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1. Introduction

Superstring theories provide consistent quantum unification of all fundamental interactions
including gravity. One of the main features of these models is the presence of an infinite number
of massive high spin excitations (HS) whose interactions are consistently described by the softness
of the high-energy behaviour of the amplitudes in these theories. In field theory, on the other hand,
the study of particles with high spin and their coupling with electromagnetic fields goes back to
Fierz and Pauli [1] in the late 30’ and Belifante [2] in the 50’ who proposed the value 𝑔 = 1/𝑠
for the gyromagnetic ratio of particles with spin 𝑠. This value is consistent with the minimal
coupling substitution but disagrees with the experimental value of the g-factor of the W-bosons
and from the high-energy behaviour of the Compton scattering which suggests the value 𝑔 = 2 for
all the spinning particles [3]. The disagreement is cured by adding non-minimal couplings among
high spins states and the field strength of the gauge field. The coefficient of the first non-minimal
coupling in the derivative expansion of the effective action determines the gyromagnetic ratios of
the HS-states. The value 𝑔 = 2 also emerges in many other different contexts in both string [4–7]
and field theories [8–11]. Moreover, it turns out to be the only consistent value possible with the
propagation on constant electromagnetic backgrounds [12–16] . There are some exceptions to this
natural value. These arise for HS-states coupled with gauge fields resulting from the Kaluza-Klein
(KK) compactification of higher-dimensional gravity or supergravity theories[17, 19] as well as
string theories defined in different backgrounds [20–24].

In these notes motivated by these results, we analyse gyromagnetic factors for massive spin-
ning excitations charged with respect to Abelian gauge fields arising from the compactification of
the graviton and anti-symmetric field. Two completely uncorrelated approaches are followed to
obtain the gyromagnetic factors, namely, soft theorems and explicit string calculations in Bosonic,
Heterotic and Type II theories.

Soft theorems are universal relations between amplitudes with and without massless particles
carrying low or soft momentum [25–28]. They assert that amplitudes with a massless particle having
low momentum are obtained by acting, with suitable operators, on amplitudes with only hard or
finite energy states. Recently, from different perspectives such as asymptotic symmetries [27, 29],
gauge [30, 31] and diffeomorphism [32–34] invariance, it has been shown that the soft graviton and
photon behaviour are universal at leading order in momentum expansion. The universality extends
to subleading order only for gravitons in spacetime dimensions larger than four. In d=4 dimensions,
the presence of infrared divergences in loop amplitudes modifies the soft graviton behaviour adding
logarithmic corrections to the soft factors [35]. Lower-order soft graviton and gluon operators
depend on the angular momentum and spin operators. Therefore, it is not surprising that one can
read the gyromagnetic ratios of the finite energy states from the subleading soft expansions. Thus,
these restrictions would arise from the IR behaviour of the theory as opposed to the high-energy
Compton scattering proposed by Weinberg to restrict the gyromagnetic ratios. In other words, the
IR constraints also put restrictions on the gyromagnetic ratios which are consistent with the results
coming from the UV constraints.

We consider the subleading soft graviton theorem in arbitrary 𝑑 + 1 spacetime dimensions,
with 𝑑 ≥ 4, and with only gravitons as finite energy states. We compactify the theory on a one-
dimensional circle. Compactifying the higher dimensional graviton yields a lower dimensional
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graviton, a massless vector, a scalar, and an infinite tower of massive KK spin-2 states. From the
𝑑 + 1 dimensional soft graviton theorem we, therefore, obtain the vector and scalar soft theorems
in 𝑑-dimensions, with massless and massive spin-2 particles as hard states. The case 𝑑 = 11 is
special because the resulting compactified ten-dimensional theory is the Type IIA superstring theory
with the vector being identified with the Ramond-Ramond 1-form field, the scalar being identified
with the dilaton and the KK-massive modes of the metric with bound states of D0 branes[36, 37].
In this case, we generalise the soft theorem of the dilaton with hard states carrying KK-charges,
and we obtain a new soft theorem for the RR 1-form. These new results are also confirmed by
explicit amplitude calculations performed in the 𝑑-dimensional theory obtained by compactifying
the 𝑑 + 1 Einstein-Hilbert action and keeping the entire tower of massive KK-excitations. The KK
spin-2 modes are described by the Fiertz-Pauli action, whose interaction with the Abelian vectors
is introduced by the minimal coupling procedure[38–40]. As mentioned above, this procedure is
ambiguous and requires the presence of an unfixed gyromagnetic coupling between the vector and
the massive spin-2 fields. This arbitrary coupling is determined by comparing explicit amplitude
calculations, involving a vector interacting with an arbitrary number of massive spin-2 particles,
with the corresponding results obtained by compactifying the soft theorem. The two approaches
are consistent only with the value g=1 of the gyromagnetic ratios of the massive KK-states. This
result confirms previous calculations made in different contexts[17, 19, 41].

