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1. Introduction

To explain the idea behind this talk, it is useful to consider the so-called Bronstein cube of
physical theories [1] given in in Figure 1. Starting from classical mechanics, one can extend
in three different directions by either adding special relativity, gravity or quantum mechanics.
Each extension introduces a constant of Nature that is absent in classical mechanics: (1) at large
velocities with respect to the velocity of light 𝑐 classical mechanics extends to special relativity;
(2) a gravitational force can be introduced via Newton’s constant 𝐺 leading to Newtonian gravity
and (3) at small distances certain physical quantities get quantized in units of the reduced Planck’s
constant ℏ corresponding to quantum mechanics. Combining two of these extensions one can
obtain general relativity or quantum field theory. To be precise, extending classical mechanics with
high velocities and gravity leads to general relativity while extending classical mechanics to high
velocities and small distances leads to quantum field theory. While general relativity is used to
describe the gravitational force, quantum field theory can be applied to describe particle physics.

It is an outstanding problem to construct a theory of quantum gravity - the holy grail of
theoretical physics - that combines all three extensions at the same time. Usually, this issue is
addressed either by trying to quantize general relativity or by trying to formulate quantum field
theory in a curved space. However, the cube shows that there is a third road to attack this problem,
namely by trying to add special relativity to a combination of gravity and quantum mechanics,
called non-relativistic (NR) quantum gravity. In order to follow this third road, one should first
complete the cube and define NR quantum gravity as a theory that stands on its own. This leads to
the fundamental question

To what extent does a consistent theory of quantum gravity rely on special relativity?

In case special relativity is required, this could lead to a first step on this third road to quantum
gravity.

Figure 1: The so-called Bronstein cube shows the different physical theories discussed in the text.

Recently, we made considerable progress in defining a consistent theory of NR quantum gravity
using the approach of NR string theory. In particular, we succeeded to derive the explicit expression
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of the part of the low-energy effective action of NR string theory, called NR Neveu-Schwarz (NS)
gravity, that is common to all different NR string theories by making use of a subtle limit technique.
In this talk we will discuss the construction of this NR NS gravity theory and discuss some of its
particular properties.

2. Non-relativistic limits

To construct an expression for NR NS gravity, we will make use of a special NR limit. In this
section we will discuss the peculiar features of this limit. Generically, to define a limit we will
perform the following two steps:

• we make an invertible field redefinition writing all relativistic fields in terms of the would-be
fields of the limiting theory and a dimensionless contraction parameter 𝜔. The invertibility
of the field redefinition implies that the number of fields before and after taking the limit
remains the same. The would-be limiting fields only become the true limiting fields after
taking the NR limit in the second step. Before this step we are just rewriting the relativistic
theory.

• In a second step we take the limit that 𝜔 goes to ∞ either in the action or equations of motion.
We do not allow divergent terms in the action. The limiting action is given by all terms of
order 𝜔0. Taking the limit of the equations of motion the resulting non-relativistic equations
of motion are given by the terms of leading order in 𝜔. Independently of this one can also
take the limit of the transformation rules.

Before considering string effective actions, it is instructive to first discuss the case of particles
and general relativity without the Kalb-Ramond field and dilaton. Using a second-order formulation
of general relativity 1, we need to express the relativistic Vierbein field 𝐸𝜇

�̂� into the would-be non-
relativistic fields in an invertible way using a contraction parameter 𝜔. Inspired by the standard
Wigner-Inönu contraction of the Poincaré algebra we first write

𝐸𝜇
0 = 𝜔𝜏𝜇 , 𝐸𝜇

𝐴′
= 𝑒𝜇

𝐴′
, (1)

where we have decomposed �̂� = (0, 𝐴′), 𝜔 is a dimensionless parameter, 𝜏𝜇 is the clock function
and 𝑒𝜇

𝐴′ are the rulers. 2 As it stands, this redefinition cannot give rise, after taking the limit that
𝜔 → ∞, to a Newtonian gravity theory because in the NR case energy is not the same as mass
and hence we need two gauge fields 𝜏𝜇 and 𝑚𝜇 for energy and mass, respectively. Indeed, the NR
limit defined by eq. (1) gives rise to a NR gravity theory called Galilei gravity [2]. The additional
mass operator gives rise to a central extension of the Galilei algebra called the Bargmann algebra.

