, nor by the mWGC due to a lack of any unbroken gauge group. The
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reason this is not a counterexample to our general theorem is that one of the gravitini becomes
massive. Indeed the mass matrix evaluated at this critical point is

𝑆𝑖 𝑗 =

(√
2 𝑒1 0
0 0

)
(28)

illustrating that insufficiency of having a single massless gravitino to exclude a critical point on
mWGC grounds.

3. Spontaneous Supersymmetry Breaking and Goldstino Condensation

In the previous section, we considered constraints on (quasi-)de Sitter configurations that arise
from the magnetic Weak Gravity Conjecture and the connection between the scalar potential and the
gauging in theories with extended supersymmetry. In this section we turn our attention to a more
recent result concerning de Sitter constructions that can be formulated in N = 1 supersymmetry
models involving nilpotent chiral multiplet. This nilpotent superfield represents the spontaneous
supersymmetry breaking sector that appears, for example, on the worldvolume of anti-branes [16–
19] and are ubiquitous in de Sitter constructions such as [21–24].

What we will show in this section is that the dynamics of this supersymmetry breaking sector,
as described by the Volkov-Akulov model, include an instability toward the formation of composite
states of the goldstino. Depending on the endpoint of this instability, which we currently can not
determine, this formation of goldstino composite states can potentially have devastating effects
on existing de Sitter constructions that involve anti-branes uplifts. Even in the case of a benign
endpoint to the instability, the properties of the resulting configuration are likely to differ from
what is commonly assumed and deserves further examination. For the sake of brevity we restrict
ourselves to the main ideas and an outline of the calculations involved in deriving this result. All
the necessary additional details can be found in [27].

3.1 Volkov-Akulov with Lagrange multipliers

Our starting point is the Volkov-Akulov model [39], which is a theory of a single goldstone
fermion with Lagrangian

L = − 𝑓 2 + 𝑖𝐺𝜎𝑚𝜕𝑚𝐺 − 1
4 𝑓 2𝐺

2
𝜕2𝐺2 − 1

16 𝑓 6𝐺
2𝐺

2
𝜕2𝐺2𝜕2𝐺

2
(29)

The higher derivative terms are required by supersymmetry, which is realized non-linearly, with the
supersymmetry transformation taking the form 𝛿𝜖𝐺 = −

√
2 𝑓 𝜖 + ....

This model appears, at least as a sub-sector, in the low-energy description of theories with
spontaneous supersymmetry breaking. The supersymmetry breaking scale is given by

√︁
𝑓 . The

model can alternatively be written in superspace by means of a nilpotent chiral superfield [13, 14]

𝑋 = 𝜙 +
√

2𝜃𝐺 + 𝜃2𝐹 , 𝑋2 = 0 =⇒ 𝜙 =
𝐺2

2𝐹
(30)

9



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
8
7

Obstacles for dS in Supersymmetric Theories Maxim Emelin

with Lagrangian given by

𝐿 =

∫
𝑑4𝜃𝐾 (𝑋, 𝑋) +

( ∫
𝑑2𝜃𝑊 (𝑋) + 𝑐.𝑐

)
=

∫
𝑑4𝜃 |𝑋 |2 +

(∫
𝑑2𝜃 𝑓 𝑋 + c.c.

) (31)

or equivalently, one can impose the nilpotency condition via a second non-dynamical chiral super-
field 𝑇 = 𝜏 +

√
2𝜃𝜆 + 𝜃2𝐵 that acts as a lagrange multipler

𝐿 =

∫
𝑑4𝜃 |𝑋 |2 +

(∫
𝑑2𝜃 𝑓 𝑋 + 𝑇𝑋2 + c.c.

)
(32)

Despite appearing to have additional fields, the scalar fields 𝜙, 𝜏 as well as the fermion 𝜆 are all
non-dynamical and can be written as an expansion in goldstino multilinears as

⟨𝜙⟩ ∼
〈𝐺2

𝑓

〉
+ . . . , ⟨𝜏⟩ ∼

〈𝜕2𝐺
2

𝑓 2

〉
+ . . . (33)

and 𝜆 can be determined by acting with a supersymmetry transformation on 𝜏. Thus the goldstino
is still the unique independent degree of freedom in the theory.

