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1. Introduction

The discrete light cone quantization (DLCQ) of M-theory and the related BFSS conjecture [1, 2]
propose a radical approach to studying the non-perturbative sector of string theory. By organizing
the structure of the theory into non-Lorentzian blocks—i.e., the quantum mechanics of a system of
n D0 branes—one hopes to encode fundamental physics in a convenient basis. Around the same
time as the matrix conjectures, people have made the observation that the DLCQ of string theory
can be described in a dual sigma model, which is manifestly non-relativistic. For the closed string
sector, this model [3–5] is referred to as non-relativistic closed string theory, wound string theory,
or Gomis-Ooguri string theory interchangeably. The associated duality is known as longitudinal
T-duality and can be derived as a worldsheet duality as shown in [6]. Consequently, it also implies
a relation between the background geometries in the form of non-relativistic Buscher rules. These
relate a background with a lightlike isometry to a so-called torsional string Newton-Cartan geometry.
In this note, we will re-derive these rules from a slightly different perspective and use them to make
statements about the target space structure of either theory. In particular, we will comment on the
role of target space supersymmetry.

The discrete light cone quantization assumes a compact lightlike direction. Locally that implies
that there exists a lightlike Killing vector 𝑘 = 𝜕𝑦 that constrains the Kaluza-Klein scalar to be zero.
This is not a natural condition when considering supergravity multiplets. Instead, one should see the
condition of lightlike isometry 𝐺𝑦𝑦 as part of a multiplet of constraints C = 0. This multiplet can be
obtained iteratively by varying the null isometry constraint under supersymmetry. We revisit some
results from studying the minimal multiplet in ten dimensions [7, 8]. In this article we consider the
minimal N = (1, 0) multiplet in ten dimensions. The primary result is that in this case C consists
of 1 bosonic algebraic, 17 fermionic algebraic, and 36 bosonic differential constraints shortening
the N = (1, 0) multiplet to what we refer to as the N = (1, 0)0 multiplet. We use this example
to gain intuition about the structure of this multiplet of constraints and thus the possible DLCQ
supergravities in ten dimensions.

When dualizing along the DLCQ circle, the N = (1, 0)0 multiplet turns out to be T-dual to
what we called the DSNC− multiplet in [8]. The name is short for self-dual dilatation invariant
string Newton-Cartan geometry. There, we obtained the multiplet as a singular decoupling limit
of the corresponding relativistic one. It realizes 16 supercharges but manifestly does not have
Lorentzian symmetries. Instead, it realizes Galilean-type symmetries, as will be explained below.
Relatedly, the geometric structure underlying the DSNC− is manifestly non-Riemannian. One can
study equations of motion for these backgrounds [9] and find agreement with the Weyl anomaly
cancellation conditions in Gomis-Ooguri string theory [10].

The structure of this article is as follows. We begin by reviewing some properties of DLCQ in
section 2. In particular, we define it as an 𝑅𝑠 → 0 limit of a conventional circle reduction relation
following [11]. We then show that the same limit, applied to the usual T-duality rules, leads to an
implicit definition of Gomis-Ooguri decoupling limit. In section 3 we generalize this argument to
curved backgrounds and thereby re-derive the target space structure of Gomis-Ooguri string theory.
In section 4 we argue how to extend the results of the previous sections to include supersymmetry,
referring the reader to [7, 8] for details. We end with conclusions in section 5, speculating about
extensions to include maximal supersymmetry and Yang-Mills multiplets. Furthermore, we record
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some ideas about other dualities and embedding in eleven dimensions.

2. DLCQ and Gomis-Ooguri String Theory

The discrete light cone quantization (DLCQ) is an approach to quantum field theories, string
theory, and M theory1 where one puts the theory in a lightlike box—while at the same time fixing
the momentum in the lightlike direction. Here, we are interested in string theory backgrounds
where one light-like direction is compact. Introducing 𝑥± = 2−1/2(𝑥0 ± 𝑥9), we can define DLCQ
as the condition (

𝑥+, 𝑥−, 𝑥𝐴
′ ) ∼

(
𝑥+ + 2𝜋𝑅, 𝑥−, 𝑥𝐴

′ )
. (1)

Here and below 𝐴′ = 2, · · · , 9. It is natural to assign the dual lighlike direction 𝑥− as the new
time variable and the Hamiltonian as the associated charge 𝐻 = 𝑝−. From this we see that 𝑝+ is
conserved under time evolution since [𝐻, 𝑝+] = 0 by virtue of the Poincaré algebra. Hence it is
sensible to restrict to a subspace of the full Hilbert space with 𝑝+ fixed. In other words, the lighlike
momentum satisfies

𝑝+ =
𝑛

𝑅
, (2)

for some non-negative and fixed integer 𝑛. In other words, we quantize 𝑝+ to be a discrete value—
hence the name DLCQ—in units of 1/𝑅. The uncompactified theory satisfies the usual mass-shell
condition 𝑝2 + 𝑀2 = 0 which turns into the dispersion relation for a Galilean particle with mass
𝑝+—that is 𝐻 = (2 𝑝+)−1𝑝2