1One could also use a first-order formulation. In the presence of matter, such as in supergravity, it is easiest to use a
second-order formulation.

2Sometimes, one uses, instead of a dimensionless parameter 𝜔, the dimensionfull velocity of light 𝑐. This leads to
the same limit as can be seen by first redefining 𝑐 → 𝜔𝑐 and, next, taking the limit 𝜔 → ∞. The reason that this way of
taking the limit leads to the same answer is that the NR limit is such that after taking the limit the parameter 𝑐 disappears
from the NR theory.
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In order to obtain this Bargmann algebra from a Wigner-Inönü contraction of a relativistic algebra,
we must extend the Poncaré algebra with an additional U(1) generator. In terms of gauge fields this
implies that we should extend general relativity with an additional gauge field 𝑀𝜇 before taking the
limit. In order not to extend general relativity with extra degrees of freedom we impose by hand
that the field equation of 𝑀𝜇 is given by the following zero flux condition 3

[𝑀]𝜇𝜈 = 𝜕𝜇𝑀𝜈 − 𝜕𝜈𝑀𝜇 = 0 . (2)

Note that, without extending general relativity any further, this field equation does not follow from
a relativistic action and therefore the specific limit we are considering can only be taken at the level
of the equations of motion, i.e. the Einstein equations.

Given the extended general relativity theory, we consider the following redefinitions [3]:

𝐸𝜇
0 = 𝜔𝜏𝜇 + 1

𝜔
𝑚𝜇 , 𝐸𝜇

𝐴′
= 𝑒𝜇

𝐴′
, 𝑀𝜇 = 𝜔𝜏𝜇 . (3)

Note that the relativistic inverse Vielbeine are redefined as follows

𝐸
𝜇

0 =
1
𝜔
𝜏𝜇 + · · · , 𝐸𝜇

𝐴′ = 𝑒𝜇𝐴′ + · · · , (4)

where the projective inverse Vielbeine 𝜏𝜇 and 𝑒𝜇𝐴′ are defined by

𝜏𝜇𝜏
𝜇 = 1 , 𝜏𝜇𝑒

𝜇
𝐴′ = 𝜏𝜇𝑒𝜇

𝐴′
= 0 , 𝑒𝜇

𝐴′
𝑒𝜈 𝐴′ + 𝜏𝜇𝜏

𝜈 = 𝛿𝜇
𝜈 . (5)

We have only given here the leading order redefinitions. The lower order dotted terms in (4) do
not contribute to the final answer when taking the NR limit. We note that in a Post-Newtonian
expansion of general relativity there is no need to make use of the extra gauge field 𝑀𝜇 since the
lowest order terms in such an expansion do not need to constitute an invertible field redefinition. In
that case the NR central charge gauge field 𝑚𝜇 occurs as a next component in the expansion of the
Vierbein field. The terms of lowest order in 𝜔 in such an expansion do not correspond to any limit.

It is now a straightforward matter to substitute the field redefinitions (3) into the Einstein
equations and to take the limit𝜔 → ∞. This leads to the so-called Newton-Cartan (NC) equations of
motion that we will not discuss further here. The important thing is that it gives a frame-independent
reformulation of Newtonian gravity which can be obtained from NC gravity by gauge-fixing the
gravitational fields leaving us with a Newton potential Φ only. It turns out that this Newton potential
can be identified with the time component of the cental charge gauge field 𝑚𝜇:

Φ = 𝜏𝜇𝑚𝜇 . (6)

Furthermore, due to the constraint (2), we end up with a NC gravity theory with zero intrinsic
torsion [4], i.e.