3.2 Detecting Composite States with Exact RG

The presence of goldstino self-interactions presents the possibility that besides the perturbative
goldstino states, composite states might also appear in the theory, represented precisely by expres-
sions such as those for 𝜙 and 𝜏 above. One way to determine whether this happens is to allow the
theory to evolve along the Wilsonian RG flow and see whether the non-dynamical field 𝜏 acquires
a correct-sign kinetic term, similar to Nambu–Jona-Lasinio and composite Higgs models [40–42].
In this case, not only would a kinetic term indicate that 𝜏 itself represents dynamical states, but
also the nilpotency condition on 𝑋 would get relaxed and so 𝜙 would also enter the theory as an
independent degree of freedom. The behavior of these new composite states will then be governed
by the resulting scalar potential for 𝜙 and 𝜏.

Since the𝑇 superfield starts out with a vanishing kinetic term, small variations of the Wilsonian
cutoff will produce a small kinetic term, which is equivalent to strong coupling. We can therefore
not rely on any perturbative calculation in the couplings and must turn to the formalism of the Exact
Renormalization Group [43–45].

The main idea behind this formalism is that given a Wilsonian effective action 𝐿 [Φ; 𝜇] with
cutoff 𝜇, the partition function

Z[Φ] =
∫

DΦ 𝑒𝐿prop. [Φ;𝜇]+𝐿int. [Φ;𝜇]

𝐿prop. [Φ; 𝜇] =
∫

𝑑4𝑘

(2𝜋)4Φ
𝐴(−𝑘)𝐶−1

𝐴𝐵 (𝑘)Φ
𝐵 (𝑘)

𝐿int. [Φ; 𝜇] =
∫ ∑︁

𝜆

𝑔𝜆(𝜇)
∏
{𝐴}𝜆

(
𝑑4𝑘𝐴

(2𝜋)4 𝑘
𝑛𝐴,𝜆
𝐴

Φ𝐴(𝑘𝐴)
)
𝛿(

∑︁
{𝐴}𝜆

𝑘𝐴)

(34)
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should be independent of 𝜇. Here we separated the action into a regularized propagator piece
𝐿prop., which needs not include the full kinetic term, and an interaction piece 𝐿int., which can still
have term quadratic in the field. All fields, couplings and momenta are taken here to be rendered
dimensionless by rescaling with appropriate powers of 𝜇.

The requirement of invariance of the partition function leads to the condition [43]

¤𝐿int. ≡ −𝜇𝜕𝜇𝐿int.

=

∫
𝑑4𝑘

(2𝜋)4 �̃�
𝐴𝐵 (𝑘)

(
𝛿2𝐿int.

𝛿Φ𝐴(−𝑘)𝛿Φ𝐵 (𝑘)
+ 𝛿𝐿int.

𝛿Φ𝐴(−𝑘)
𝛿𝐿int.

𝛿Φ𝐵 (𝑘)

) (35)

where �̃�𝐴𝐵 is related to 𝐶𝐴𝐵 in a specified way that depends on the spin of the field. It is worth
emphasizing that this flow equation does not make use of any small-coupling approximation. It
does however produce an infinite system of equations for all the higher derivative couplings that
will generically be generated by the RG flow. Solving these equations thus requires an appropriate
choice of truncation of these equations, typically based on a derivative expansion.

For our case, we resort to a truncation of the equations that we dub the Supersymmetric Local
Potential Approximation (SLPA). In this approximation we ignore all contributions to and from
any terms that can not be expressed in terms of a Kähler or superpotential. In superspace, this
amounts to ignoring all terms that are higher-order in superderivatives. The SLPA has the benefit
of preserving supersymmetry (assuming a supersymmetric regulator function) and keeping track of
the kinetic terms of the scalar fields, which is what we are interested in. This is in contrast to the
more common Local Potential Approximation (LPA) which would simply truncate all derivative
interactions [46–49].

