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1. Introduction

Two-dimensional sigma models play an important role in various physical situations. There is
a whole subset of those theories, referred to as topological field theories, whose moduli space of
classical solutions is finite-dimensional, up to gauge transformations. Some better known examples
of such theories include A/B models [1, 2], the G/G Wess-Zumino-Witten (WZW) model [3] and
the Poisson sigma model [4, 5]. Furthermore, the research about the relation between WZW models
and the Poisson sigma model [6] led to the construction of the Dirac sigma models. These are
specific 2-dimensional sigma models whose underlying structure is that of Dirac manifolds [7].
They are also related to Dirac structures which are Lie algebroids obtained as maximal isotropic
and involutive subbundles of an exact Courant algebroid [8, 9]. Special case of the Dirac sigma
models is the Poisson sigma model, which is obtained when one considers a cotangent bundle as
the Dirac structure. Since in general the Dirac sigma model include the Wess-Zumino term in the
action described by a 3-form 𝐻, and since the Poisson sigma model is obtained when H vanishes, the
Poisson sigma model can be generalized to 𝐻-twisted Poisson sigma model [10], whose underlying
structure is that of a twisted Poisson manifold [11] instead of Poisson manifold.

The Poisson sigma model can be obtained in another way, through the AKSZ construction for
the construction of the BV action [12]. This is a geometric approach to the Batalin-Vilkovisky (BV)
quantization of gauge theories. The AKSZ construction relies on the underlying structure of the
QP𝑛 manifold and the Poisson sigma model emerges as the 𝑛 = 1 case. However, for the twisted
Poisson sigma model, and the Dirac sigma models in general, the QP𝑛 does not necessarily exist.
While one can always construct a Q-structure (a homological vector field), a (graded symplectic)
P-structure does not have to exist. This obstruction is due to the 3-form 𝐻. This means that, as long
as 𝐻 does not vanish, the AKSZ construction cannot be used, meaning other methods have to be
used, like it has been done in [16] for the twisted Poisson sigma model.

To determine the BV action for the Dirac sigma models, we take a more traditional approach.
First introducing ghosts (and since the theories here are irreducible, there is no need for ghosts
for ghost), we define the BRST operator for all the fields. It turns out that the BRST operator is
nilpotent only on-shell which means that the antifields have to be introduce in order to quantize
these theories. Then the BV action 𝑆𝐵𝑉 is constructed. Part of it is known directly from the BRST
operator, while the rest is determined such that is satisfies the classical master equation:

(𝑆𝐵𝑉 , 𝑆𝐵𝑉 ) = 0 , (1)

where (·, ·) is the antibracket in the space of fields. We show that the extra contributions, ones that
do not come from the BRST operator, are all quadratic in the antifields. Furthermore, the factors in
those terms turn out to be basic curvatures of the two connections that control gauge transformations
of the Dirac sigma model.

2. Dirac Sigma models

2.1 Generalised gauging

Propagation of strings in some 𝑛-dimensional spacetime 𝑀 is described by nonlinear sigma
models, which are two-dimensional field theories on a worldsheet Σ2. The main fields here are
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scalar fields 𝑋1, . . . , 𝑋𝑛 which are components of an embbeding function 𝑋 : Σ2 → 𝑀 . This
fields couple nonlinearly to the background fields of the target space. In the simplest case of the
bosonic strings, those include the metric 𝑔𝑖 𝑗 and the Kalb-Ramond field 𝐵𝑖 𝑗 , or more generally its
curvature 𝐻 = d𝐵.1 Here 𝐻 does not have to equal d𝐵 globally, but only locally, meaning that 𝐻 is
a closed form, but not necessarily exact. In terms of these 3-form, the sigma model action contains
the Wess-Zumino term that exist not on Σ2, but on a 3-dimensional manifold Σ3 whose boundary
equals Σ2. For this reason, the embbeding function 𝑋 has to be extended in its domain to include
Σ3. Now the action functional takes the form:

𝑆[𝑋] = −
∫
Σ2

1
2
𝑔𝑖 𝑗 (𝑋)d𝑋 𝑖 ∧ ∗d𝑋 𝑗 −

∫
Σ3

1
3!
𝐻𝑖 𝑗𝑘 (𝑋)d𝑋 𝑖 ∧ d𝑋 𝑗 ∧ d𝑋 𝑘 , (2)

where 𝑔𝑖 𝑗 (𝑋) = 𝑋∗𝑔𝑖 𝑗 (𝑥) and 𝐻𝑖 𝑗𝑘 (𝑋) = 𝑋∗𝐻𝑖 𝑗𝑘 (𝑥), with 𝑥𝑖 coordinates on 𝑀 , denote pull-backs
of 𝑔 and 𝐻 to Σ2 and Σ3, respectively. Even though, 𝐻 is defined on Σ3, the Wess-Zumino term
does not depend on the choice of Σ3, or more precisely, it is ambiguous up to an integer constant,
but the corresponding path integral is not[13].

Given the action functional (2), it is possible to look for its extensions by additional 1-form
gauge field 𝐴 such that the resulting action represents the gauging of the original one, and as such,
is equal to the original one when all the gauge fields are set to zero. The usual way to do this is to
take some Lie algebra g that can act on 𝑀 via Lie algebra homomorphism 𝜌 : g → Γ(𝑇𝑀). Then
the vector fields in the image of 𝜌 create a foliation of 𝑀 . In general, this foliation can be singular,
meaning that the gauge orbits are not all of the same dimension. Actually, it is quite common to
have singular foliations.

Another way to view the action of g on 𝑀 is to notice that 𝑀 × g forms a Lie algebroid over
𝑀 with 𝜌 as an anchor. However, as described in [9, 14], the gauging of the action (2) can be
considered for a much wider class of singular foliations. One way to consider more general gauging
is to replace 𝑀 × g with a general Lie algebroid 𝐸 . Being a Lie algebroid, 𝐸 is equipped with a Lie
bracket [·, ·]𝐸 : Γ(𝐸) × Γ(𝐸) → Γ(𝐸) that satisfies the Jacobi identity:

[[𝑒, 𝑒′]𝐸 , 𝑒′′]𝐸 + [[𝑒′, 𝑒′′]𝐸 , 𝑒]𝐸 + [[𝑒′′, 𝑒]𝐸 , 𝑒′]𝐸 = 0 , ∀𝑒, 𝑒′, 𝑒′′ ∈ Γ(𝐸) . (3)

Let 𝑒𝑎 be a local basis for sections of 𝐸 . Then for this basis it is possible to define structure functions
𝐶 such that:

[𝑒𝑎, 𝑒𝑏]𝐸 = 𝐶𝑐
𝑎𝑏 𝑒𝑐 . (4)

Using the anchor 𝜌 of the Lie algebroid 𝐸 , it also possible to define vector fields 𝜌𝑎 = 𝜌(𝑒𝑎) = 𝜌𝑖𝑎𝜕𝑖 .
Since 𝜌 is the Lie algebra homomorphism, these vector fields have the same structure functions as
the local basis sections 𝑒𝑎:

[𝜌𝑎, 𝜌𝑏] = 𝐶𝑐
𝑎𝑏 𝜌𝑐 , (5)

and the Jacobi identity of the Lie bracket [·, ·]𝐸 gives rise to an identity:

𝜄𝜌[𝑎d𝐶𝑑
𝑏𝑐] = 𝐶𝑑

𝑒[𝑎𝐶
𝑒
𝑏𝑐] . (6)

1Also, there is a scalar dilaton, which will not be considered in this paper.
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Given the Lie algebroid 𝐸 and the corresponding foliation on 𝑀 , the question becomes whether
there exist an action 𝑆0 [𝑋, 𝐴], with 𝐴 ∈ Ω1(Σ2, 𝑋

∗𝐸) being 1-form gauge fields, such that 𝑆0 reduces
to (2) when 𝐴 is set to 0. This action can be written quite generally as:

𝑆0 [𝑋, 𝐴] = 𝑆[𝑋] −
∫
Σ2

(
𝐴𝑎 ∧ 𝜃𝑎 (𝑋) + 𝐴𝑎 ∧ ∗𝜃̃𝑎 (𝑋) +

1
2
𝛾𝑎𝑏 (𝑋)𝐴𝑎 ∧ 𝐴𝑏 +

1
2
𝛾̃𝑎𝑏 (𝑋)𝐴𝑎 ∧ ∗𝐴𝑏

)
,

(7)
where 𝜃𝑎 (𝑋) = 𝜃𝑎𝑖 (𝑋)d𝑋 𝑖 and 𝜃̃𝑎 = 𝜃̃𝑎𝑖 (𝑋)d𝑋 𝑖 are 1-forms, and 𝛾𝑎𝑏 and 𝛾̃𝑎𝑏 functions on 𝑀 , all
pulled back to Σ2 by 𝑋 . This gauged action is still quite general and it is necessary to find conditions
on the background fields 𝑔 and 𝐻, as well as the constraints on the gauging data 𝜃, 𝜃̃, 𝛾, 𝛾̃ and 𝜌 for
this gauging to be possible. To do that we specify the following gauge transformations:

𝛿𝑋 𝑖 = 𝜌𝑖𝑎 (𝑋)𝜖𝑎 , (8)

𝛿𝐴𝑎 = 𝑟𝑎𝑏 (𝑋)d𝜖
𝑏 + 𝑠𝑎𝑏 (𝑋) ∗ d𝜖𝑏 + 𝐶𝑎

𝑏𝑐 (𝑋)𝐴
𝑏𝜖𝑐 + 𝜔𝑎

𝑏𝑖 (𝑋)𝜖
𝑏𝐹𝑖 + 𝜙𝑎

𝑏𝑖 (𝑋)𝜖
𝑏 ∗ 𝐹𝑖 +

+𝜒𝑎
𝑏𝑐 (𝑋)𝐴

𝑏𝜖𝑐 + 𝜓𝑎
𝑏𝑐 (𝑋) ∗ 𝐴𝑏𝜖𝑐 , (9)

where 𝜖𝑎 ∈ Γ(𝑋∗𝐸) is the scalar gauge parameter, 𝑟𝑎
𝑏
(𝑋), 𝑠𝑎

𝑏
(𝑋), 𝜒𝑎

𝑏𝑐
(𝑋) and 𝜓𝑎

𝑏𝑐
(𝑋) are

functions and 𝜔𝑎
𝑏
(𝑋) and 𝜙𝑎

𝑏
1-forms on 𝑀 , pulled back to Σ2. Here𝐶 has been explicitly written

apart from 𝜒 for future convenience. Furthermore, 1-form 𝐹𝑖 is a covariant exterior derivative of
𝑋 𝑖 defined as:

𝐹𝑖 = d𝑋 𝑖 − 𝜌𝑖𝑎𝐴
𝑎 . (10)

Given these gauge transformations of 𝑋 and 𝐴, it is easy to find the gauge transformation of the
action (7). Requirement that such a transformation vanish gives conditions for the fields 𝑔 and 𝐻:

L𝜌𝑎𝑔 = −𝜔𝑏
𝑎 ∨ 𝜃̃𝑏 + 𝜙𝑏

𝑎 ∨ 𝜃𝑏 , (11)

𝜄𝜌𝑎𝐻 = d
(
𝑟𝑏𝑎𝜃𝑏 − 𝑠𝑏𝑎 𝜃̃𝑏

)
− 𝜔𝑏

𝑎 ∧ 𝜃𝑏 + 𝜙𝑏
𝑎 ∧ 𝜃̃𝑏 , (12)

𝜄𝜌𝑎𝑔 = 𝑠𝑏𝑎𝜃𝑏 − 𝑟𝑏𝑎 𝜃̃𝑏 , (13)

in addition to the following constraints:

𝜄𝜌𝑎𝜃𝑏 = 𝑟𝑐𝑎𝛾𝑐𝑏 − 𝑠𝑐𝑎 𝛾̃𝑐𝑏 , (14)

𝜄𝜌𝑎 𝜃̃𝑏 = 𝑠𝑐𝑎𝛾𝑐𝑏 − 𝑟𝑐𝑎 𝛾̃𝑐𝑏 , (15)

L𝜌𝑎𝜃𝑏 = −(𝐶 + 𝜒)𝑐𝑏𝑎𝜃𝑐 + 𝜓𝑐
𝑏𝑎 𝜃̃𝑐 + 𝜄𝜌𝑏d

(
𝑟𝑐𝑎𝜃𝑐 − 𝑠𝑐𝑎 𝜃̃𝑐

)
+ 𝜄𝜌𝑎 𝜄𝜌𝑏𝐻 +

+
(
𝛾𝑐𝑏 + 𝜄𝜌𝑏𝜃𝑐

)
𝜔𝑐

𝑎 −
(
𝛾̃𝑐𝑏 + 𝜄𝜌𝑏 𝜃̃𝑐

)
𝜙𝑐

𝑎 , (16)

L𝜌𝑎 𝜃̃𝑏 = −(𝐶 + 𝜒)𝑐𝑏𝑎 𝜃̃𝑐 + 𝜓𝑐
𝑏𝑎𝜃𝑐 − 𝜄𝜌𝑏L𝜌𝑎𝑔 +

+
(
𝛾𝑐𝑏 + 𝜄𝜌𝑏𝜃𝑐

)
𝜙𝑐

𝑎 −
(
𝛾̃𝑐𝑏 + 𝜄𝜌𝑏 𝜃̃𝑐

)
𝜔𝑐

𝑎 , (17)

1
2
L𝜌𝑎𝛾𝑐𝑏 = 𝛾𝑑 [𝑐 (𝐶 + 𝜒)𝑑

𝑏]𝑎 − 𝛾̃𝑑 [𝑐𝜓
𝑑
𝑏]𝑎 − 𝛾𝑑 [𝑐 𝜄𝜌𝑏]𝜔

𝑑
𝑎 + 𝛾̃𝑑 [𝑐 𝜄𝜌𝑏]𝜙

𝑑
𝑎 , (18)

1
2
L𝜌𝑎 𝛾̃𝑐𝑏 = −𝛾̃𝑑 [𝑐 (𝐶 + 𝜒)𝑑

𝑏]𝑎 + 𝛾𝑑 [𝑐𝜓
𝑑
𝑏]𝑎 + 𝛾̃𝑑 [𝑐 𝜄𝜌𝑏]𝜔

𝑑
𝑎 − 𝛾𝑑 [𝑐 𝜄𝜌𝑏]𝜙

𝑑
𝑎 . (19)