𝜏𝜇𝜈 =
1
2
(
𝜕𝜇𝜏𝜈 − 𝜕𝜇𝜏𝜈

)
= 0 . (7)

The special thing about this torsion tensor, which has no analogue in the relativistic case, is that
it defines a covariant tensor of rank 2. It indeed describes torsion as can be seen from the metric
postulate for the clock function:

𝜕𝜇𝜏𝜈 − Γ𝜇𝜈
𝜌𝜏𝜌 = 0 → Γ[𝜇𝜈 ]

𝜌𝜏𝜌 = 𝜕[𝜇𝜏𝜈 ] . (8)

3Here and in the following we will indicate the equation of motion of a field with square brackets.
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In general, one may distinguish between the following three different cases:4

𝜏𝜇𝜈 = 0 : zero torsion , (9)

𝜏𝐴′𝐵′ = 0 : twistless torsional , (10)

𝜏𝜇𝜈 ≠ 0 : general torsion . (11)

We have used here the projective inverse Vierbein 𝑒𝜇𝐴′ to convert a curved index 𝜇 into a flat index
𝐴′:

𝜏𝐴′𝐵′ ≡ 𝑒𝜇𝐴′𝑒𝜈𝐵′𝜏𝜇𝜈 . (12)

The zero torsion case defines a Newtonian spacetime with a co-dimension 1 foliation or, equivalently,
a preferred time direction 𝑡 given by 𝜏𝜇 = 𝜕𝜇𝑡. Any observer traveling along a curve C from a time
slice Σ𝑡𝐴 at 𝑡 = 𝑡𝐴 to a time slice Σ𝑡𝐵 at 𝑡 = 𝑡𝐵 will measure a time difference Δ𝑇 given by

Δ𝑇 =

∫ 𝑡𝐵

𝑡𝐴

𝑑𝑥𝜇𝜏𝜇 = 𝑡𝐵 − 𝑡𝐴 (13)

independent of the curve C. The twistless torsional case leads to a spacetime with a hypersurface
orthogonality condition of the clock fucction 𝜏𝜇. Such spacetimes are encountered in Lifshitz
holography [5]. Note that the twistless torsional condition is invariant under the following an-
isotropic local scale transformations

𝛿𝜏𝜇
𝐴 = 𝜆𝐷𝜏𝜇

𝐴 . (14)

It is this property that explains the occurrence of the twistless torsional condition in Lifshitz
holography.

Before we discuss the extension from particles to strings, we summarize a few notable features
of the above limiting procedure that also will be relevant in the string case.

1. In general, when taking the limit 𝜔 → ∞, many objects, such as the redefined Vierbein field
given in eq. (3) blow up. This is harmless, as long as the final result, in this case the NC
equations of motion, do not blow up. The occurrence of these infinities are due to the fact
that one goes from a regular geometry in the relativistic case to a degenerate geometry in the
NR case.

2. The fact that there is no action could be avoided by deleting the zero flux condition (2) and
adding a kinetic term for the extra gauge field 𝑀𝜇 to the Einstein-Hilbert action, possibly
with other matter fields, such that there is a critical cancellation of divergences between the
Einstein-Hilbert term and some of the matter fields. This is what will happen in the string
case where the extra matter consists of the Kalb-Ramond 2-form and the dilaton.

3. After taking the limit, the central charge gauge field 𝑚𝜇 has become part of the geometry in the
sense that it transforms under Galilean boost transformations with parameters 𝜆𝐴′ as follows:

𝛿𝑚𝜇 = 𝜆𝐴′𝑒𝜇
𝐴′
. (15)

4One cannot impose 𝜏0𝐴′ = 0 since such a constraint is not invariant under Galilean boost transformations.
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We now proceed from particles to strings. This leads to two changes with respect to the particle
case. First of all, we need to replace the clock function 𝜏𝜇 by two so-called longitudinal Vierbeine
𝜏𝜇