The above discussion was for the supergravity theories. However, we can also consider string
theory which describes a consistent theory of quantum gravity and is formulated in the critical space-
time dimensions. The extra dimensions are compactified to define the theories in the observed 𝑑 = 4
space-time dimensions. The compactification introduces new gauge fields arising from massless
higher dimensional tensors with one index along the non-compact directions. We shall consider the
𝑈 (1) gauge fields emerging from the toroidal compactification of the graviton and Kalb-Ramond
fields. Massive string states having winding and KK charges, couple minimally and non-minimally
with these fields. These interaction terms can be determined either from the string Hamiltonian
compactified on a generic toroidal background or from the momentum expansion of compactified
three-point amplitude involving an NS-NS massless field and two massive spinning particles. Both
approaches have been followed and a universal formula for the gyromagnetic ratio has been derived
in Bosonic, Heterotic and Type II theories under toroidal compactification. It turns out that states
with only KK or winding charges have gyromagnetic ratios 𝑔 = 1. Mixed symmetry HS-states laying
on the first Regge-trajectory and described by Young-Tableau diagrams with two rows, display two
gyromagnetic couplings (one for each row) which are completely determined by their left and right
spins and momenta.

The results discussed in this proceeding are extensively analysed in [18, 42] with all the details
on their derivation.

The rest of the draft is organized as follows. In section 2, we introduce our conventions for the
gyromagnetic factor and some useful notation for performing the string calculations. In section 3,
we consider the compactification of d+1 dimensional soft graviton theorem and derive the lower
dimensional vector soft behaviour which is needed to discuss the gyromagnetic ratios. In section 4,
we describe the gyromagnetic ratios of massive particles which arise in toroidal compactification
of string theories. We end with conclusion in section 5.
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2. Gyromagnetic Ratios and Symbols in String Theory

The gyromagnetic ratios are related to the couplings that appear in the effective actions giving
the interaction between massive spinning particles and 𝑈 (1) gauge fields. To lowest order in the
derivative expansion, these couplings are described by the action

V𝐴ΦΦ ∼ 𝑖𝑞𝐴𝜇 [Φ∗ · (𝜕𝜇Φ) − (𝜕𝜇Φ∗) · Φ] + 𝑖𝛼
2
𝐹𝜇𝜈 (Φ𝜇 · Φ𝜈) , (1)

where the “ · ” denotes the contraction among the indices of the fields. The gyromagnetic ratios can
be obtained from the ratio of the coefficient 𝛼 that appears in front of the first non-minimal term
and the charge appearing in the minimal coupling

𝑔 ∼
����𝛼𝑞 ���� . (2)

In 4-dimensions all the HS-states are classified as totally symmetric fields and they can be conve-
niently represented using the generating function notation Φ(𝑢) = 1

𝑠!Φ𝜇 (𝑠)𝑢
𝜇 (𝑠) . The generic non

minimal coupling is then written in the form

V𝑁.𝑀.
𝐴ΦΦ

=
𝑖𝛼

4
𝐹𝜇𝜈 ⟨Φ|𝑆𝜇𝜈 |Φ⟩ , (3)

with the inner product given by

⟨Φ1 |Φ2⟩ = exp
(
𝜕𝑢1 · 𝜕𝑢2

)
Φ1(𝑢1)Φ2(𝑢2)

���
𝑢𝑖=0

. (4)