4



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
8
8

Dirac sigma models from gauging the nonlinear sigma models and its BV action Grgur Šimunić

At this point it is convenient to consider redefined quantities:

𝜃±𝑎 = 𝜃𝑎 ± 𝜃̃𝑎 , (20)

𝛾±𝑎𝑏 = 𝛾𝑎𝑏 ± 𝛾̃𝑎𝑏 , (21)

𝑟±𝑎𝑏 =
1
2
(
𝑟𝑎𝑏 ± 𝑠𝑎𝑏

)
, (22)

Ω±𝑎
𝑏 = 𝜔𝑎

𝑏 ± 𝜙𝑎
𝑏 , (23)

C±𝑐
𝑎𝑏 = −𝐶𝑐

𝑎𝑏 − 𝜒𝑐
𝑎𝑏 ∓ 𝜓𝑐

𝑎𝑏 + 1
2
𝜄𝜌𝑎Ω

±𝑐
𝑏 . (24)

In the terms of these new quantities, the above conditions become:

L𝜌𝑎𝑔 =
1
2

(
Ω+𝑏

𝑎 ∨ 𝜃−𝑏 −Ω−𝑏
𝑎 ∨ 𝜃+𝑏

)
, (25)

𝜄𝜌𝑎𝐻 = d
(
𝑟+𝑏𝑎𝜃

−
𝑏 + 𝑟−𝑏𝑎𝜃

+
𝑏

)
− 1

2

(
Ω+𝑏

𝑎 ∧ 𝜃−𝑏 +Ω−𝑏
𝑎 ∧ 𝜃+𝑏

)
, (26)

𝜄𝜌𝑎𝑔 = 𝑟+𝑏𝑎𝜃
−
𝑏 − 𝑟−𝑏𝑎𝜃

+
𝑏 , (27)

and the constraints simplify to:

1
2
𝜄𝜌𝑎𝜃

±
𝑏 = 𝑟±𝑐𝑎𝛾

∓
𝑐𝑏 , (28)

L𝜌𝑎𝜃
±
𝑏 = C∓𝑐

𝑏𝑎 𝜃
±
𝑐 + 1

2
Ω±𝑐

𝑎𝛾
∓
𝑐𝑏 , (29)

1
2
L𝜌𝑎𝛾

±
𝑐𝑏 = 𝛾∓

𝑑 [𝑏C
±𝑑

𝑐]𝑎 . (30)

Under the assumption that 𝑟± are invertible, it is possible to redefine the gauge field as:

𝐴𝑎 =
1
4

(
(𝑟+)−1

)𝑎
𝑏
(𝐴𝑏 + ∗𝐴𝑏) + 1

4

(
(𝑟−)−1

)𝑎
𝑏
(𝐴𝑏 − ∗𝐴𝑏) . (31)

With this new field, using (27) and (28), the gauged action becomes:

𝑆0 [𝑋, 𝐴] = −
∫
Σ2

(
1
2
𝑔𝑖 𝑗 (𝑋)𝐹𝑖 ∧ ∗𝐹 𝑗 + 𝐴𝑎 ∧ 𝜃′𝑎 (𝑋) +

1
2
𝛾′𝑎𝑏 (𝑋)𝐴

𝑎 ∧ 𝐴𝑏

)
−
∫
Σ3

𝐻 (𝑋) , (32)

where 𝐹, 𝜃′𝑎 and 𝛾′
𝑎𝑏

are defined as:

𝐹𝑖 = d𝑋 𝑖 − 𝜌𝑖𝑎𝐴
𝑎 , (33)

𝜃′𝑎 = 𝑟−𝑏𝑎𝜃
+
𝑏 + 𝑟+𝑏𝑎𝜃

−
𝑏 , (34)

𝛾′𝑎𝑏 = 2𝑟−𝑐𝑎𝑟+𝑑𝑏𝛾
+
𝑐𝑑 + 2𝑟+𝑐𝑎𝑟−𝑑𝑏𝛾

−
𝑐𝑑 . (35)

But this is just the minimal coupling to the metric sector. So the only nonstandard gauging is in the
topological sector. This also forces the simplification of gauge transformations to:

𝛿𝐴𝑎 = d𝜖𝑎 + 𝐶𝑎
𝑏𝑐 (𝑋)𝐴

𝑏𝜖𝑐 + 𝜔′𝑎
𝑏𝑖 (𝑋)𝜖𝑏𝐹𝑖 + 𝜙′𝑎𝑏𝑖 (𝑋)𝜖𝑏 ∗ 𝐹𝑖 , (36)
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with 𝜔′𝑎
𝑏 and 𝜙′𝑎𝑏 defined as:

𝜔′𝑎
𝑏 =

1
4

(
(𝑟+)−1

)𝑎
𝑐
Ω+𝑐

𝑏 +
1
4

(
(𝑟−)−1

)𝑎
𝑐
Ω−𝑐

𝑏 , (37)

𝜙′𝑎𝑏 =
1
4

(
(𝑟+)−1

)𝑎
𝑐
Ω+𝑐

𝑏 −
1
4

(
(𝑟−)−1

)𝑎
𝑐
Ω−𝑐

𝑏 . (38)

The above simplification looks valid only if 𝑟± are invertible. However, one can come to the
same conclusion for a much wider class of possibilities. For the sake of simplicity, we shall assume
𝑟− not to be invertible. In order to simplify this situation, one can always change the frame in
order to write 𝑟− in block-diagonal form such that one block is nilpotent (such that it has only 0
eigenvalues), and the other is invertible. The only one of interest here is the nilpotent part so one
can assume for the whole 𝑟− to be nilpotent, as the general situation is then obtained by combining
the reversible and nilpotent cases. If this nilpotent part is actually 0, plugging this into the gauging
conditions and constraints forces 𝜄𝜌𝑎𝑔 to vanish. Since the metric cannot have zero eigenvalues,
this implies that all 𝜌𝑎 vanish, thus leaving us with no gauging at all. So, one concludes that while
it is possible to gauge with noninvertible 𝑟±, such gauging leads to redundant degrees of freedom
in the gauge field that can always be removed, as long as the nilpotent part of 𝑟± is semisimple as
well. Thus, the gauging in the metric sector can always be put in the form of minimal coupling.

In what follows, we shall only consider this simplified version of the gauged action, assuming
that all the necessary redefinitions have been made.