𝐴 with 𝐴 = (0, 1), where we now decompose the relativistic Lorentz index �̂� as �̂� = (𝐴, 𝐴′).
Secondly, we replace the relativistic vector 𝑀𝜇 that couples to a particle by a Kalb-Ramond 2-form
field 𝐵𝜇𝜈 which naturally couples to a string. Comparing with the particle case where we redefined
the relativistic fields in terms of the would-be NR ones as follows:

{𝐸𝜇
�̂�, 𝑀𝜇} → {𝜏𝜇, 𝑒𝜇𝐴′

, 𝑚𝜇} ,

we now redefine the following general relativity fields 𝐸𝜇
�̂� plus Kalb-Ramond fields 𝐵𝜇𝜈 and

dilaton field Φ in terms of would be NR fields according to:

{𝐸𝜇
�̂�, 𝐵𝜇𝜈 ,Φ} → {𝜏𝜇𝐴, 𝑒𝜇

𝐴′
, 𝑏𝜇𝜈 , 𝜙} .

Here, 𝑏𝜇𝜈 and 𝜙 are the NR Kalb-Ramond and dilaton field, respectively.
Defining a limit, we redefine the 2-form field as follows:

𝐵𝜇𝜈 = −𝜔2𝜖𝐴𝐵𝜏𝜇
𝐴𝜏𝜈

𝐵 + 𝑏𝜇𝜈 ,

while the redefinitions of the Vierbein fields remain the same except for the index structure:

𝐸𝜇
𝐴 = 𝜔𝜏𝜇

𝐴 , 𝐸𝜇
𝐴′

= 𝑒𝜇
𝐴′
. (16)

Together with this, we also redefine the relativistic dilaton Φ in terms of a would-be NR dilaton
field 𝜙 as follows:

Φ = 𝜙 + ln𝜔 . (17)

After taking the limit that 𝜔 → ∞, the Newton potential Φ can now be identified as the longitudinal
time-space component of the NR Kalb-Ramond field:

Φ = 𝜖 𝐴𝐵𝜏𝜇𝐴𝜏
𝜈
𝐵𝑏𝜇𝜈 . (18)

Similar to the particle case, we find that, after taking the limit, the NR Kalb-Ramond field 𝑏𝜇𝜈

becomes part of the geometry in the sense that it transforms under the stringy Galilean boost
transformations with parameters 𝜆𝐴′ 𝐴 in the following non-trivial way:

𝛿𝑏𝜇𝜈 = 𝜕[𝜇𝜆𝜈 ] + 2𝜖𝐴𝐵𝜆𝐴′ 𝐴𝜏[𝜇
𝐵𝑒𝜈 ]

𝐴′
.

With these definitions, we are now ready to take the limit of the relativistic NS gravity action.

3. Non-relativistic Neveu-Schwarz gravity

Using a second-order formulation of general relativity, our starting point is the relativistic NS
action

𝑆rel =
1

2𝜅2

∫
𝑑10𝑥 𝐸𝑒−2Φ

(
R(Ω(𝐸)) − 1

12
H𝜇𝜈𝜌H 𝜇𝜈𝜌 + 4𝜕𝜇Φ𝜕𝜇Φ

)
, (19)
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where 𝜅 is the gravitational coupling constant, 𝐸 = det 𝐸𝜇
�̂�, Φ is the dilaton field, R(Ω(𝐸)) is

the Einstein-Hilbert scalar in terms of a dependent spin connection field Ω𝜇
�̂��̂� and H𝜇𝜈𝜌 is the

curvature of the Kalb-Ramond field 𝐵𝜇𝜈 , i.e. H𝜇𝜈𝜌 = 3𝜕[𝜇𝐵𝜈𝜌] .
Making the redefinitions explained in the previous section, we end up with a Lagrangian that

contains pieces
(𝑛)
𝑆 proportional to 𝜔𝑛 for 𝑛 = 2, 0,−2,−4, i.e.