Here, we have introduced the totally symmetric product of 𝑢’s as 𝑢𝜇 (𝑠) = 𝑢𝜇1 · · · 𝑢𝜇𝑠 and the spin
operator with 𝑆𝜇𝜈𝑢 = 𝑢𝜇𝜕𝜈𝑢 −𝑢𝜈𝜕

𝜇
𝑢 . The generalization of the coupling to a generic mixed symmetry

state is now straightforward; a generic mixed-symmetry state as a generating function of auxiliar
variables 𝑢𝑖 , turns out to be

Φ(𝑢𝑖) =
1

𝑠1! · · · 𝑠𝑛!
𝜙𝜇1 (𝑠1 )𝜇2 (𝑠2 ) ...𝜇𝑛 (𝑠𝑛 )𝑢

𝜇1 (𝑠1 )
1 · · · 𝑢𝜇1 (𝑠𝑛 )

𝑛 , (5)

supplemented by the the irreducibility conditions 𝑢𝑖 · 𝜕𝑢𝑖+𝑘Φ = 0 for all 𝑖 and 𝑘 > 0. For each
auxiliary variable, it is convenient to define a spin operator

𝑆
𝜇𝜈
𝑢𝑖 = 𝑢

𝜇

𝑖
𝜕𝜈𝑢𝑖 − 𝑢

𝜈
𝑖 𝜕

𝜇
𝑢𝑖 . (6)

Using the above notation, the natural generalization of the gyromagnetic couplings involving mixed
symmetry states can be written as

V𝐴ΦΦ =
𝑖

4
𝛼 𝐹𝜇𝜈

〈
Φ

��� 𝑛∑︁
𝑗=1
𝑆
𝜇𝜈

𝑗︸  ︷︷  ︸
𝑆𝜇𝜈

���Φ〉
, (7)

with 𝑆𝜇𝜈 being the total spin. This formalism is easily translated to represent HS-states in string
theory. In Bosonic string, for example, a generic closed string state is the factorized product of the
left and right sectors according to

|𝜙⟩ = N0 𝜙𝜇1 (𝑠1 ) ...𝜇𝑝 (𝑠𝑝 ) �̄�1 (𝑠1 ) ...�̄�𝑞 (𝑠𝑞 ) 𝛼
𝜇1 (𝑠1 )
−𝑛1 . . . 𝛼

𝜇𝑝 (𝑠𝑝 )
−𝑛𝑝

�̄�
�̄�1 (𝑠1 )
−�̄�1

. . . �̄�
�̄�𝑞 (𝑠𝑞 )
−�̄�𝑞 |0, 0̄, 𝑝⟩ (8)
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with 𝛼 being the string oscillators acting on the ground state of the theory. By introducing auxiliary
commuting variables 𝑤𝑖 , known as symbols, in analogy with the generating function notation, we
represent the generic closed string state in the form

|𝜙⟩ → 1
𝑠1! · · · 𝑠𝑝!𝑠1! · · · 𝑠𝑝!

𝜙𝜇1 (𝑠1 ) ...𝜇𝑝 (𝑠𝑝 ) �̄�1 (𝑠1 ) ...�̄�𝑞 (𝑠𝑞 ) 𝑤
𝜇1 (𝑠1 )
𝑛1 . . . 𝑤

𝜇𝑝 (𝑠𝑝 )
𝑛𝑝

�̄�
�̄�1 (𝑠1 )
�̄�1

. . . �̄�
�̄�𝑞 (𝑠𝑞 )
�̄�𝑞

.

(9)

A generic mixed symmetric is then written in the compact notation as follows

1
𝑠1! · · · 𝑠𝑝!𝑠1! · · · 𝑠𝑝!

(𝑢𝑛1 · 𝑤𝑛1)𝑠1 . . . (𝑢𝑛𝑝
· 𝑤𝑛𝑝

)𝑠𝑝 (�̄��̄�1 · �̄��̄�1)𝑠1 . . . (�̄��̄�𝑞 · �̄��̄�𝑞 )𝑠𝑞 , (10)

where we have decomposed the string polarization tensor in the product of the left and right
components and represented it in terms of the auxiliary variables 𝑢𝑖 , i.e. 𝜙𝜇1 (𝑠1 ) ...𝜇𝑝 (𝑠𝑝 ) =

𝑢
𝜇1 (𝑠1 )
1 · · · 𝑢𝜇1 (𝑠𝑛 )

𝑛 with a similar expression for the right sector. In these notes, we will use this
convenient representation of the string states which is easily extended to the Fock-space of the
physical states of the Heterotic and closed superstring theory.