2.2 Dirac sigma models as gauge theory

Given the simplified gauged action:

𝑆0 [𝑋, 𝐴] = −
∫
Σ2

(
1
2
𝑔𝑖 𝑗 (𝑋)𝐹𝑖 ∧ ∗𝐹 𝑗 + 𝐴𝑎 ∧ 𝜃𝑎 (𝑋) +

1
2
𝛾𝑎𝑏 (𝑋)𝐴𝑎 ∧ 𝐴𝑏

)
−
∫
Σ3

𝐻 (𝑋) , (39)

and the corresponding gauge transformations:

𝛿𝑋 𝑖 = 𝜌𝑖𝑎𝜖
𝑎 , (40)

𝛿𝐴𝑎 = d𝜖𝑎 + 𝐶𝑎
𝑏𝑐 𝐴

𝑏𝜖𝑐 + 𝜔𝑎
𝑏𝑖𝜖

𝑏𝐹𝑖 + 𝜙𝑎
𝑏𝑖𝜖

𝑏 ∗ 𝐹𝑖 , (41)

there still remains the question of what the gauging conditions and constraints (25)-(30) tell us
about gauging data. This has been explored in detail in [9]. First, the conditions on the background
fields are:

L𝜌𝑎𝑔 = 𝜔𝑏
𝑎 ∨ 𝜄𝜌𝑏𝑔 + 𝜙𝑏

𝑎 ∨ 𝜃𝑏 , (42)

𝜄𝜌𝑎𝐻 = d𝜃𝑎 − 𝜔𝑏
𝑎 ∧ 𝜃𝑏 − 𝜙𝑏

𝑎 ∧ 𝜄𝜌𝑏𝑔 . (43)

In addition there are 2 additional constraints. The first of those specifies 𝛾:

𝛾𝑎𝑏 = 𝜄𝜌𝑎𝜃𝑏 , (44)

and since 𝛾𝑎𝑏 is antisymmetric, this gives another constraint on 𝜃:

𝜄𝜌𝑎𝜃𝑏 + 𝜄𝜌𝑏𝜃𝑎 = 0 . (45)
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The final constraint is:
𝐶𝑐

𝑎𝑏 𝜃𝑐 = L𝜌𝑎𝜃𝑏 − 𝜄𝜌𝑏d𝜃𝑎 − 𝜄𝜌𝑎 𝜄𝜌𝑏𝐻 . (46)

These last two conditions can be combined with the closure of the Lie algebra (5) of the vector
fields 𝜌𝑎 to give an interesting geometric interpretation of the constraints. In the generalized tangent
bundle 𝑇𝑀 ⊕ 𝑇∗𝑀 , viewed as an 𝐻-twisted Courant algebroid, sections 𝜌𝑎 + 𝜃𝑎 live in a specific
subbundle, called the Dirac structure, that is isotropic with the respect to the pairing, and closed
under the action of the twisted Courant bracket. If these Dirac structures are of maximal rank, then
the corresponding gauge theory is topological, and otherwise it is nontopological. In this paper we
consider only Dirac structures of maximal rank.

As for the constraints, it is desirable to find the geometric (frame independent) form of the
conditions (42) and (43). The first thing to do here is to look at𝜔 and 𝜙, defined as coefficients in the
gauge transformation of the gauge field 𝐴. By computing the transformations of these coefficients
under the frame change, it turns out that 𝜙 transforms tensorially but 𝜔 does not, but instead
transforms as a connection. As such 𝜔𝑎

𝑏𝑖
can be interpreted as the components of a connection

∇𝜔 : Γ(𝐸) → Γ(𝑇∗𝑀 ⊗ 𝐸) on 𝐸 such that:

∇𝜔𝑒𝑎 = 𝜔𝑎
𝑏 ⊗ 𝑒𝑏 . (47)

Furthermore, since 𝜙 transforms tensorially, it can be interpreted as an endomorphism on 𝐸 . As a
result Ω± both transform as the components of the connections ∇± on 𝐸 :

∇±𝑒𝑎 = Ω±𝑏
𝑎 ⊗ 𝑒𝑏 . (48)

In the following, we shall use Ω± instead of 𝜔 and 𝜙 since it turns out to be more convenient.
Finally, to express conditions (42) and (43) in frame independent form, we look at sections:

G± = 𝜃 ± 𝜌∗ ∈ Γ(𝑇∗𝑀 ⊗ 𝐸∗) , (49)

where 𝜌∗ = 𝜄𝜌𝑎𝑔 ⊗ 𝑒𝑎. When written in terms of these sections, the conditions (42) and (43) take
the form:

Sym
(
∇+G+ − ∇−G−

)
= 0 , (50)

𝐷+G+ + 𝐷−G− = 2𝜄𝜌𝐻 , (51)

where D± are the exterior derivatives associated to ∇±.

2.3 Field equations, curvature and torsion

For the topological Dirac sigma models, the corresponding Dirac structure is of maximal rank,
or in other words, its rank is equal to the dimension of 𝑀 . This means that, as have been shown
in [15], even though 𝜌 and 𝜃 aren’t invertible by themselves, their combined sections G± are. As a
result, it is possible to write explicit expressions for Ω± by inverting (50) and (51):

Ω±𝑎
𝑏𝑖 = (G−1

± )𝑎 𝑗

(
𝜕𝑖G±𝑏 𝑗 − Γ̊𝑘

𝑗𝑖G±𝑏𝑘 −
1
2
𝜌𝑘𝑏𝐻𝑖 𝑗𝑘

)
, (52)
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where Γ̊𝑘
𝑖 𝑗

are the coefficients of the Levi-Civita connection on 𝑀 .
The invertibility of G± has an interesting consequence on the field equations. A functional

derivative of the action (39) with respect to 𝐴 produces the equation:(
𝜃𝑎𝑖 − (𝜄𝜌𝑎𝑔)𝑖∗

)
𝐹𝑖 = 0 . (53)

For Dirac structures, the operator in the brackets is invertible, which then simplifies the field equation
to:

𝐹𝑖 = 0 . (54)

The other field equation is obtained through a functional derivative of the action (39) with respect
to 𝑋:

𝐺𝑖 = d(𝜃𝑎𝑖𝐴𝑎) + 1
2

(
𝜌
𝑗

𝑏
𝜕𝑖𝜃𝑎 𝑗 − 𝜃𝑎 𝑗𝜕𝑖𝜌

𝑗

𝑏
+ (𝜄𝜌𝑏 𝜄𝜌𝑎𝐻)𝑖

)
𝐴𝑎 ∧ 𝐴𝑏 = 0 . (55)

The invertibility of G± can be used to induce connections ∇∗± on 𝑇∗𝑀 by the connections ∇±

on 𝐸 through:
∇∗± = G± ◦ ∇± ◦ G−1

± . (56)

Then the coefficients of these induced connections are:

Γ∗±𝑘
𝑖 𝑗 = −Γ̊𝑘

𝑖 𝑗 +
1
2
(G−1

± )𝑘𝑎 (𝜄𝜌𝑎𝐻)𝑖 𝑗 . (57)

But these connections on 𝑇∗𝑀 then induce connections ∇♯± on 𝑇𝑀 as dual connections of ∇∗±. Its
coefficients are then:

Γ±𝑘
𝑖 𝑗 = Γ̊𝑘

𝑖 𝑗 −
1
2
(G−1

± )𝑘𝑎 (𝜄𝜌𝑎𝐻)𝑖 𝑗 . (58)

The torsion tensor of these connections is equal to:

Θ±𝑘
𝑖 𝑗 = −2Γ±𝑘

[𝑖 𝑗 ] = (G−
± )𝑘𝑎 (𝜄𝜌𝑎𝐻)𝑖 𝑗 . (59)