𝑆 = 𝜔2 (2)
𝑆 +

(0)
𝑆 + 𝜔−2 (−2)

𝑆 + 𝜔−4 (−4)
𝑆 . (20)

Note that at this point we have not imposed any constraint on the geometry.
Now something special happens. Both the Einstein-Hilbert term and the kinetic term of

the Kalb-Ramond field contribute to
(2)
𝑆 with equal terms but of opposite sign involving specific

projections of the torsion tensor

𝜏𝜇𝜈
𝐴 =

1
2
(
𝜕𝜇𝜏𝜈

𝐴 − 𝜕𝜈𝜏𝜇
𝐴
)

(21)

such that a cancellation of divergences takes place and we find that
(2)
𝑆 = 0.

Substituting all redefinitions given in the previous section into the relativistic action (19)and
taking the limit 𝜔 → ∞ we find the following NR action [6]:

𝑆NR =
1

2 𝜅2

∫
d10𝑥 𝑒

(
R(𝐽) − 1

12
ℎ𝐴′𝐵′𝐶′ℎ𝐴′𝐵′𝐶′

− 4D𝐴′𝑏𝐴′ − 4 𝑏𝐴′𝑏𝐴′ − 4 𝜏𝐴′ {𝐴𝐵}𝜏
𝐴′ {𝐴𝐵}

)
. (22)

Here 𝑒 = det(𝜏𝜇𝐴, 𝑒𝜈
𝐴′) and

𝑅(𝐽) = 𝑒𝜇𝐴′𝑒𝜈𝐵′𝑅𝜇𝜈
𝐴′𝐵′ (𝐽) , (23)

where 𝑅𝜇𝜈
𝐴′𝐵′ (𝐽) is the curvature of spatial rotations whose precise definition can be found in [6].

Furthermore, ℎ𝐴′𝐵′𝐶′ and 𝜏𝐴′ {𝐴𝐵} are intrinsic torsion components defined by

𝜏𝐴′ {𝐴𝐵} = 𝑒𝐴′ 𝜇𝜏(𝐴
𝜈𝜏𝜇𝜈𝐵) , ℎ𝐴′𝐵′𝐶′ = 𝑒𝐴′ 𝜇𝑒𝐵′ 𝜈𝑒𝐶′𝜌ℎ𝜇𝜈𝜌 , (24)

where ℎ𝜇𝜈𝜌 is the curvature of the NR Kalb-Ramond field 𝑏𝜇𝜈 , i.e. ℎ𝜇𝜈𝜌 = 3𝜕[𝜇𝑏𝜈𝜌] . The gauge
field 𝑏𝜇 with a𝑏𝐴′ = 𝑒𝐴′ 𝜇𝑏𝜇 is a dependent gauge field for scale transformations whose definition
can be found in [6] to which we refer for more details.

It turns out that the NR NS action (22) has the following special features:

(i) the action (22) is invariant under an emergent dilatation symmetry with parameter 𝜆𝐷 given by

𝛿𝜏𝜇
𝐴 = 𝜆𝐷𝜏𝜇

𝐴 , 𝛿𝜙 = 𝜆𝐷 . (25)

This means that the number of NR background fields that are present in the NR action (22)
is one less than the number of relativistic background fields that are present in the relativistic
action (19). This implies that there is one ‘missing equation of motion’ as compared to the
number of relativistic equations of motion.
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(ii) It turns out that the missing equation of motion is precisely the one that contains the Poisson
equation of the Newton potential. This missing equation can be obtained by taking the NR
limit of the relativistic equations of motion. In other words, taking the limit of the action and
then going on-shell is not the same as first going on-shell and then taking the NR limit. We
find that there is a relation though between the Poisson equation and all the other equations
that follow from varying the NR action (22) in the sense that together they form a reducible
but undecomposable representation under the Galilean boost transformations. In practice
this means that under Galilean boosts the Poisson equation transforms to the equations of
motion that follow from varying the NR action (22) but not the other way around: none of
these equations of motion transform under Galilean boosts back to the Poisson equation.