3. Compactification of Soft Graviton Theorem

Gravitational soft theorems are relations between 𝑀𝑛+1 amplitudes, involving a graviton with
small momentum 𝑞 and 𝑛 arbitrary particles with finite momentum 𝑝𝑖 (𝑖 = 1, · · · , 𝑛), and 𝑀𝑛-
amplitudes involving only finite energy particles. The 𝑛 + 1 amplitudes, in this infrared regime, are
obtained by acting with soft operators 𝑆𝑚, 𝑚 = −1, 0, 1, on amplitudes without the soft particle

M𝑛+1(𝑞; {𝑝𝑖}) = 𝜅𝑑+1

[
𝑆 (−1) + 𝑆 (0) + 𝑆 (1)

]
M𝑛 ({𝑝𝑖}) +𝑂 (𝑞2) . (11)

Here 𝜅𝑑+1 is the 𝑑 +11 dimensional gravitational coupling constant , 𝜖𝑀𝑁 = 𝜖𝑁 𝜖𝑀 , 𝑀, 𝑁 = 0 . . . 𝑑,
denotes the polarization of the soft graviton decomposed in its left and right components. In these
notes, we shall be interested in the leading and subleading soft operators whose explicit forms are

𝑆 (−1) = 𝜖𝑀𝑁

𝑛∑︁
𝑖=1

𝑝𝑀
𝑖
𝑝𝑁
𝑖

𝑝𝑖 · 𝑞
, 𝑆 (0) = 𝜖𝑀𝑁

𝑛∑︁
𝑖=1

𝑞𝑃𝑝
𝑀
𝑖
𝐽𝑁𝑃
𝑖

𝑝𝑖 · 𝑞
(12)

with 𝐽𝑀𝑁
𝑖

the total angular momentum operator acting on the polarization tensors of finite energy
states inside 𝑀𝑛. It is given by the sum of orbital and spin angular momentum

𝐽𝑀𝑁
𝑖 = 𝐿𝑀𝑁

𝑖 + 𝑆𝑀𝑁
𝑖 ; 𝐿𝑀𝑁

𝑖 = 𝑝𝑀𝑖
𝜕

𝜕𝑝𝑖𝑁
− 𝑝𝑁𝑖

𝜕

𝜕𝑝𝑖𝑀
. (13)

The spin angular momentum operator 𝑆𝑀𝑁
𝑖

takes different representations depending on what finite
energy state it acts upon. The leading and the subleading soft operators 𝑆 (−1) and 𝑆 (0) are universal
while the sub-subleading operator 𝑆 (1) , whose explicit form is given in [32], is theory dependent.
In Heterotic and Bosonic string theory, for example, it is modified by terms proportional to 𝛼′, the
string slope [43, 44] due to the presence of couplings 𝜙𝑅2.

1Here, we consider the case 𝑑 ≥ 4 , to neglect issues related to the logarithmic corrections to the soft factors.
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The universality of the first two terms in equation (11) allows us to apply the theorem to an
arbitrary 𝑑 + 1 dimensional theory of gravity and for amplitudes with generic finite energy states
even though we shall only consider finite energy gravitons . We compactify the theory on a circle
of radius 𝑅𝑑 parametrized by the coordinate 0 ≤ 𝑧 ≤ 2𝜋𝑅𝑑 . The dimensional reduction determines
three different soft-factorization properties, namely, those of the 𝑑-dimensional graviton, scalar 𝜙
and vector field 𝐴𝜇. These states are those emerging from the dimensional reduction of the 𝑑 + 1
dimensional graviton polarization tensor according to the identifications