𝐴′ + 𝐸𝑀 with 𝐸𝑀 = (2 𝑝+)−1𝑀2. We thus observe that the physics of
DLCQ for some fixed 𝑛 is that of a non-relativistic system with total mass 𝑛/𝑅. This is not just a
property of free systems and can, more generally, be seen from the point of view of the Poincaré
algebra. Fixing 𝑝+ to a constant is not preserved by boosts in the longitudinal direction, specifically

e𝜎Δ𝑃+ e−𝜎Δ = e𝜎 𝑃+ , (3)

where Δ = 𝐽+−. A similar conclusion holds for 𝐽−𝐴′. This manipulation shows that the DLCQ
constraint 𝑝+ = 𝑐𝑜𝑛𝑠𝑡 is only conserved by a subset of the full ten dimensional Poincaré algebra
which can be identified as the nine-dimensional Bargmann algebra. This algebra is the Galilei alge-
bra with a central extension 𝑝+—corresponding to particle number conservation in non-relativistic
systems. This explains why the DLCQ organizes itself in non-relativistic blocks.

The number of allowed scattering processes grows exponentially as 𝑛 grows. The idea of
the DLCQ proposal is to recover the full relativistic theory by taking the decompactification limit
𝑅 → ∞ while keeping 𝑝+ finite at the same time—meaning 𝑛 → ∞. The hope was and is that this
re-organization of the relativistic theory into non-relativistic blocks gives a useful regularization of
the non-perturbative sector of M-theory. This is the famous matrix theory conjecture [1, 2]. For
concrete applications, it can actually be enough to consider large but finite values of 𝑛, see the
comments in [12]. Instead of worrying about the validity of the 𝑛 → ∞ limit, we will always take
the value of 𝑛 to be fixed and finite. Hence the physics we describe is going to be non-Lorentzian
in nature.

1For a useful review of applications in string theory and M theory, see [12].
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The validity of DLCQ and the associated 𝑛 → ∞ limit have been subject to heated debates
in the community, see e.g. [13–16] and references therein. The credibility of the DLCQ proposal
crucially depends on how to make sense of the compactness condition (1). Seiberg [11] has given
a more careful definition of what (1) actually means by regularizing the compact lightlike direction
as a compact spatial direction of vanishing radius

𝑑𝑠2 = −2 𝑑𝑥+𝑑𝑥− + 𝜀2 (𝑑𝑥+)2 + (
𝑑𝑥𝐴

′ )2
. (4)

so that the light cone frame is realized as 𝜀 → 0. For finite 𝜀, however, the coordinate 𝑥+ is
spacelike and we can use some of the established results and intuition from relativistic string theory
on a compact target space. Let us make this more precise by defining a coordinate redefinition
𝑥− = 𝑥− − 𝜀2/2 𝑥+ so that 𝑑𝑠2 = −2 𝑑𝑥+𝑑𝑥− + (𝑑𝑥𝐴′)2. The respective coordinates are periodic

𝑥+ ∼ 𝑥+ + 2𝜋 𝑅 , 𝑥− ∼ 𝑥− − 𝜀2 𝜋 𝑅 . (5)

Performing a large longitudinal boost with rapidity 𝛽 = (1− 𝜀2/2)/(1+ 𝜀2/2) leads to a theory that
has a compact spacelike direction 𝑥1 with

𝑥0 ∼ 𝑥0 , 𝑥1 ∼ 𝑥1 + 2𝜋 𝜀 𝑅 , (6)

where 𝑥0 = 2−1/2(𝑥+ − 𝑥−) and 𝑥1 = 2−1/2(𝑥+ + 𝑥−). As was already apparent from the expression
for the metric (4) we see that the actual invariant compactification radius is

𝑅𝑠 = 𝑅 · 𝜀 , (7)

rather than 𝑅, which is a convenient parameter but has no invariant meaning since one can always
perform a boost to rescale its value. More importantly, we see that the 𝜀 → 0 limit is equivalent to
the limit of a vanishing compactification radius 𝑅𝑠 → 0. Hence we see that the DLCQ can be seen
as the limit of a spacelike reduction where the size of the compact direction shrinks to zero. Using
this prescription, one can derive the DLCQ form of the mass formula

2𝑛 𝐻 = 𝑅

(
𝑝2
𝐴′ + oscillators

)
+ O(𝜀2) , 𝑛𝑤 = 𝑁 − 𝑁̃ + O(𝜀2) , (8)

by using expression for the metric (4) to express 𝑝2 = −2 𝑝+𝑝−−𝜀2𝑝2
− + 𝑝2

𝐴′. Here, we have defined
𝐻 = 𝑝−/𝜀 +O(𝜀). For more details see [16]. Observe that it is crucial to distinguish between 𝑛 = 0
and 𝑛 ≠ 0 in the DLCQ dispersion relation.