So, the torsion of induced connections on 𝑇𝑀 is controlled by the 3-form 𝐻.
Other then induced connections on 𝑇𝑀 , one can define the curvature of connections ∇± on 𝐸

in a standard way:
𝑅±𝑎

𝑏 = dΩ±𝑎
𝑏 +Ω±𝑎

𝑐 ∧Ω±𝑐
𝑏 . (60)

This curvature satisfies the Bianchi identity:

∇±
[𝑖𝑅

±𝑎
𝑏 𝑗𝑘 ] + Θ±𝑙

[𝑖 𝑗𝑅
±𝑎

𝑏𝑘 ]𝑙 = 0 . (61)

Other then standard curvature and torsion, there is a notion of 𝐸-curvature and 𝐸-torsion, related
to 𝐸-connection 𝐸∇ and 𝐸-covariant derivative. An ordinary covariant derivative ∇𝑣 is defined
along a section 𝑣 ∈ Γ(𝑇𝑀) from the tangent bundle. An 𝐸-covariant derivative is a generalization
in which a derivative is not defined necessarily along a section from the tangent bundle, but along
a section from the Lie algebroid 𝐸 . Furthermore, the ordinary covariant derivative ∇𝑣 , for a fixed
𝑣 ∈ Γ(𝑇𝑀), is a linear function ∇𝑣 : Γ(𝑇𝑀) → Γ(𝑇𝑀). For 𝐸-covariant derivative this is
generalized such that instead of 𝑇𝑀 , an arbitrary bundle 𝐸̂ is used. As such, 𝐸∇𝑒 : Γ(𝐸̂) → Γ(𝐸̂),
for 𝑒 ∈ Γ(𝐸). Just as an ordinary derivative, it is linear and it satisfies the Leibniz rule:

𝐸∇𝑒 ( 𝑓 𝑒) = 𝑓 𝐸∇𝑒𝑒 + (𝜌(𝑒) 𝑓 )𝑒 , ∀𝑒 ∈ Γ(𝐸) ,∀𝑒 ∈ Γ(𝐸̂) . (62)
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This then also introduces a notion of an 𝐸 curvature:

𝐸𝑅(𝑒, 𝑒′) = [𝐸∇𝑒,
𝐸 ∇𝑒′] −𝐸 ∇[𝑒,𝑒′ ] . (63)

Furthermore, if 𝐸̂ = 𝐸 , then a notion of an 𝐸-torsion can be introduced as well:

𝐸𝑇 (𝑒, 𝑒′) =𝐸 ∇𝑒𝑒
′ −𝐸 ∇𝑒′𝑒 − [𝑒, 𝑒′] . (64)

Finally, it is often convenient to define a quantity:

𝑆 = ∇(𝐸𝑇) + 2Alt(𝜄𝜌𝑅) , (65)

which is called the basic curvature in [16].
In the present situation, the two ordinary curvatures ∇± on 𝐸 induce two 𝐸-connections on 𝐸

through a simple identification:
𝐸∇±

𝑒 𝑒
′ = ∇±

𝜌(𝑒)𝑒
′ . (66)

Then the corresponding 𝐸-torsion equals:

𝑇±𝑐
𝑎𝑏 = −𝐶𝑐

𝑎𝑏 + 2𝜄𝜌[𝑎Ω
±𝑐

𝑏 , (67)

where we are using 𝑇± instead of 𝐸𝑇± to denote 𝐸-torsion. In addition to 𝐸-curvatures, there are
two basic curvatures:

𝑆±𝑐𝑎𝑏 = ∇±𝑇±𝑐
𝑎𝑏 + 2𝜄𝜌[𝑎𝑅

±𝑐
𝑏] . (68)

These torsions and basic curvatures satisfy several identities that will be used when determining
the BV action of the Dirac sigma model:

𝑇±𝑐
𝑎𝑏 𝜌

𝑖
𝑐 = −2𝜌 𝑗

[𝑎∇
±
𝑗 𝜌

𝑖
𝑏] + 𝜌

𝑗
𝑎𝜌

𝑘
𝑏Θ

±𝑖
𝑗𝑘 , (69)

𝜄𝜌[𝑏 𝜄𝜌𝑎𝑅
±𝑑

𝑐] = 𝜌𝑖[𝑎∇
±
𝑖 𝑇

±𝑑
𝑏𝑐 + 𝑇±𝑑

𝑒[𝑎 𝑇
±𝑒

𝑏𝑐] , (70)[
∇±
𝑖 ,∇±

𝑗

]
𝑇±𝑎

𝑏𝑐 = −Θ±𝑘
𝑖 𝑗∇±

𝑘𝑇
±𝑎

𝑏𝑐 + 𝑇±𝑑
𝑏𝑐 𝑅

±𝑎
𝑑𝑖 𝑗 − 𝑇±𝑎

𝑑𝑐 𝑅
±𝑑

𝑏𝑖 𝑗 − 𝑇±𝑎
𝑏𝑑 𝑅

±𝑑
𝑐𝑖 𝑗 , (71)

𝑇±𝑐
𝑎𝑏 = (G−1

± )𝑐𝑖
(
𝜌
𝑗

[𝑎∇
±
𝑖 𝜃𝑏] 𝑗 − 𝜃 [𝑏 𝑗∇±

𝑖 𝜌
𝑗

𝑎] − 𝜌
𝑗

[𝑎𝜃𝑏]𝑘Θ
±𝑘

𝑗𝑖

)
, (72)

with ∇± in these equations acts both as ∇± when acting on bundle indices, and as ∇♯± when acting
on tangent indices.

2.4 Target space covariance

Up to now, the action, the field equations and the gauge transformations of the Dirac sigma
model has been presented with manifest spacetime covariance, but not target space covariance.
Here we show how the connections ∇± guarantee this covariance.

Let us first consider gauge transformations (40) and (41). The transformation of 𝑋 can be
easily written in the basis-independent way, through the use of the anchor 𝜌:

𝛿𝑋 = 𝜌(𝜖) . (73)

For the other gauge transformation, one should first note that the 1-form gauge field is 𝐴 = 𝐴𝑎 ⊗ 𝑒𝑎,
meaning that the full transformation of 𝐴 should include, besides gauge transformation of 𝐴𝑎,
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the transformation coming from the frame change due to the change of base points. Any of the
connections ∇± can be used to take into account this change of frame so 𝛿𝑒𝑎 = Ω±𝑏

𝑎𝑖
𝛿𝑋 𝑖𝑒𝑏, which

then gives the transformation of 𝐴:

𝛿𝐴 = (𝛿𝐴𝑎 + 𝜄𝜌𝑐Ω
±𝑎

𝑏𝐴
𝑏𝜖𝑐) ⊗ 𝑒𝑎 . (74)

Also, 𝛿𝐴𝑎 has to be rewritten in terms of connection which then gives:

𝛿𝐴𝑎 = D±𝜖𝑎 −
(
𝑇±𝑎

𝑏𝑐 − 𝜄𝜌𝑐Ω
±𝑎

𝑏

)
𝐴𝑏𝜖𝑐 + 1

2
(
Ω+𝑎

𝑏𝑖 (1 + ∗) +Ω−𝑎
𝑏𝑖 (1 − ∗) −Ω±𝑎

𝑏𝑖

)
𝜖𝑏𝐹𝑖 . (75)

This then expresses 𝛿𝐴 in terms of Ω+ or Ω−. By adding those two options together, the final form
of the gauge transformation is obtained:

𝛿𝐴 =
D+ + D−

2
𝜖 − 𝑇+ + 𝑇−

2
(𝐴, 𝜖) +

〈
Ω+ −Ω−

2
, ∗𝐹

〉
(𝜖) . (76)

Notice that (Ω+ − Ω−)/2 is equal to the tensor 𝜙, so this is indeed the tensorial form of the gauge
transformation.