The truncation of higher order terms means that we should not trust the solutions to the
remaining equations for large changes in 𝜇. This can be an issue when the qualitative features one is
after do not appear immediately in the RG flow, such as the tachyonic behavior in composite Higgs
models [42]. As we will see, the features describing here will not suffer from this problem, and will
be immediately visible even for a small decrease in 𝜇.

In order to apply the ERG formalism to the Volkov–Akulov model, we start with the following
Kähler and superpotentials

𝐾 = 𝛼 |𝑋 |2 + 𝛽 |𝑇 |2 + 𝑔 |𝑇 |2 |𝑋 |2 + 1
4
𝑞 |𝑋 |4

𝑊 = 𝑓 𝑋 + 1
2
𝑇𝑋2

(36)

and separate 𝐾 into a (regularized) propagator and interaction part

𝐾prop. = 𝑐
−1 |𝑋 |2 + 𝑐−1 |𝑇 |2

𝐾int. = (𝛼 − 1) |𝑋 |2 + (𝛽 − 1) |𝑇 |2 + 𝛾𝜇−2 |𝑇 |2 |𝑋 |2 + 1
4
𝜁 𝜇−2 |𝑋 |4

(37)

where we assume the regulator function can be expanded as 𝑐(𝑝2/𝜇2) = 1 + ∑
𝑐𝑛 𝑝

2𝑛/𝜇2𝑛. This
action contains all the terms that will be generated by the RG flow within the SLPA. Since the action
is manifestly supersymmetric, we can read off the flow of the couplings 𝛼, 𝛽, 𝛾 and 𝜁 from any of
the terms that contain them. A convenient choice are the quadratic terms in the auxiliary fields 𝐹

11
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and 𝐵. The calculation is laborious but straightforward and can be found in full detail in [27]. Here
we simply quote the resulting flow equations

¤𝜁 = −2𝜁 − 2𝑐1 , ¤𝛾 = −2𝛾 − 2𝑐1

¤𝛽 = −2𝑁𝛾 , ¤𝛼 = −2𝑁 (𝛾 + 𝜁) ,
(38)

The flow of the 4-point couplings 𝜁 and 𝛾 is generated by the second term in (35) from the
𝑇𝑋2 term in the superpotential. Once these terms are generated, the first term in (35) generates
corrections to the kinetic terms from these 4-point couplings.

3.3 Goldstino condensation in Volkov-Akulov and Beyond

We now need to solve the Volkov–Akulov ERG equations with boundary conditions

𝛼

���
𝑡=0

= 1 , 𝛽

���
𝑡=0

= 0 , 𝛾

���
𝑡=0

= 0 , 𝜁

���
𝑡=0

= 0 (39)

with 𝑡 = log(Λ/𝜇), where Λ ≤
√︁
𝑓 is a matching UV scale where we might imagine all other

degrees of freedom are integrated out. 𝑁 is the result of a momentum loop integral that appears in
the evaluation of the first term in (35) and 𝑐1 is the first coefficient in the expansion of the regulator
function. A typical monotonic regulator will have 𝑐1 < 0 and 𝑁 < 0. The solution to this system
of ODE’s is

𝜁 = −𝑐1

(
1 − 𝑒−2𝑡

)
, 𝛾 = −𝑐1

(
1 − 𝑒−2𝑡

)
,

𝛼 = 1 − 2𝑐1𝑁 + 4𝑐1𝑁

(
𝑡 + 1

2
𝑒−2𝑡

)
,

𝛽 = −𝑐1𝑁 + 2𝑐1𝑁

(
𝑡 + 1

2
𝑒−2𝑡

)
> 0 .

(40)

The𝑇 field, which started its life as a Lagrange multiplier, acquires a positive kinetic term, indicating
that the composite states of the goldstino that it represents enter the effective theory as independent
degrees of freedom. Furthermore, we can evaluate the mass spectrum around the original Volkov–
Akulov point at 𝑋 = 𝑇 = 0 and we find that the masses take the form

𝑚2
± = − 𝑓 2

[ (
�̃� + 4𝜁

)
±

√︄
16 �̃�2

𝑓 2
+

(
�̃� − 4𝜁

)2
]
. (41)

where 𝑓 , �̃�, 𝜁 , �̃� are rescaled couplings obtained after canonically normalizing the kinetic terms and
are all positive. It isn’t hard to see that at least one of the masses is always negative and thus at
least one of the scalars will develop an expectation value, representing the formation of a goldstino
condensate. The typical behavior of the scalar potential for small 𝑡 is depicted in the left side of
Figure 2.