Let us first assume that 𝑛 > 0. In the strict limit 𝜀 → 0 this leads to the Hamiltonian for a free
nine-dimensional Galilean particle of mass 𝑛/𝑅 and intrinsic energy depending on the oscillator
contributions. This demonstrates the observation made above: DLCQ organizes the spectrum into
Galilean blocks. Note that the winding number only contributes via the level matching condition.

Secondly, we can consider 𝑛 = 0. In that case, we are led to imposing 𝑝𝐴′ = 0 and appropriate
constraints on the oscillator contributions. It was shown in [1] that states with 𝑛 = 0 and 𝑤 ≠ 0 do
not appear as asymptotic states. However, these states can occur as exotic virtual states in scattering
processes involving momentum states. One can obtain an effective nine-dimensional description
of these modes by double dimensional reduction [7] which can be recognized as that of a massless
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Galilean particle with zero color, and spin [17, 18]. The case of negative momentum 𝑛 < 0 is
excluded since it would lead to negative energies.

T-duality is a non-trivial feature of string theory relating a theory compactified on a small
volume to a theory on a large volume. In the case of a reduction on a circle of radius 𝑅𝑠, the duality
interchanges winding modes with momentum modes as follows

𝑛 ↔ 𝑤 , 𝑅𝑠 ↔ ℓ2
𝑠/𝑅𝑠 . (9)

As mentioned above, one can see the DLCQ of string theory as an 𝑅𝑠 → 0 limit of string theory.
T-duality, on the other hand, suggests that there should be a dual formulation that derives from the
𝑅𝑠 → ∞ limit. The DLCQ is dominated by momentum modes, whereas its T-dual is expected
to be dominated by winding modes. We will now construct the T-dual of the DLCQ of string
theory directly, which is known as non-relativistic closed string theory. Alternative names include
Gomis-Ooguri string theory and wound string theory. The latter is a two-dimensional conformal
field theory with non-Lorentzian target space symmetries and thereby makes the non-relativistic
character of DLCQ manifest in the sigma model. To do this construction explicitly, let us recall the
Buscher rules of relativistic string theory mapping two T-dual NSNS backgrounds to each other:

𝐺̃𝑦𝑦 = 𝐺−1
𝑦𝑦 , e−2Φ̃ = 𝐺𝑦𝑦 e−2Φ , (10a)

𝐺̃𝑦𝑖 = 𝐺−1
𝑦𝑦 𝐵𝑦𝑖 , 𝐺̃𝑖 𝑗 = 𝐺𝑖 𝑗 − 𝐺−1

𝑦𝑦

(
𝐺𝑦𝑖𝐺𝑦 𝑗 − 𝐵𝑦𝑖𝐵𝑦 𝑗

)
, (10b)

𝐵̃𝑦𝑖 = 𝐺−1
𝑦𝑦 𝐺𝑦𝑖 , 𝐵̃𝑖 𝑗 = 𝐵𝑖 𝑗 + 2𝐺−1

𝑦𝑦 𝐵𝑦 [𝑖𝐺 𝑗 ]𝑦 , (10c)

where we adapted the coordinates 𝑥𝜇 = (𝑦, 𝑥𝑖) to a spatial isometry 𝑘 = 𝜕𝑦 . The first rule maps
the Kaluza-Klein modulus to its inverse and thereby realizes the 𝑅𝑠 ↔ ℓ2

𝑠/𝑅𝑠 rule locally. We
furthermore notice that the string-coupling modulus eΦ0 = 𝑔𝑠 is mixed with the radius modulus,
leading to the following rule for the loop expansion parameter 𝑔𝑠 ↔ 𝑔̃𝑠 = 𝑔𝑠ℓ𝑠/𝑅𝑠.

Let us now apply the Buscher rules (10) to the regularized DLCQ background (4) with 𝑦 = 𝑥+.
That is: 𝐺𝑦𝑦 = 𝜀2 and 𝐺𝑖𝑦𝑑𝑥

𝑖 = −𝑑𝑥−. This leads to the following non-trivial T-dual background

𝑑𝑠2 =
1
𝜀2

(
− 𝑑𝑥−2 + 𝑑𝑥+2) + 𝑑𝑥2

𝐴′ , 𝐵̃ =
1
𝜀2 𝑑𝑥− ∧ 𝑑𝑥+ , eΦ̃ =

𝑔𝑠

𝜀
, (11)

which is clearly divergent in the limit 𝜀 → 0. However, a divergence in the background fields
does not imply a divergence in the non-linear sigma model. Gomis and Ooguri [4] have shown
that the 𝜀 → 0 of the Polyakov model on a background of the form (11) is finite. To tame the
divergent contribution O(𝜀−2) they introduced two additional worldsheet fields 𝜆/𝜆̄. This leads to
the following sigma model