Having written the gauge transformation in the target space covariant form, one can do the
same with the field equations. The field equations for 𝐴 is already target space covariant:

𝐹 = d𝑋 − 𝜌(𝐴) . (77)

To covariantize the other field equations, it is useful to define (𝑎) = 𝜃 (𝐴). Then the field equation
becomes:

𝐺 = D±a − 1
2
𝑇±
G±
(𝐴, 𝐴) ∓ 1

2
Θ±
∗ (𝜌(𝐴), 𝜌(𝐴), ·) , (78)

where 𝑇±
G±

= G±𝑎 ⊗ 𝑇±𝑎 ∈ Γ(𝑇∗𝑀 ⊗ Λ2𝐸∗) and Θ±
∗ is the contraction of the torsion tensor Θ with

the metric, such that its components are Θ±
∗𝑖 𝑗𝑘 = 𝑔𝑖𝑙Θ

±𝑙
𝑗𝑘

.
Finally, the action (39) has to be rewritten in the manifestly target space covariant form. This

is easy to do using the maps 𝜌 : 𝐸 → 𝑇𝑀 and 𝜃 : 𝐸 → 𝑇∗𝑀:

𝑆0 = −
∫
Σ2

(
| |𝐹 | |2 +

〈
(𝑋∗𝜃) (𝐴), d𝑋 + 1

2
(𝑋∗𝜌) (𝐴)

〉)
−
∫
Σ3

𝑋∗𝐻 , (79)

where | |𝐹 | |2 = (𝑋∗𝜌) (𝐹∧, ∗ 𝐹).

3. The BV action

3.1 BRST operator and antifields

To find the BV action for the Dirac sigma models, we follow the standard steps described in
[17, 18], in a similar fashion as have been done in [16] for the twisted Poisson sigma model. First,
the space of fields is enlarged by ghosts, one for each gauge parameter, and assign them a ghost
number 1. In general, one would have to introduce ghosts for ghosts as well, but since the Dirac
sigma model is irreducible, that is not necessary here. Since there is only one gauge parameter 𝜖𝑎

in the gauge transformations of the Dirac sigma model, only one ghost field 𝑐𝑎 introduced here. It

10
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is assigned the ghost number 1, denoted as gh 𝑐𝑎 = 1. Next, the BRST operator 𝑠 is defined through
its action on the fields:

𝑠𝑋 𝑖 = 𝜌𝑖𝑎𝑐
𝑎 , (80)

𝑠𝐴𝑎 = d𝑐𝑎 + 𝐶𝑎
𝑏𝑐 𝐴

𝑏𝑐𝑐 + 𝜔𝑎
𝑏𝑖𝑐

𝑏𝐹𝑖 + 𝜙𝑎
𝑏𝑖𝑐

𝑏 ∗ 𝐹𝑖 , (81)

𝑠𝑐𝑎 = −1
2
𝐶𝑎

𝑏𝑐 𝑐
𝑏𝑐𝑐 . (82)

The first two of these are just gauge transformation in which the gauge parameter 𝜖𝑎 is replaced by
its corresponding ghost field 𝑐𝑎, while the action of 𝑠 on 𝑐𝑎 is defined such that the BRST operator
is nilpotent on-shell.2 Using the commutation relations of the vectors 𝜌𝑎, and the Jacobi identity
of the Lie algebroid for 𝐶𝑎

𝑏𝑐
, it is straightforward to check that 𝑠2𝑋 𝑖 = 0 and 𝑠2𝑐𝑎 = 0. However

𝑠2𝐴𝑎 does not vanish identically, but is instead controlled by the field equations:

𝑠2𝐴𝑎 =
1
2
𝑆𝑎𝑏𝑐𝑖𝑐

𝑏𝑐𝑐𝐹𝑖 + 1
2
𝑆𝑎𝑏𝑐𝑖𝑐

𝑏𝑐𝑐 ∗ 𝐹𝑖 , (83)

where the curvature tensors 𝑆 and 𝑆 are given by:

𝑆𝑎𝑏𝑐 =
1
2
(
𝑆+𝑎𝑏𝑐 + 𝑆−𝑎𝑏𝑐

)
, (84)

𝑆𝑎𝑏𝑐 =
1
2
(
𝑆+𝑎𝑏𝑐 − 𝑆−𝑎𝑏𝑐

)
. (85)

Since all the terms in 𝑠2𝐴𝑎 contain field equations, it indeed does vanish on-shell, but not off-shell.
This is due to the openness of the gauge algebra, meaning that it closes only on-shell. This implies
that the BRST operator is not sufficient for the quantization of the theory, but a BV approach is
necessary instead.

Having the BRST operator, the next step is to enlarge the space of fields by antifields for each
of the fields. Having 3 fields already, 𝑋 𝑖 , 𝐴𝑎 and 𝑐𝑎, 3 antifields are necessary, 𝑋+

𝑖
, 𝐴+

𝑎 and 𝑐+𝑎. The
form degree of these antifields is complementary to its corresponding field, while its ghost degree
in a sum with the ghost degree of the corresponding field gives -1:

fdeg(Φ+) = 2 − fdeg(Φ) , (86)
gh(Φ+) = −1 − gh(Φ) , (87)

where Φ denotes any of the fields. The ghost and form degrees of all the fields/antifields are
collected in Table 1.

Finally, to be able to construct the BV action, a notion of antibracket is necessary. This can be
introduced by defining a symplectic form on the space of fields:

𝜔BV =

∫
Σ

(
𝛿𝑋 𝑖 ∧ 𝛿𝑋+

𝑖 + 𝛿𝐴𝑎 ∧ 𝛿𝐴+
𝑎 + 𝛿𝑐𝑎 ∧ 𝛿𝑐+𝑎

)
, (88)

2The requirement that 𝑠2 vanishes on-shell does not always uniquely determine the action of 𝑠 on ghost fields, but all
the possible ambiguities are eventually taken into account through the construction of the BV action.
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(Anti)Field 𝑋𝜇 𝐴𝑎 𝑐𝑎 𝑋+
𝜇 𝐴+

𝑎 𝑐+𝑎

Ghost
degree

0 0 1 -1 -1 -2

Form
degree

0 1 0 2 1 2

Table 1: The classical basis with ghost and form degrees for Dirac sigma models.

which induces the antibracket:

(𝐹, 𝐺)BV =

∫
d2𝜎 d2𝜎′

∑︁
Φ

(
𝛿𝑅𝐹

𝛿Φ(𝜎)
𝛿𝐿𝐺

𝛿Φ∗(𝜎′) −
𝛿𝑅𝐹

𝛿Φ∗(𝜎)
𝛿𝐿𝐺

𝛿Φ(𝜎′)