𝜖𝜇𝜈 (𝑝𝜇) =
𝜅𝑑

𝜅𝑑+1

(
𝜀𝜇𝜈 (𝑝𝜇) +

2𝛼
√

2
𝜙(𝑝𝜇) 𝜂⊥𝜇𝜈

)
+𝑂 (𝜅2

𝑑)

𝜖𝜇𝑧 (𝑝𝜇) =
𝜅𝑑√

2𝜅𝑑+1
𝜀𝜇 (𝑝𝜇) +𝑂 (𝜅2

𝑑) ; 𝜖𝑧𝑧 (𝑝𝜇) = 2𝛽
𝜅𝑑√

2𝜅𝑑+1
𝜙(𝑝𝜇) +𝑂 (𝜅2

𝑑) . (14)

Here, 𝜀𝜇, 𝜇 = 0 . . . 𝑑 − 1, denotes the polarization of the vector field in 𝑑 dimension and (on-shell)

𝜂⊥𝜇𝜈 ≡ 𝜂𝜇𝜈 − 𝑝𝜇𝑝𝜈 − 𝑝𝜈 𝑝𝜇 ; 𝑝 · 𝑝 = 1 ; 𝑝𝜇𝜂⊥𝜇𝜈 (𝑝) = 0 ; 𝑝2 = 0 . (15)

The constants 𝛼 and 𝛽 are chosen to be

𝛼2 =
1

2(𝑑 − 2) (𝑑 − 1) , 𝛽 = −(𝑑 − 2)𝛼 . (16)

These values guarantee that the compactification of the Einstein-Hilbert action gives the 𝑑-
dimensional action in the Einstein frame [39]. The compactification also produces an infinite
tower of massive spin-2 states which are the Fourier modes of the 𝑑-dimensional fields charged
with respect to the gauge field and with 𝐾𝐾 charges given by 𝑒𝑝 = 𝑛

𝑅𝑑
where 𝑝 ∈ Z.

In the following, we aim to get the gyromagnetic factors of the 𝐾𝐾-massive spin-2 states and,
therefore, we discuss only the soft theorem of the vector field. The scalar soft theorem is analysed
in detail in [18]. The compactification of equation (11) gives the following soft behaviour, valid up
to subleading order, of the vector [18]

M𝐴
𝑛+1 =

√
2 𝜅𝑑

𝑛∑︁
𝑖=1

𝜀𝜇

[
𝑒𝑝𝑖 𝑝

𝜇

𝑖

𝑝𝑖 𝑞
+
𝑒𝑝𝑖 𝑞𝜈

(
2 𝐿𝜇𝜈

𝑖
+ 𝑆𝜇𝜈

𝑖

)
2𝑝𝑖 𝑞

+
𝑞𝜈 𝑝

𝜎
𝑖
(Σ𝜎𝜌)𝜇𝜈𝑆𝑧𝜌𝑖
2𝑝𝑖 𝑞

]
M𝑛 . (17)

Here, 𝑒𝑝𝑖 are the KK-charges of the finite energy states, 𝐿𝑖 and 𝑆𝑖 are the 𝑑-dimensional angular
and spin operators, respectively and (Σ𝜎𝜌)𝜇𝜈 ≡ 𝜂𝜎𝜇 𝜂𝜌𝜈 − 𝜂𝜎𝜈 𝜂𝜌𝜇. 𝑆𝜌𝑧

𝑖
is the 𝑑 + 1 dimensional

spin operator with one index extended along the compact direction. Its action on the massive fields
annihilates them because it gives polarizations which are eaten by the 𝑑-dimensional massive spin-2
particles .

The soft-theorem for vector field in interaction with such KK-states can also be obtained
from explicit amplitude calculations starting from the Fierzi-Pauli action minimally coupled with
an Abelian 𝑈 (1) gauge field. This is the action describing the massive spin-2 states which can
be obtained, for example, from the compactification of the Einstein-Hilbert action keeping all
the massive modes. The explicit expression of such action is given in[39]. Here we only give
the interaction vertex among a vector, with momentum 𝑞 and polarization 𝜀𝜇, and two massive
particles, having momenta and polarizations (𝑘2, 𝜙𝜇𝜈) and (𝑘3, 𝜙