𝑆 =
1

4𝜋ℓ2
𝑠

∫
𝑑2𝜎

(
𝜕𝑋𝐴′

𝜕𝑋𝐴′ + 𝜆𝜕𝑋 + 𝜆̄𝜕 𝑋̄

)
, (12)

in conformal gauge. For a recent review of the classical and quantum properties of this non-
relativistic string theory, see [19]. The Lagrange multipliers 𝜆/𝜆̄ are one-forms under residual
conformal transformations. It is clear from the splitting into a set of 8 free scalars 𝑋𝐴′ and a (𝛽, 𝛾)
system (𝜆, 𝑋) that the model does not have Lorentzian target space symmetries. In fact, one can
already conclude from the spacetime an-isotropic rescaling in (11) that Lorentzian boosts are broken.
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In this work we assume closed string boundary condition throughout. Upon quantization one can
show that this theory describes a spectrum of string like objects with the manifestly non-relativistic
dispersion relation

2𝑤 𝐻 = 𝑅

(
𝑝2
𝐴′ + oscillators

)
, 𝑛𝑤 = 𝑁 − 𝑁̃ , (13)

where we have inherited the compact direction as 𝑥+ ∼ 𝑥+ + 2𝜋 𝑅. It is furthermore not hard to
see that the 𝑋/𝜆 system contributes a central charge 𝑐𝜆𝑋 = 2. Hence one can see that the critical
dimension is 𝐷 = 26 as in relativistic string theory. For superstrings an analogous reasoning leads
to a critical dimension 𝐷 = 10, see [20].

For positive winding number 𝑤 > 0, equation (13) is the dispersion relation of a massive
Galilean particle in 𝐷 = 25/9 dimensions of mass 𝑤/𝑅. Unwound string states with 𝑤 = 0 lead
to 𝑝𝐴′ = 0 and are thus not propagating. These modes are somewhat exotic and do not appear as
asymptotic states. They do, however, appear as poles of the form (𝑝2

𝐴′+· · · ) in scattering amplitudes
and give a physical interpretation to the instantaneous Newtonian force experienced by the winding
states. For this reason, they have been referred to as Galilean gravitons [5] in the past.

We see that the spectrum formula of the DLCQ (8) and that of the Gomis-Ooguri string theory
(13) are exchanged by exchanging the momentum and the winding quantum number while at the
same time inverting the radius 𝑅 ↔ ℓ2

𝑠/𝑅. At the level of the physical modes this manifests in the
statement that the relevant asymptotic states have (𝑛 ≠ 0, 𝑤 = 0) in the DLCQ and (𝑛 = 0, 𝑤 ≠ 0)
in Gomis-Ooguri string theory. Formally, the T-duality rules are equivalent to expressions (9)
with 𝑅𝑠 → 𝑅. We note that the rule 𝑅 ↔ ℓ2

𝑠/𝑅 does not have the same level of importance as the
analogous rule in relativistic string T-duality. Since the parameter 𝑅 is not an invariant quantity, one
cannot interpret this rule as a statement about physical lengths—and thus the small scale structure
of spacetime.

3. Longitudinal T-Duality

In this section, we generalize the longitudinal T-duality relation to arbitrary backgrounds. That
is, we will derive T-duality rules between NS backgrounds with a lightlike isometry and torsional
string Newton-Cartan geometry on the other side. The latter is the appropriate geometric structure to
which non-relativistic string theory couples. It is manifestly non-Lorentzian and can be motivated
and derived in many ways. See [9, 21–23] for some approaches involving gauging procedures
and singular limits. Here we will take longitudinal T-duality to be fundamental and deduce the
geometric properties via the non-relativistic Buscher rules.

To do so we consider an NS background with a spatial isometry 𝑘 = 𝜕𝑦 and send the value of
the associated Kaluza-Klein scalar to zero parametrically. That is, we introduce a parameter 𝜀 and
rescale 𝐺̃𝑦𝑦 = (𝜀/T )2. We take T to be finite in the limit 𝜀 → 0 which effectively shrinks the
size of the compact direction to zero. The T-dual Kaluza-Klein scalar 𝐺𝑦𝑦—and thus the T-dual
radius—diverge in the 𝜀 → 0 limit. Hence we can see the above as a decompactification limit.
For related remarks, see [24]. Apart from the Kaluza-Klein modulus, one should also consider the
other fields on both sides of the Buscher rules (10). It is not hard to see that the above prescription
leads to unacceptable consequences. As an example, one finds that 𝐺̃𝑦𝑖 → 0 and 𝑔̃𝑠 → 0. It seems
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hard to make sense out of a T-duality relation where the number of classical degrees of freedom
does not match on both sides of the duality. Instead, we make an attempt to regularize this limit of
a vanishing Kaluza-Klein scalar as follows

𝐺𝑦𝑦 = 𝜀−2 T 2 , 𝐺𝑦𝑖 = −𝜀−2T 𝑛𝑖 , 𝐵𝑦𝑖 = 𝜀−2 T 𝜏𝑖 + 𝑚𝑖 ,

eΦ = 𝜀−1 e𝜙 , 𝐺𝑖 𝑗 = 𝜀−2 (−𝜏𝑖𝜏𝑗 + 𝑛𝑖𝑛 𝑗) + 𝑒𝑖 𝑗 , 𝐵𝑖 𝑗 = 2 𝜀−2 𝜏[𝑖𝑛 𝑗 ] + 𝑏𝑖 𝑗 . (14)