)
𝛿(𝜎 − 𝜎′) , (89)

in term of the left and right functional derivative. Here, Φ∗ and Φ+ are related through the Hodge
dual operation, such that Φ+ = ∗Φ∗, while the left and right functional derivatives are defined
through the variation of the action as:

𝛿𝑆 =

∫ ∑︁
Φ

𝛿Φ
𝛿𝐿𝑆

𝛿Φ
=

∫ ∑︁
Φ

𝛿𝑅𝑆

𝛿Φ
𝛿Φ . (90)

3.2 Classical master equation

The BV action 𝑆𝐵𝑉 has to satisfy the classical master equation:

(𝑆𝐵𝑉 , 𝑆𝐵𝑉 ) = 0 . (91)

In order to find 𝑆𝐵𝑉 we can expand in terms of the numbers of antifields:

𝑆𝐵𝑉 = 𝑆0 + 𝑆1 + 𝑆2 + . . . , (92)

where the subscripts denote the number of antifields, such that 𝑆0 does not contain antifields, 𝑆1

contain terms with one antifield, and so on. The part without antifields here 𝑆0 is just the classical
action, while the part with one antifield 𝑆1 is determined through the BRST transformations:

𝑆1 =

∫
Σ2

(
𝑋+
𝑖 𝑠𝑋

𝑖 − 𝐴+
𝑎 ∧ 𝑠𝐴𝑎 − 𝑐+𝑎𝑠𝑐

𝑎
)
. (93)

The part with two antifields 𝑆2 has to be determined through the use of the classical master equation.
In anticipation, of the result, we make the following ansatz:

𝑆2 = −
∫
Σ

1
4

(
𝑌 𝑎𝑏
𝑐𝑑 (𝑋) 𝐴

+
𝑎 ∧ 𝐴+

𝑏 + 𝑍𝑎𝑏
𝑐𝑑 (𝑋) 𝐴

+
𝑎 ∧ ∗𝐴+

𝑏

)
𝑐𝑐𝑐𝑑 , (94)

where 𝑌 and 𝑍 are 𝑋-dependent, for now undetermined functions. They are both antisymmetric in
the lower indices, while 𝑌 is symmetric and 𝑍 antisymmetric in the upper indices.

12



P
o
S
(
C
O
R
F
U
2
0
2
1
)
1
8
8

Dirac sigma models from gauging the nonlinear sigma models and its BV action Grgur Šimunić

Now the classical master equation (91) has to be implemented. Using the expansion (92) in
the number of antifields, the whole equation can be separated into smaller sectors. First, in the
sector with no antifields there is one equation (𝑆0, 𝑆0) = 0 which is automatically satisfied because
𝑆0 does not contain any antifields. Then, in the sector with one antifield, there is also one equation
(𝑆0, 𝑆1) = 0. This is guaranteed by the on-shell nilpotency of the BRST operator, but it can also
be easily checked by a straightforward calculation. The next step is the 2 antifield sector in which
equation becomes:

(𝑆1, 𝑆1) + 2(𝑆0, 𝑆2) = 0 . (95)

Calculation of each of these terms produces:

(𝑆1, 𝑆1) =

∫ (
𝑆𝑎𝑐𝑑𝑖𝐹

𝑖 ∧ ∗𝐴+
𝑎 − 𝑆𝑎𝑐𝑑𝑖𝐹

𝑖 ∧ 𝐴+
𝑎

)
𝑐𝑐𝑐𝑑 , (96)

(𝑆0, 𝑆2) =

∫
1
2

[(
𝑌
(𝑎𝑏)
𝑐𝑑

(𝜄𝜌𝑏𝑔)𝑖 − 𝑍
[𝑎𝑏]
𝑐𝑑

𝜃𝑏𝑖

)
𝐹𝑖 ∧ ∗𝐴+

𝑎 +

+
(
𝑌
(𝑎𝑏)
𝑐𝑑

𝜃𝑏𝑖 − 𝑍
[𝑎𝑏]
𝑐𝑑

(𝜄𝜌𝑏𝑔)𝑖
)
𝐹𝑖 ∧ 𝐴+

𝑎

]
𝑐𝑐𝑐𝑑 . (97)

Imposing (94) immediately gives 𝑆 and 𝑆 in terms of 𝑌 and 𝑍:

𝑆𝑎𝑐𝑑 = 𝑌
(𝑎𝑏)
𝑐𝑑

𝜃𝑏 − 𝑍
[𝑎𝑏]
𝑐𝑑

𝜄𝜌𝑏𝑔 , (98)

𝑆𝑎𝑐𝑑 = −𝑌 (𝑎𝑏)
𝑐𝑑

𝜄𝜌𝑏𝑔 + 𝑍
[𝑎𝑏]
𝑐𝑑

𝜃𝑏 . (99)

By defining:
𝑌± = 𝑌 ± 𝑍 , (100)

the above equations become:
𝑆±𝑎𝑐𝑑 = 𝑌±𝑎𝑏

𝑐𝑑G∓𝑏 . (101)

Since G± are invertible, it is possible to write 𝑌± in terms of 𝑆±:

𝑌±𝑎𝑏
𝑐𝑑 = 〈(G−1

∓ )𝑏, 𝑆±𝑎𝑐𝑑〉 . (102)

Finally, we have sectors with higher number of antifields, specifically, 3 and 4, which give
equations:

(𝑆1, 𝑆2) + (𝑆0, 𝑆3) = 0 (103)
(𝑆2, 𝑆2) + 2(𝑆1, 𝑆3) + 2(𝑆0, 𝑆4) = 0 . (104)

It immediately evident that (𝑆2, 𝑆2) vanishes. This means that if (𝑆1, 𝑆2) vanishes as well, the
classical master equation could be satisfied with 𝑆3, 𝑆4, . . . being equal to 0. So the next step is to
evaluate (𝑆1, 𝑆2). A straightforward calculation leads to:

(𝑆1, 𝑆2) = −
∫
Σ2

1
4

(
𝐼𝑎𝑏𝑐𝑑𝑒𝐴

+
𝑎 ∧ 𝐴+

𝑏 + 𝐽𝑎𝑏𝑐𝑑𝑒𝐴
+
𝑎 ∧ ∗𝐴+

𝑏

)
𝑐𝑐𝑐𝑑𝑐𝑒 , (105)

where 𝐼 and 𝐽 are given by:

𝐼𝑎𝑏𝑐𝑑𝑒 = 𝜌𝑖[𝑒𝜕𝑖𝑌
𝑎𝑏
𝑐𝑑 ] − 2(𝐶 (𝑎

𝑝[𝑒 − 𝜌𝑖𝑝𝜔
(𝑎

[𝑒𝑖)𝑌
𝑏) 𝑝
𝑐𝑑 ] − 2𝜌𝑖𝑝𝜙

(𝑎
[𝑒𝑖𝑍

𝑏) 𝑝
𝑐𝑑 ] − 𝑌 𝑎𝑏

𝑝[𝑒𝐶
𝑝

𝑐𝑑 ] , (106)