For larger 𝑡 contributions beyond the SLPA will alter the flow from that given by (40). In
particular additional couplings will enter the Kähler potential and affect the shape of the potential
away from the central point. This may ultimately affect the endpoint of the instability and its physical
interpretation. The central instability, however, is expected to survive, since both the generation
of the kinetic term for 𝑇 and the tachyonic behavior at the origin is due to the 𝑇𝑋2 term in the
superpotential. To remove the central instability, the effect of the higher-derivative contributions in
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Figure 2: Stream-plot of the (negative) gradient of the scalar potential for pure Volkov–Akulov (left) and for
unwarped coupling to KKLT (right) at 𝑡 = 0.1 restricted to the real parts of 𝑋 and 𝑇 scalar components. The
regulator is chosen to be 𝑐 = (1 − 𝑝2)Θ(1 − 𝑝2) and the UV matching scale is Λ =

√︁
𝑓 . The KKLT model

parameters are those of the example in [21]. The black contour denotes the locus of vanishing gradient along
the KKLT Kähler modulus whose value is taken to be that of the critical point.

the ERG flow would have to give corrections to the Kähler potential that compete with the effect
of the superpotential term, which would indicate a breakdown of the EFT description altogether.
While this is not ruled out, it would require an even bigger revision of what is commonly assumed
about the IR behavior of the Volkov–Akulov model. In either case, an analysis beyond the SLPA is
called for.

So far we have only considered the pure Volkov–Akulov model without additional fields and in
the rigid limit. Additional fields are unlikely to change the qualitative features found above. This is,
again, due to the fact that the 𝑇𝑋2 term in the superpotential is responsible for both the kinetic term
of 𝑇 and for the presence of the central tachyon. At the UV matching scale, 𝑇 only appears in that
single superpotential term and can not couple to any other fields in any larger model. The SLPA
calculation for the kinetic term will therefor be unaffected. Beyond the SLPA, additional fields may
have an effect and considerations of the previous paragraph apply. Once again, analysis to higher
orders remains a necessary future direction.

As far as extending this analysis to supergravity, a major obstacle is the absence of a super-
symmetric regulator, which could be used to maintain a manifestly supersymmetric RG flow. This
remains an open problem. That said, the natural expectation is that corrections to the rigid limit
results will be suppressed by powers of 𝑀𝑝 and so the main qualitative features of a dynamic 𝑇
and a tachyonic critical point should remain. As a naive first check, one can simply embed the RG-
evolved V–A model into the KKLT scenario by adding the RG-evolved Kähler and superpotentials
(36) evaluated at small 𝑡 to the pre-uplift KKLT Kähler and superpotentials. The details of this
calculation are also described in [27] and the result is depicted in the right side of Figure 2. The main
result is that the dS critical point shifts in the 𝑋,𝑇- plane and also develops a tachyonic instability
toward goldstino condensation. Of course one can look at more complicated models where the
goldstino sector couples to other matter fields in more sophisticated ways, such as [22, 50–52], but
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the instability of the original critical point toward goldstino condensation is expected to remain for
the reasons outlined above.

Finally, we note that since the Volkov–Akulov model is generally understood to be contained
in the low-energy description of the worldvolume dynamics of anti-branes, the instability we find
should be present in the simple case of the 𝐷3/𝑂3 system in 10 dimensions. In this context, a string
theoretic analysis of the goldstino composite states and their dynamics could give insights into the
eventual fate of the instability that would be difficult to access using effective field theory methods.