Note that this should be seen as a convenient redefinition of the fields, that can be iteratively derived
by requiring finiteness under 𝜀 → 0. In particular, the number of independent field components
is the same in both bases: (𝐺𝜇𝜈 , 𝐵𝜇𝜈 ,Φ) � (𝜏𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑒𝑖 𝑗 , 𝑚𝑖 𝑗 ,T , 𝜙).2 It is not hard to see
that this choice indeed tames the divergences occurring in the Buscher rules (10) in a convenient
parametrization as follows

𝐺̃𝑦𝑦 =
(
𝜀/T

)2
, e−Φ̃ = T e−𝜙 ,

𝐺̃𝑦𝑖 = T −1𝜏𝑖 +
(
𝜀/T

)2
𝑚𝑖 , 𝐺̃𝑖 𝑗 = 𝑒𝑖 𝑗 + 2T −1𝑚 (𝑖𝜏𝑗) +

(
𝜀/T

)2
𝑚𝑖𝑚 𝑗 , (15)

𝐵̃𝑦𝑖 = −T −1𝑛𝑖 , 𝐵̃𝑖 𝑗 = 𝑏𝑖 𝑗 − 2T −1 𝑚 [𝑖𝑛 𝑗 ] .

The tilded fields parametrize a geometry with a spatial isometry of size 𝑅̃𝑠 ∼ 𝜀. In the strict limit this
turns into a null isometry and maps it to a geometry that is parametrized by (T , 𝜏𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑒𝑖 𝑗 , 𝜙, 𝑏𝑖 𝑗).
However, we note that the right-hand side of (15) is developing a Stückelberg symmetry in the strict
limit 𝜀 → 0. Concretely, the expressions are invariant when scaling (T , 𝜏𝑖 , 𝑛𝑖 , e𝜙) with the same
factor. This indicates that we have overparametrized our fields when choosing the definitions (14).
In hindsight, this is not surprising since the 𝜀 → 0 eliminates one field component—namely the
Kaluza-Klein scalar itself—and should thus also eliminate one field component on the T-dual side.
The theory chooses to realize this by having an additional gauge symmetry emerge in the limit.
Conversely, the overparametrization can be taken care of by gauge fixing, e.g., by setting T = 1,
yielding the following finite T-duality rules

𝑑𝑠2 = 2 𝜏
(
𝑑𝑦 + 𝑚

)
+ 𝑒𝑖 𝑗𝑑𝑥

𝑖𝑑𝑥 𝑗 , 𝐵 = 𝑛 ∧
(
𝑑𝑦 + 𝑚

)
+ 𝑏 , Φ̃ = 𝜙 . (16)

Here, we defined the one-forms 𝜏 = 𝜏𝑖𝑑𝑥
𝑖 , 𝑚 = 𝑚𝑖𝑑𝑥

𝑖 , 𝑛 = 𝑛𝑖𝑑𝑥
𝑖 , and the two-form 𝑏 = 1/2 𝑏𝑖 𝑗𝑑𝑥𝑖∧

𝑑𝑥 𝑗 . The gauge fixed result is equivalent to the non-relativistic Buscher rules derived in [22] with 𝜀 =

𝜔−1. The explicit results given there differ from the ones given here due to an overparametrization
on the Gomis-Ooguri side. This again leads to a Stückelberg symmetry. Fixing this symmetry by
imposing 𝑚𝜇

𝐴 = 0 leads to results that are in agreement with eq. (16). It is furthermore not hard
to see that the Buscher rules (16) are invariant under transformations of the form

𝛿𝑚𝑖 = −𝜆𝑖 , 𝛿𝑒𝑖 𝑗 = 2 𝜏(𝑖𝜆 𝑗) , 𝛿𝑏𝑖 𝑗 = 2 𝑛 [𝑖𝜆 𝑗 ] . (17)

This can be recognized as a local realization of Galilean boosts with 𝜏𝑖𝜆𝑖 = 0 for consistency.
Accordingly, we remark that (𝜏𝑖 , 𝑚𝑖 , 𝑒𝑖 𝑗) parametrizes a Newton-Cartan type geometry in D=25/9—
coupled to matter (𝑛𝑖 , 𝑏𝑖 𝑗 , 𝜙). See [7] for more details and references. It is possible to uplift this

2For this counting to work out it is important to observe that 𝑒𝑖 𝑗 only has 36 instead of the expected 45 components
due to a constraint coming from the invertibility relation of the ten-dimensional metric.
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structure to a D=26/10 structure known as a torsional string Newton-Cartan geometry, parametrized
by (𝜏𝜇𝐴, 𝑒 (𝜇𝜈) , 𝑏 [𝜇𝜈 ] , 𝜙), where 𝐴 = 0, 1. This geometry describes the general background structure
of Gomis-Ooguri string theory. It realizes local Galilean boost symmetries 𝜆𝜇