∗
𝜌𝜎). This vertex is necessary to
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𝑝𝑖 + 𝑞

𝜀 𝑞
𝜈 , 𝑞

𝜙
∗
𝜇𝜈
, 𝑝

𝑖

𝑀𝑛𝑘
𝜖
𝑞
𝜈 , 𝑞

𝑁

Figure 1: Diagrams collecting the interactions of a gauge field with 𝑛 KK-particles.

compute the Feynmann diagrams contributing to the tree-level scattering of a vector in interaction
with an arbitrary number of HS-particles (see Fig.1):

𝑉𝜏;𝜌𝜎;𝜇𝜈 (𝑞, 𝑘3, 𝑘2) =
𝑖

2
𝑒𝑞

[
𝑉

(0)
𝜏;𝜌𝜎;𝜇𝜈 (𝑞, 𝑘3, 𝑘2) + 𝑔𝑉 (𝑔)

𝜏;𝜌𝜎;𝜇𝜈 (𝑞, 𝑘3, 𝑘2)
]

(18)

with2

𝑉
(0)
𝜏;𝜌𝜎;𝜇𝜈 =

1
2
(𝜂𝜌𝜇𝜂𝜎𝜈 + 𝜂𝜌𝜈𝜂𝜎𝜇 − 2𝜂𝜌𝜎𝜂𝜈𝜇) (𝑘2 − 𝑘3)𝜏 + 𝜂𝜏{𝜌𝜂𝜇𝜈 (𝑘2 − 𝑘3)𝜎}

+𝜂𝜏{𝜇𝜂𝜌𝜎 (𝑘2 − 𝑘3)𝜈} − 𝜂𝜏{𝜌 (𝜂𝜎}𝜈𝑘2𝜇 + 𝜂𝜎}𝜇𝑘2𝜈) + 𝜂𝜏{𝜇 (𝑘3𝜌𝜂𝜈}𝜎 + 𝜂𝜈}𝜌𝑘3𝜎) (19)

and

𝑉
(𝑔)
𝜏;𝜌𝜎;𝜇𝜈 = 𝜂𝜏{𝜇 (𝑞𝜎𝜂𝜈}𝜌 + 𝑞𝜌𝜂𝜈}𝜎) + 𝑞𝜌𝜂𝜎𝜇) − 𝜂𝜏{𝜎 (𝑞𝜇𝜂𝜌}𝜈 + 𝑞𝜈𝜂𝜌}𝜇) . (20)

The vertex contains an arbitrary gyromagnetic ratio 𝑔 which takes into account the ambiguity, due to
the non-commutativity of the covariant derivatives, in applying the minimum coupling substitution
[40]. The on-shell amplitude gets contribution from the two diagrams shown in Fig.1. The exchange
diagram and the contact term 𝑁

𝜇

𝑛+1(𝑞, 𝑝𝑖 , 𝑝𝑛) are given by:

𝑀𝑛+1 ≡ 𝜀𝜏 (𝑀𝑛+1)𝜏 (𝑞, 𝑝1 . . . , 𝑝𝑛)

= 𝜀𝜏 𝜙∗𝜌𝜎
𝑛∑︁
𝑖=1

[
𝑉𝜏;𝜌𝜎;𝛼𝛽 (𝑞, 𝑝𝑖 ,−𝑝𝑖 − 𝑞)𝐷𝛼𝛽𝜇𝜈 (−𝑝𝑖 − 𝑞)𝑀𝜇𝜈 (𝑝1, . . . 𝑝𝑖 + 𝑞 . . . , 𝑝𝑛)

]
+ 𝜀𝜇𝑁𝜇

𝑛+1(𝑞, 𝑝𝑖 , 𝑝𝑛) (21)

with 𝐷𝛼𝛽𝜇𝜈 being the propagator of the massive spin two field whose explicit expression is, for
example, given in [40]. By imposing the current conservation condition [30]

(𝑝𝑖 + 𝑞)𝜇 𝑀𝜇𝜈 (𝑝1, . . . 𝑝𝑖 + 𝑞, . . . 𝑝𝑛) = (𝑝𝑖 + 𝑞)𝜈 𝑀𝜇𝜈 (𝑝1, . . . 𝑝𝑖 + 𝑞, . . . 𝑝𝑛) = 0, (22)

and taking the external particles on-shell, it is possible to determine the contact contribution
𝑁