(iii) The equations of motion of the Newton potential itself gives the following non-linear geometric
constraint:

𝜏𝐵′𝐶′𝐴𝜏
𝐵′𝐶′𝐴 = 0 with 𝜏𝐴′𝐵′𝐶 = 𝑒𝐴′ 𝜇𝑒𝐵′ 𝜈𝜏𝜇𝜈

𝐴 . (26)

This prevents an over-determined set of equations of motion since the total number of
equations of motion (before and after taking the limit of the relativistic equations of motion)
remains the same but, due to the emerging dilatations, there is one missing field in the NR
equations of motion. It has been pointed out that this non-linear constraint prohibits that the
quantum effective sigma model describing the non-relativistic string theory develops a term
quadratic in the Lagrange multipliers that are present in the classical sigma model [7]. The
presence of such a term would imply that the Lagranger multipliers become auxiliary fields
that can be integrated out and that the non-relativistic string sigma model does not stay NR
but, instead, flows towards a relativistic string sigma model.

It is instructive to compare the different ways to derive the equations of motion of the background
fields. We have already seen that it makes a difference whether one first takes the limit of the
relativistic action and next determines the equations of motion or whether one first determines
the relativistic equations of motion by varying the relativistic action and then takes the limit
of these relativistic equations of motion. A third and independent way to determine the non-
relativistic equations of motion is by calculating the beta functions of the non-relativistic sigma
model [8, 10, 12]. All methods lead to the same (‘common’) equations of motion except for the
Poisson equation of the Newton potential and the non-linear geometric constraint (26). Due to the
emerging dilatation symmetry there are the following differences:

Varying non-relativistic NS action → common equations + Non-linear , (27)

Calculating non-relativistic 𝛽-functions → common equations + Poisson , (28)

Taking limit of relativistic e.o.m. → common equations + Poisson + Non-linear .(29)

In some sense one can view the non-linear geometric constraint (26) as an additional beta function
for the Lagrange multipliers. From now on we will assume that the dynamics of the background
fields of NR string theory is determined by the total set of equations, i.e. the sum of the common
equations plus the Poisson equation and the non-linear geometric contraint (26).

8
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4. Torsional String Newton-Cartan Geometry

The low-energy effective NS action (22) is based upon a non-Lorentzian so-called Torsional
String Newton-Cartan (TSNC) geometry that replaces the Riemannian geometry of general relativ-
ity, see also [6, 11]. The basic variables are given by

{𝜏𝜇𝐴, 𝑒𝜇
𝐴′
, 𝑏𝜇𝜈 , 𝜙} , (30)

where 𝜏𝜇
𝐴 (𝐴 = 0, 1) are the two longitudinal Vierbeine, 𝑒𝜇

𝐴′ are the remaining transverse
Vierbeine, 𝑏𝜇𝜈 is the non-relativistic Kalb-Ramond field and 𝜙 is the non-relativistic dilaton. There
are also a number of dependent gauge fields

{𝜔𝜇 , 𝜔𝜇
𝐴𝐴′

, 𝜔𝜇
𝐴′𝐵′

, 𝑏𝜇} (31)

for the longitudinal Lorentz transformations, stringy Galilean boost transformations, spatial rotations
and an-isotropic dilatations, respectively.