𝐴 as follows

𝛿𝑒𝜇𝜈 = −2 𝜂𝐴𝐵𝜏(𝜇𝐴𝜆𝜈)
𝐵 , 𝛿𝑏𝜇𝜈 = 2 𝜖𝐴𝐵𝜏[𝜇𝐴𝜆𝜈 ]

𝐵 . (18)

Assuming a longitudinal spatial isometry 𝑘 with 𝜏0(𝑘) = 0, 𝜏1(𝑘) = 1, and 𝑒(𝑘, 𝑘) = 0 one can
find a Kaluza-Klein like embedding of the Newton-Cartan fields appearing in eq. (16). Part of the
higher dimensional boosts are fixed by the Ansatz and 𝜆𝑖

0 = 𝜆𝑖 . For more details, see [7].

4. Supersymmetry

In this section, we will address whether longitudinal T-duality can be extended to include target
space supersymmetry. We will consider the simplest setting, i.e., a T-duality relation between
the minimal non-relativistic supergravity multiplet presented in [8] and the DLCQ of N = (1, 0)
supergravity. The latter denotes the minimal multiplet in ten dimensions, realizing 16 left-handed
Majorana-Weyl supercharges. The field content contains the NSNS fields (𝐺, 𝐵,Φ), a left-handed
gravitino Ψ, and a right-handed dilatino Λ. We will comment on other multiples, including the
coupling to vectors and maximal supersymmetry in the conclusions 5. The main point of this section
is the following: the presence of a lightlike isometry is not naturally consistent with supersymmetry
and leads to a multiplet of constraints. More concretely, this can be seen by noting that a nonzero
lightlike Killing vector 𝑘𝜇𝜕𝜇 = 𝜕𝑦 implies that 𝐺𝑦𝑦 = 0, which is at odds with supersymmetry since

𝛿𝜀𝐺𝑦𝑦 = 𝜀 Γ+Ψ𝑦 is not zero identically . (19)

Requiring consistency with supersymmetry leads to another condition that has two possible solu-
tions: either a breaking of supersymmetry Γ+𝜀 = 0 to eight supercharges or a constraint on the
gravitino Γ+Ψ𝑦 = 0. Either choice is viable, in principle. In this work, we will focus on the second
option. It should be seen as part of a multiplet of constraints C = 0 of which 𝐺𝑦𝑦 = 0 is the
lowest-lying component. In the following, we will determine the full multiplet of constraints C = 0.
The resulting multiplet can formally be defined by imposing the constraints on the N = (1, 0)
multiplet; schematically

N =
(
1, 0

)
0 ≡ N =

(
1, 0

) ���
C=0

. (20)

The existence of an isometry implies that the structure of the multiplet is effectively nine-dimensional.
We will establish below that this multiplet is T-dual to the supersymmetric version of the Gomis-
Ooguri background, which we derived from a limit in [8]. T-duality in this setting can be defined
as a matching of the reduction of the ten-dimensional theories in nine dimensions [25]. This is
made manifest by adapting the ten-dimensional fields of the N = (1, 0) multiplet in a so-called
null reduction [26–28]. Here, we will not attempt to give explicit results and instead refer the
reader to [7, 8] for details. Under the assumption of unbroken supersymmetry, we are led to the
fermionic constraints Γ+Ψ𝑦 = 0, as shown above. Consequently, one should also vary this under
supersymmetry, and vary the result of that, etc. This procedure could stop after any number of
steps. This is equivalent to determining the multiplet of constraint C iteratively. A prior, it is not

8
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guaranteed whether or not this system becomes overconstrained—i.e., whether or not C turns out
to be the full multiplet so that N = (1, 0)0 is an empty theory. In the case of N = (1, 0), it turns
out that C is remarkably short:

C =
{
𝐺𝑦𝑦 ,Ψ𝑦 , 𝑍𝑖 𝑗

}
= 0 . (21)

For more details of this calculation, see [7]. In the above, we have defined

𝑍𝜇𝜈 = 𝜕[𝜇𝑍𝜈 ] , with 𝑍𝜇 = 𝑘𝜈
(
𝐺𝜈𝜇 − 𝐵𝜈𝜇

)
, (22)

satisfying 𝑘𝜇𝑍𝜇 = 0 and hence also 𝑘𝜇𝑍𝜇𝜈 = 0. Using this we find that C contains 1 bosonic
algebraic, 16 fermionic algebraic, and 36 bosonic differential constraints. It is not hard to verify the
multiplet structure of C since the one-form 𝑍𝜇 turns out to be a supersymmetry singlet.

The differential constraint deserves special attention since it is a bosonic constraint that does,
however, not appear in the purely bosonic target space description. Among other things, it implies
that not all solutions of NS gravity with a null isometry are also solutions of the supersymmetric
N = (1, 0)0 theory. We have shown in [7] that the fundamental string solution solves the constraint—
whereas the anti-fundamental string does not. To see that, it is useful to rewrite the constraint 𝑍𝑖 𝑗 = 0
as a condition on the Killing spinor: (∇𝜇 𝛿𝜈

𝜌 + H𝜇𝜈
𝜌)𝑘𝜌 = 0, where H = d𝐵.