4. Conclusion

In this contribution, we have explored potential obstacles to constructing de Sitter spacetimes in
supersymmetric effective theories as explored in [26, 27]. We have shown that inN = 2 supergavity,
(quasi-)de Sitter configurations with massless charged gravitini necessarily have a Hubble scale on
the order of, or above, the UV cutoff dictated by the magnetic Weak Gravity Conjecture, thus
invalidating their EFT description. This constraint excludes many of the known de Sitter critical
points in N = 2 supergravity, including all known stable ones. Possible future directions in this area
include clarifying the limits of applicability of the mWGC criterion to time-dependent backgrounds,
in particular those that pass near critical points with non-abelian enhancement of the gauge group.
Investigations of constraints coming from the charges of other particles, particularly at points where
the gravitini are uncharged. These two lines of analysis could help decide the fate of the critical
points encountered in the second example of section 2.

We have then turned our attention to models where supersymmetry breaking is achieved through
an explicit goldstino sector where supersymmetry is non-linearly realized. We have shown, using
exact renormalization group techniques, that the pure Volkov–Akulov model has an instability
toward goldstino condensation and argued that additional matter or supergravity couplings are
unlikely to remove the instability, but may affect its endpoint. In either case, this new effect invites
us to re-examine the properties of string models involving anti-branes. Future directions in this area
include moving beyond the SLPA to determine the possible endpoint of the instability as well as
analyzing the composite states in the context of the 𝐷3/𝑂3 system using worldsheet or string field
theory methods.

Acknowledgements

This work is supported by the STARS grant SUGRA-MAX.

References

[1] U. H. Danielsson and T. Van Riet, Int. J. Mod. Phys. D 27 (2018) no.12, 1830007
doi:10.1142/S0218271818300070 [arXiv:1804.01120 [hep-th]].

[2] I. Antoniadis, E. Dudas and A. Sagnotti, Phys. Lett. B 464 (1999), 38-45 doi:10.1016/S0370-
2693(99)01023-0 [arXiv:hep-th/9908023 [hep-th]].

[3] J. Mourad and A. Sagnotti, [arXiv:1711.11494 [hep-th]].

14



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
8
7

Obstacles for dS in Supersymmetric Theories Maxim Emelin

[4] J. Polchinski and A. Strominger, Phys. Lett. B 388 (1996), 736-742 doi:10.1016/S0370-
2693(96)01219-1 [arXiv:hep-th/9510227 [hep-th]].

[5] J. Michelson, Nucl. Phys. B 495 (1997), 127-148 doi:10.1016/S0550-3213(97)00184-3
[arXiv:hep-th/9610151 [hep-th]].

[6] T. R. Taylor and C. Vafa, Phys. Lett. B 474 (2000), 130-137 doi:10.1016/S0370-
2693(00)00005-8 [arXiv:hep-th/9912152 [hep-th]].

[7] S. Gukov, C. Vafa and E. Witten, Nucl. Phys. B 584 (2000), 69-108 [erratum: Nucl. Phys. B
608 (2001), 477-478] doi:10.1016/S0550-3213(00)00373-4 [arXiv:hep-th/9906070 [hep-th]].

[8] E. Witten, Nucl. Phys. B 474 (1996), 343-360 doi:10.1016/0550-3213(96)00283-0 [arXiv:hep-
th/9604030 [hep-th]].

[9] U. Lindstrom and M. Rocek, “CONSTRAINED LOCAL SUPERFIELDS”, Phys. Rev. D 19
(1979), 2300-2303

[10] A. A. Kapustnikov, “NONLINEAR REALIZATION OF EINSTEINIAN SUPERGRAVITY”,
Theor. Math. Phys. 47 (1981), 406-413

[11] S. Samuel and J. Wess, “A Superfield Formulation of the Nonlinear Realization of Supersym-
metry and Its Coupling to Supergravity”, Nucl. Phys. B 221 (1983), 153-177

[12] E. A. Bergshoeff, D. Z. Freedman, R. Kallosh and A. Van Proeyen, “Pure de Sitter Supergrav-
ity”, Phys. Rev. D 92 (2015) no.8, 085040 [erratum: Phys. Rev. D 93 (2016) no.6, 069901]
[arXiv:1507.08264 [hep-th]].

[13] N. Cribiori, G. Dall’Agata and F. Farakos, “From Linear to Non-linear SUSY and Back Again”,
JHEP 08 (2017), 117 [arXiv:1704.07387 [hep-th]].