The main feature that distinguishes the TSNC structures from other geometric structures is the
fact that the Kalb-Ramond field strength ℎ𝜇𝜈𝜌 = 3 𝜕[𝜇𝑏𝜈𝜌] and that of the dilaton 𝜕𝜇𝜙 do transform
with a derivative of the boost and an-isotropic dilatation parameter, respectively. In fact, they are
part of the dependent gauge fields and are needed to give these dependent gauge fields the correct
transformation rules of a gauge field:

𝑏𝜇 = 𝑒𝜇
𝐴′
𝜏𝐴′𝐴

𝐴 + 𝜏𝜇
𝐴𝜕𝐴𝜙 , (32a)

𝜔𝜇 =
(
𝜏𝜇

𝐴𝐵 − 1
2
𝜏𝜇

𝐶𝜏𝐴𝐵𝐶

)
𝜖𝐴𝐵 − 𝜏𝜇

𝐴 𝜖𝐴𝐵𝜕
𝐵𝜙 , (32b)

𝜔𝜇
𝐴𝐴′

= −𝑒𝜇𝐴𝐴′ + 𝑒𝜇𝐵′𝑒𝐴𝐴
′𝐵′ + 1

2
𝜖 𝐴𝐵 ℎ𝜇

𝐵𝐴′ + 𝜏𝜇𝐵𝑊
𝐵𝐴𝐴′

, (32c)

𝜔𝜇
𝐴′𝐵′

= −2 𝑒𝜇 [𝐴
′𝐵′ ] + 𝑒𝜇𝐶′𝑒𝐴

′𝐵′𝐶′ − 1
2
𝜏𝜇

𝐴 𝜖𝐴𝐵 ℎ𝐵𝐴′𝐵′
, (32d)

where 𝜏𝜇𝜈 𝐴 = 𝜕[𝜇𝜏𝜈 ]
𝐴 and 𝑒𝜇𝜈 𝐴

′
= 𝜕[𝜇𝑒𝜈 ]

𝐴′ . It turns out that not all components of the above gauge
fields can be solved for. This is reflected by the undetermined quantity 𝑊 𝐴𝐵𝐴′ which is traceless
symmetric in the (𝐴, 𝐵) indices, but otherwise arbitrary. Since all the relevant expressions—such
as the action, equations of motion and symmetry transformation rules—follow from a limit of the
corresponding relativistic expressions it is clear that nothing depends on 𝑊 . For more details about
this TSNC geometry, we refer to [6] and the overview talk by Jan Rosseel at this workshop.

5. Generalizations and New developments

The work presented here can be generalized in several ways.

(i) The limit technique we applied here to obtain the non-relativistic NS action (22) was based
upon a cancellation of divergences coming from the Einstein-Hilbert term and a matter term
(the kinetic term of the NR Kalb-Ramond field). We expect that a similar cancellation of
divergences occurs for limits with a co-dimension 1 foliation and other matter content. An
explicit example would be to start from a spatial reduction of the relativistic action (19) but
other examples should exist as well.
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(ii) A natural generalization of our work is to add a Yang-Mills matter action and obtain the action
of non-relativistic heterotic gravity with its characteristic Yang-Mills Chern-Simons term.
At the level of the sigma model description this case is more subtle due to the occurrence of
so-called sigma model anomalies.

(iii) In this talk we only discussed the case of closed strings. The generalization to open strings
was discussed in [12, 13].

(iv) One can also include supersymmetry. A supersymmetric version of NS gravity, called ten-
dimensional minimal supergravity, was given in [14], see also the talk by Lahnsteiner at this
workshop. It turns out that the bosonic theory can only be embedded into a supersymmetric
one provided that an additional geometric constraint is imposed which specializes the general
TSNC geometry to a so-called DSNC− geometry. We refer to [14] for more details. Further
aspects of (the bosonic sector of) NR M-theory and IIA/IIB supergravity have been discussed
in [15, 16].

After this talk was presented a few interesting developments took place. In particular, we
derived a target space description of the so-called T-duality rules and applied the so-called longi-
tudinal T-duality rules to construct the basic (half-supersymmetric) string solutions corresponding
to the NR NS action (22). It turns out that there are two basic string solutions [17]. One is the
so-called winding string solution that occurs as a physical state in the string spectrum. The other is a
so-called unwound string solution that does not correspond to a physical state. Instead, it describes
an off-shell state needed to describe the instantaneous Newtonian force between two winding strings
[18–20].
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