Having spelled out some qualitative features of the N = (1, 0)0 multiplet, let us turn to the T-
dual supergravity multiplet. For reasons that will become clear later we will refer to this as DSNC−

supergravity. The bosonic sector is spanned by the background fields of Gomis-Ooguri string
theory: (𝜏𝜇𝐴, 𝑒 (𝜇𝜈) , 𝑏 [𝜇𝜈 ] , 𝜙) and the fermionic sector is described by two left-handed gravitini
(𝜓𝜇+, 𝜓𝜈−) and two right-handed dilatini (𝜆+, 𝜆−). The sub-labels ± indicate a projection along Γ01

that turns out to give a convenient representation of boosts 𝜆𝜇
𝐴. For more details and conventions,

see [8]. There, we constructed the DSNC− multiplet via a limiting procedure analogous to the one
defined by (14). It turns out that this leads to a non-zero term at order O(𝜀−2) in the expansion of
the supersymmetry rules. Naively this implies that the non-relativistic limit 𝜀 → 0 is ill-defined.
This inconsistency can be lifted by

1. Imposing a constraint on the intrinsic torsion of the geometry 𝑇
𝜌
𝜇𝜈𝜏𝜌

− = 0, or

𝜏− ∧ d𝜏− = 0 , (23)

which corresponds to 36 independent first order differential constraints on the longitudinal
Vielbein 𝜏𝜇

−. Alternatively, it can be expressed as 𝜏𝐴′𝐵′− = 0 and 𝜏𝐴′−− = 0. Torsional string
Newton-Cartan geometries [9, 23] with this additional constraint are referred to as self-dual
dilatation invariant string Newton-Cartan geomtries—or, DSNC− for short. This constraint
is consistent with all the symmetries, in particular with supersymmetry since 𝛿𝜖 𝜏𝜇

− = 0.
In [10], the same constraint has played a central role when studying the (bosonic) n-loop
quantum effective action of Gomis-Ooguri string theory.

2. Including additional symmetries 𝛿𝐷 , 𝛿𝑆 , and 𝛿𝑇 , which we refer to as anisotropic dilatations
and fermionic 𝑆- and 𝑇-symmetries, respectively. All of these additional symmetries act as
local shifts on some fields. These additional symmetries give 1 bosonic and 8 + 8 fermionic
gauge symmetries. They are absent in the relativistic parent theory and imply that the

9
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multiplet is effectively smaller since the local shift symmetries can be gauge fixed by setting
some field components to constant values.

The fact that the divergent limit can be regularized and made sense of is highly non-trivial and a
genuine feature of ten-dimensional N = (1, 0) supergravity. We have shown in [8] that the same
limit is well-defined at the level of the equations of motion—which are conjectured to capture the
universal sector of the beta functions of non-relativistic superstring theory.

Let us remark that the additional ingredients are in one-to-one correspondence to the multiplet
of constraints (21) in the N = (1, 0)0 theory. In particular, the additional gauge symmetries are
T-dual to the vanishing of certain (fermionic) field components:

DSNC− N = (1, 0)0
1 : 𝛿𝐷 𝐺𝑦𝑦 = 0 ,
8 + 8 : 𝛿𝑆 + 𝛿𝑇 Ψ𝑦 = 0 ,
36 : 𝜏− ∧ d𝜏− = 0 , 𝑍𝑖 𝑗 = 0 . (24)

These observations show that the T-duality between the DSNC− and the N = (1, 0)0 multiplets can
be extended beyond the bosonic sector. For a more explicit derivation, see [7].

5. Conclusions

In this article, we have reviewed some recent developments in non-relativistic string theory. Rather
than defining the target space theory through some decoupling limit as in [4, 6], we have taken the
T-duality relation to the discrete lightcone quantization of string theory to be fundamental. Defining
the DLCQ of string theory as a regularized limit of a vanishing Kaluza-Klein scalar, we have re-
derived the longitudinal Buscher rules of [6]. Furthermore, we have argued how to extend these
results to include target space supersymmetry. The existence of a lightlike isometry is a constraint
on the supergravity multiplet. For this to be consistent with supersymmetry, it has to be extended
to a multiplet of constraints C. This multiplet can be found iteratively by varying the null-isometry
condition 𝐺𝑦𝑦 = 0. The resulting supergravity is denoted as N = (1, 0)0. We have also sketched
some of the non-trivial properties of the T-dual multiplet [8] known as DSNC− supergravity.