[14] G. Dall’Agata, E. Dudas and F. Farakos, “On the origin of constrained superfields”, JHEP 05
(2016), 041 [arXiv:1603.03416 [hep-th]].

[15] S. Ferrara, R. Kallosh and A. Linde, “Cosmology with Nilpotent Superfields”, JHEP 10
(2014), 143 [arXiv:1408.4096 [hep-th]].

[16] E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, “D3 and dS”, JHEP
05 (2015), 058 [arXiv:1502.07627 [hep-th]].

[17] I. Bandos, L. Martucci, D. Sorokin and M. Tonin, “Brane induced supersymmetry breaking
and de Sitter supergravity”, JHEP 02 (2016), 080 [arXiv:1511.03024 [hep-th]].

[18] K. Dasgupta, M. Emelin and E. McDonough, “Fermions on the antibrane: Higher order
interactions and spontaneously broken supersymmetry”, Phys. Rev. D 95 (2017) no.2, 026003
[arXiv:1601.03409 [hep-th]].

[19] N. Cribiori, R. Kallosh, C. Roupec and T. Wrase, “Uplifting Anti-D6-brane”, JHEP 12 (2019),
171 [arXiv:1909.08629 [hep-th]].

15



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
8
7

Obstacles for dS in Supersymmetric Theories Maxim Emelin

[20] N. Cribiori, C. Roupec, M. Tournoy, A. Van Proeyen and T. Wrase, “Non-supersymmetric
branes”, JHEP 07 (2020), 189 [arXiv:2004.13110 [hep-th]].

[21] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De Sitter vacua in string theory”, Phys.
Rev. D 68 (2003), 046005 [arXiv:hep-th/0301240 [hep-th]].

[22] S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P. McAllister and S. P. Trivedi, JCAP
10 (2003), 013 doi:10.1088/1475-7516/2003/10/013 [arXiv:hep-th/0308055 [hep-th]].

[23] V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, “Systematics of moduli sta-
bilisation in Calabi-Yau flux compactifications”, JHEP 03 (2005), 007 [arXiv:hep-th/0502058
[hep-th]].

[24] I. Bena, E. Dudas, M. Graña, G. L. Monaco and D. Toulikas, “Bare-Bones de Sitter”,
[arXiv:2202.02327 [hep-th]].

[25] N. Cribiori, G. Dall’agata and F. Farakos, “Weak gravity versus de Sitter,” JHEP 04 (2021),
046 [arXiv:2011.06597 [hep-th]].

[26] G. Dall’Agata, M. Emelin, F. Farakos and M. Morittu, “The unbearable lightness of charged
gravitini,” JHEP 10 (2021), 076 [arXiv:2108.04254 [hep-th]].

[27] G. Dall’Agata, M. Emelin, F. Farakos and M. Morittu, “Anti-brane uplift instability from
goldstino condensation,” [arXiv:2203.12636 [hep-th]].

[28] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, “The String landscape, black holes and
gravity as the weakest force,” JHEP 06 (2007), 060 [arXiv:hep-th/0601001 [hep-th]].

[29] N. Cribiori, D. Lust and M. Scalisi, “The gravitino and the swampland,” JHEP 06 (2021), 071
[arXiv:2104.08288 [hep-th]].

[30] A. Castellano, A. Font, A. Herraez and L. E. Ibáñez, “A Gravitino Distance Conjecture,”
[arXiv:2104.10181 [hep-th]].

[31] H. Ooguri and C. Vafa, Nucl. Phys. B 766 (2007), 21-33 doi:10.1016/j.nuclphysb.2006.10.033
[arXiv:hep-th/0605264 [hep-th]].

[32] N. Cribiori, [arXiv:2203.15449 [hep-th]].

[33] M. Montero, T. Van Riet and G. Venken, “Festina Lente: EFT Constraints from Charged Black
Hole Evaporation in de Sitter,” JHEP 01 (2020), 039 [arXiv: 1910.01648 [hep-th]].