𝐽𝑎𝑏𝑐𝑑𝑒 = 𝜌𝑖[𝑒𝜕𝑖𝑍
𝑎𝑏
𝑐𝑑 ] + 2(𝐶 [𝑎

𝑝[𝑒 − 𝜌𝑖𝑝𝜔
[𝑎

[𝑒𝑖)𝑍
𝑏]𝑝
𝑐𝑑 ] + 2𝜌𝑖𝑝𝜙

[𝑎
[𝑒𝑖𝑌

𝑏]𝑝
𝑐𝑑 ] − 𝑍𝑎𝑏

𝑝[𝑒𝐶
𝑝

𝑐𝑑 ] . (107)
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By adding and subtracting, these equations can be expressed in terms of𝑌±, and then, through (102),
in terms of 𝑆±. The resulting equations turn out to be Bianchi identities for the basic curvatures 𝑆:

𝜌𝑖[𝑒∇
±
𝑖 〈(G−1

∓ )𝑏, 𝑆±𝑎
𝑐𝑑 ]〉 − 𝑇

± 𝑓

[𝑐𝑑 〈(G
−1
∓ )𝑏, 𝑆±𝑎

𝑒] 𝑓 〉 + 𝑇±𝑎
𝑓 [𝑒 〈(G

−1
∓ )𝑏, 𝑆± 𝑓

𝑐𝑑 ]〉 +

+𝑇∓𝑏
𝑓 [𝑒 〈(G

−1
∓ ) 𝑓 , 𝑆±𝑎

𝑐𝑑 ]〉 = 0 ,(108)

which can be proven by a direct calculation using identities (61) and (69)-(72). So the antibracket of
𝑆1 and 𝑆2 does indeed vanish meaning that the BV action contains terms that are at most quadratic
in antifields. The whole BV action is then:

𝑆𝐵𝑉 = −
∫
Σ2

(
1
2
𝑔𝑖 𝑗 (𝑋)𝐹𝑖 ∧ ∗𝐹 𝑗 + 𝐴𝑎 ∧ 𝜃𝑎 (𝑋) +

1
2
𝛾𝑎𝑏 (𝑋)𝐴𝑎 ∧ 𝐴𝑏

)
−
∫
Σ̂

𝑋∗𝐻

+
∫
Σ2

(
𝜌𝑖𝑎 (𝑋)𝑋+

𝑖 𝑐
𝑎 + 1

2
𝐶𝑎

𝑏𝑐 (𝑋)𝑐
+
𝑎𝑐

𝑏𝑐𝑐
)

−
∫
Σ2

𝐴+
𝑎 ∧

(
d𝑐𝑎 + 𝐶𝑎

𝑏𝑐 (𝑋)𝐴
𝑏𝑐𝑐 + 𝜔𝑎

𝑏𝑖 (𝑋)𝑐
𝑏𝐹𝑖 + 𝜙𝑎

𝑏𝑖 (𝑋)𝑐
𝑏 ∗ 𝐹𝑖

)
−
∫
Σ2

1
8

(
〈(G−1

− )𝑏, 𝑆+𝑎𝑐𝑑〉(𝑋) + 〈(G−1
+ )𝑏, 𝑆−𝑎𝑐𝑑〉(𝑋)

)
𝐴+
𝑎 ∧ 𝐴+

𝑏𝑐
𝑐𝑐𝑑

−
∫
Σ2

1
8

(
〈(G−1

− )𝑏, 𝑆+𝑎𝑐𝑑〉(𝑋) − 〈(G−1
+ )𝑏, 𝑆−𝑎𝑐𝑑〉(𝑋)

)
𝐴+
𝑎 ∧ ∗𝐴+

𝑏𝑐
𝑐𝑐𝑑 . (109)

3.3 Manifestly target space covariant BV action

Since the classical action (39) is target space covariant, one expects the same to be true for the
BV action as well. This covariance is not manifest however, mainly due to the term involving 𝑋+.

First thing to notice is that the fields 𝐴 and 𝑐, along with their corresponding antifields 𝐴+ and
𝑐+ are covariant. As such, they transform tensorially under the change of coordinates on 𝑀 . Let
𝑀 𝑖

𝑗
(𝑥) be the Jacobian matrix of such transformation, and 𝑀𝑎

𝑏
(𝑥) the induced Jacobian matrix on

𝐸 . Then the components of 𝐴 transform into:

𝐴𝑎 = 𝑀𝑎
𝑏 𝐴

𝑏 , (110)

and the same way for the other fields.
Knowing the transformation of these fields, along with the transformation of 𝑋 , and taking into

account that the symplectic form (88) has to be invariant under changes of coordinates, one can find
the transformation of 𝑋+:

𝑋+
𝑖 = (𝑀−1) 𝑗

𝑖
𝑋+
𝑗 − (𝑀−1)𝑐𝑏 𝜕𝜇𝑀

𝑎
𝑐 (−𝐴+

𝑎 ∧ 𝐴𝑏 + 𝑐+𝑎𝑐
𝑏) . (111)

With this transformation in hand, it is easy to check the covariance of the BV action. However, in
order to make this covariance manifest, one needs to covariantize 𝑋+ first:

𝑋+∇
𝑖 = 𝑋+

𝑖 − 𝜔𝑎
𝑏𝑖

(
−𝐴+

𝑎 ∧ 𝐴𝑏 + 𝑐+𝑎𝑐
𝑏
)
. (112)
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which now transforms as a tensor. In terms of this new field, the BV action takes the form:

S𝐵𝑉 = −
∫
Σ

(
| |𝐹 | |2 +

〈
𝜃 (𝐴), d𝑋 + 1

2
𝜌(𝐴)

〉)
−
∫
Σ̂

𝑋∗𝐻

+
∫
Σ

(〈
𝑋+∇, 𝜌(𝑐)

〉
− 1

4
(𝑇+ + 𝑇−) (𝑐+, 𝑐, 𝑐) + 〈𝜙, ∗𝐹〉(𝐴+, 𝑐)

)
−1

2

∫
Σ

( (
(𝐷+ + 𝐷−)𝑐

)
(𝐴+) − (𝑇+ + 𝑇−) (𝐴+, 𝐴, 𝑐)

)
−1

8

∫
Σ

(〈
𝑆+(𝐴+, 𝑐, 𝑐),G−1

− (𝐴)
〉
+
〈
𝑆− (𝐴+, 𝑐, 𝑐),G−1

+ (𝐴)
〉)

−1
8

∫
Σ

(〈
𝑆+(𝐴+, 𝑐, 𝑐),G−1

− (∗𝐴)
〉
−
〈
𝑆− (𝐴+, 𝑐, 𝑐),G−1

+ (∗𝐴)
〉)

, (113)

where pullbacks by 𝑋 are assumed.

4. Conclusion

Even though it has been known for a while how Dirac sigma models arise from gauging of
the nonlinear sigma models [15], we have shown that this gauging can be taken to be quite more
general. By including the possibility of nonminimal coupling in the metric sector, it turns out that
in many cases this turns out to be just a simple redefinition of minimal coupling. Despite that, it
would be interesting to understand whether the remaining cases can be turned to minimal coupling
as well or they give rise to a different geometrical structure.

Finally, we have constructed the classical BV action for the Dirac sigma models. Since the
target space for Dirac sigma models is not a QP manifold, it is not possible to rely on AKSZ
construction for this. Instead, this has been achieved by expanding the BV action in terms of the
antifield number and then solving the classical master equation directly.
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