So far, we have only studied the minimal supergravity setting in ten dimensions. This is unsat-
isfactory when having string theory applications in mind since it does not describe the low-energy
dynamics of any superstring theory. Relatedly, it is unsatisfactory since N = (1, 0) supergravity
has gravitational anomalies [29]. For these reasons, one should see the results presented in this
work (and [8]) as an intermediate step toward non-Lorentzian heterotic and type IIA/B supergravity.
Phrased more positively, one can see the results presented here as the common sector of all possible
multiplets in ten dimensions. Following the logic of this article, we propose the following approach
for constructing non-Lorentzian versions of the five supergravities in ten dimensions corresponding
to analogous superstring theories, as follows:

1. Analyze the respective multiplets of constraints of which 𝐺𝑦𝑦 = 0 is the leading component.
We do not expect the structure of the constraint multiplet to change significantly when
coupling to Yang-Mills, that is C𝐻𝐸𝑇 ∼ C as given in (21). Maximal supersymmetry, on

10
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0R

0R

CR

CRLR 0R

LR

LR

Figure 1: Schematic diagram of possible embeddings in eleven dimensions. The central two-torus has one
lightlike circle. Correspondingly, one can either reduce over a spatial circle (CR) or the null circle (0R).
Accordingly, one can get either one of two theories in ten dimensions: IIA and M0. Both are T-dual in
the sense that they reduce to the same nine-dimensional theory, namely the DLCQ of IIA theory which we
denote here as IIA0. The theory can be uplifted to give two different ten-dimensional theories. First, one
should be able to uplift it to the IIB theory along the lines of [25]. Here, we implicitly assume that there is a
unique type II theory IIA0 =IIB0. Secondly, and more interestingly, one should be able to uplift the theory in
a longitudinal circle (LR) on a Gomis-Ooguri background that we tentatively call stringy IIB theory. Starting
from the DLCQ of the type IIB theory, on the other hand (denoted as IIB0), we can apply longitudinal
T-duality to obtain a IIA version of Gomis-Ooguri backgrounds, here denoted as SIIA. It is conceivable that
this supergravity multiplet can be uplifted over a longitudinal spatial circle (LR) to eleven dimensions. This
theory is denoted as MM (for membrane M-theory) and has a rank-3 distribution. The bosonic sector of this
theory was studied in [33].

the other hand, is expected to lead to an enlarged set of constraints C𝐼 𝐼 𝐴/𝐵. In particular, we
expect more than double the number of components in (21). The DLCQ of type IIA/B would
then be formally defined as constrained multiplets IIA/B0 = IIA/B|C𝐼 𝐼 𝐴/𝐵=0. An iterative
approach to determining C𝐼 𝐼 𝐴/𝐵 should, in principle, be possible—albeit tedious. It would
be interesting to see whether the multiplets of constraints can be determined directly in a
superspace formalism along the lines of [30, 31] by finding a superspace version of 𝐺𝑦𝑦 = 0.

2. Use the longitudinal T-duality rules to determine the structure of the supersymmetric version
of the Gomis-Ooguri backgrounds. The correct rules for the Ramond-Ramond fields can,
for example, be derived by considering the non-relativistic limit of D-brane actions [32].
Alternatively, one can perform the null-reduction to nine dimensions and uplift the result to a
Gomis-Ooguri background with a longitudinal spatial circle, following the approach of [25].
This idea should also be applicable to heterotic supergravity.

These steps seem straightforward in principle, and we hope to present an explicit construction
soon. Assuming that the above works out, one can construct the non-Lorentzian versions of the five
supergravities in ten dimensions. It is then natural to ask about duality relations between the different
theories. As shown above, the respective multiplets of constraints encode crucial information about
the supergravity multiplets. One question that comes to mind is how these different multiplets fit
together. For example, we speculated above that C𝐼 𝐼 𝐴/𝐵 ⊃ C ∼ C𝐻𝐸𝑇 and expect that C𝐼 𝐼 𝐴 is
related to C𝐼 𝐼 𝐵 through a T-duality relation. It would be fascinating to figure out in detail how

11
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the information about the multiplets of constraints is realized in a non-Lorentzian web of dualities.
This is interesting from the point of view of non-Lorentzian string theory—but at the same time,
it also asks fundamental questions about the consistency of DLCQ prescription in the presence of
target space supersymmetry.

Relatedly, it is tempting to wonder about an embedding in an eleven-dimensional theory.
Note that we see type IIA superstrings/supergravity as the dimensional reduction over a circle.
Furthermore, we define the DLCQ of IIA superstrings/supergravity as the lightlike reduction to
nine dimensions. Hence, the DLCQ of type IIA is formally defined as the torus compactification
from eleven to nine dimensions where one direction is lightlike. This way of phrasing the DLCQ of
IIA suggests that there should also be another definition: consider the DLCQ of eleven-dimensional
supergravity and reduce this theory over another spatial circle. See the tentative diagram 1. It
would be very interesting to see whether this intuitive construction can be made precise.

The DLCQ of the IIA theory is conjectured to be T-dual to a stringy version of the type
IIB theory. Similarly, we expect the DLCQ of the type IIB multiplet to be T-dual to a stringy
version of the type IIA multiplet. It would be interesting to see whether the latter can be embedded
as a membrane geometry in eleven dimensions, relating to the work of [33]. An exciting and
complementary view on many of these questions is provided by the study of D-brane actions in
[32].
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