[34] M. Montero, T. Van Riet and G. Venken, “A dS obstruction and its phenomenological conse-
quences,” JHEP 05 (2020), 114 [arXiv:2001.11023 [hep-th]].

[35] M. Montero, C. Vafa, T. Van Riet and G. Venken, “The FL bound and its phenomenological
implications,” [arXiv:2106.07650 [hep-th]].

[36] P. Fre, M. Trigiante and A. Van Proeyen, “Stable de Sitter vacua from N=2 supergravity,”
Class. Quant. Grav. 19 (2002), 4167-4194 [arXiv:hep-th/0205119 [hep-th]].

16



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
8
7

Obstacles for dS in Supersymmetric Theories Maxim Emelin

[37] G. Dall’Agata and G. Inverso, “de Sitter vacua in N = 8 supergravity and slow-roll conditions,”
Phys. Lett. B 718 (2013), 1132-1136 [arXiv:1211.3414 [hep-th]].

[38] F. Catino, C. A. Scrucca and P. Smyth, “Simple metastable de Sitter vacua in N=2 gauged
supergravity”, [arXiv: 1302.1754 [hep-th]].

[39] D. V. Volkov and V. P. Akulov, “Is the Neutrino a Goldstone Particle?”, Phys. Lett. B 46
(1973), 109-110.

[40] Y. Nambu and G. Jona-Lasinio, “Dynamical Model of Elementary Particles Based on an
Analogy with Superconductivity. 1.”, Phys. Rev. 122 (1961), 345-358

[41] Y. Nambu and G. Jona-Lasinio, “DYNAMICAL MODEL OF ELEMENTARY PARTICLES
BASED ON AN ANALOGY WITH SUPERCONDUCTIVITY. II”, Phys. Rev. 124 (1961),
246-254

[42] W. A. Bardeen, C. T. Hill and M. Lindner, “Minimal Dynamical Symmetry Breaking of the
Standard Model,” Phys. Rev. D 41 (1990), 1647

[43] J. Polchinski, “Renormalization and Effective Lagrangians”, Nucl. Phys. B 231 (1984), 269-
295.

[44] R. D. Ball and R. S. Thorne, “Renormalizability of effective scalar field theory”, Annals Phys.
236 (1994), 117-204 [arXiv: hep-th/9310042 [hep-th]].

[45] D. F. Litim and M. J. Trott, “Asymptotic safety of scalar field theories”, Phys. Rev. D 98 (2018)
no.12, 125006 [arXiv: 1810.01678 [hep-th]].

[46] G. Zumbach, “The Renormalization group in the local potential approximation and its appli-
cations to the O(n) model”, Nucl. Phys. B 413 (1994), 754-770

[47] G. Zumbach, “The Local potential approximation of the renormalization group and its appli-
cations”, Phys. Lett. A 190 (1994), 225-230

[48] T. R. Morris, “Derivative expansion of the exact renormalization group”, Phys. Lett. B 329
(1994), 241-248 [arXiv:hep-ph/9403340 [hep-ph]].

[49] C. S. F. Harvey-Fros, “The Local potential approximation of the renormalization group”,
[arXiv:hep-th/0108018 [hep-th]].

[50] I. Bena, E. Dudas, M. Graña and S. Lüst, “Uplifting Runaways”, Fortsch. Phys. 67 (2019)
no.1-2, 1800100 [arXiv:1809.06861 [hep-th]].

[51] E. Dudas and S. Lüst, “An update on moduli stabilization with antibrane uplift”, JHEP 03
(2021), 107 [arXiv:1912.09948 [hep-th]].

[52] B. V. Bento, D. Chakraborty, S. L. Parameswaran and I. Zavala, “A new de Sitter solution with
a weakly warped deformed conifold”, JHEP 12 (2021), 124 [arXiv:2105.03370 [hep-th]].

17


	Introduction
	Extended Supersymmetry and the Weak Gravity Conjecture
	The general result
	Examples and Caveats

	Spontaneous Supersymmetry Breaking and Goldstino Condensation
	Volkov-Akulov with Lagrange multipliers
	Detecting Composite States with Exact RG
	Goldstino condensation in Volkov-Akulov and Beyond

	Conclusion