𝜇

𝑛+1(𝑞, 𝑝𝑖 , 𝑝𝑛) up to O(𝑞) in the expansion of the vector momentum, obtaining

𝑀𝑛+1 = 𝜀𝜇

𝑛∑︁
𝑖=1

𝑒𝑞𝑖

[
𝑝
𝜇

𝑖

𝑝𝑖𝑞
+

𝑞𝜌

2𝑝𝑖𝑞
(𝐿𝜇𝜌

𝑖
+ 𝑔𝑆𝜇𝜌

𝑖
) +

𝑞𝜌

2𝑝𝑖𝑞
𝐿
𝜇𝜌

𝑖

]
𝑀𝑛 (𝑝𝑖) +𝑂 (𝑞) . (23)

This equation is consistent with the result given in equation (17), specialized to finite energy massive
spin-2 particles, (in which case, the last term in the right-hand side of (17) vanishes) provided we
take the gyromagnetic ratio to be 𝑔 = 1.

2Here, we have introduced the notation {𝑎, 𝑏} = 1
2 (𝑎 𝑏 + 𝑏 𝑎).
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4. Gyromagnetic Ratios from Superstring Theories

String theories with their infinite towers of massive high spin excitations provide a quantum
description of high spin theories with an infinite number of massive fields. They are formulated
in higher-space time dimensions where the conformal anomalies cancel and the compactification
of the extra dimensions is required to connect the theory to the real world. The compactification
breaks the higher dimensional Lorentz group and creates new gauge fields arising from higher
dimensional tensors transforming as vectors under the unbroken Lorentz group. In the following,
we shall consider the toroidal compactification of Heterotic, Type II and Bosonic string theories
and focus our analysis on the 𝑈 (1) gauge fields emerging from the dimensional reduction of the
graviton and Kalb-Ramond state. KK-modes of the HS-string states will be charged with respect to
these Abelian fields and we aim to derive an expression of their gyromagnetic ratios.

The compact manifold that we introduce to reduce the space dimensions is the 𝐷-dimensional
torus viewed as the quotient space 𝑇𝐷 = R𝐷

2𝜋Λ𝐷
with Λ𝐷 a 𝐷 dimensional lattice. A complete set

of linearly independent vectors on the lattice is denoted by e𝑖 ≡ {𝑒𝑎
𝑖
} which also define the torus

metric

𝑔𝑖 𝑗 = 𝑒
𝑎
𝑖 𝑒

𝑏
𝑗 𝛿𝑎𝑏 ; 𝑖, 𝑗 = 1, . . . 𝐷 ; 𝑎, 𝑏 = 1, . . . 𝐷 . (24)

The dual lattice is introduced through the dual base vectors e∗𝑖 = {𝑒∗𝑖𝑎 } satisfying the relations

𝑒∗𝑖𝑏 𝑒
𝑎
𝑖 = 𝛿𝑎𝑏 ; 𝑒𝑎𝑖 𝑒

∗ 𝑗
𝑎 = 𝛿

𝑗

𝑖
;

𝐷∑︁
𝑎=1

𝑒
∗ 𝑗
𝑎 𝑒∗𝑖𝑎 = 𝑔𝑖 𝑗 (25)

We consider the propagation of strings in a generic non-constant background with metric and
anti-symmetric field expressed by the compactification ansatz

𝐺𝑀𝑁 =

(
𝜂𝜇𝜈 + 𝑔𝑘𝑙𝐴𝑘

𝜇 (𝑋𝜇) 𝐴𝑙𝜈 (𝑋𝜇) 𝐴𝜇 𝑗 (𝑋𝜇)
𝐴𝑖𝜈 (𝑋𝜇) 𝑔𝑖 𝑗

)
; 𝐵𝑀𝑁 =

(
0 𝐵𝜇 𝑗 (𝑋𝜇)

𝐵𝑖𝜈 (𝑋𝜇) 𝐵𝑖 𝑗

)
; (26)

with 𝜇, 𝜈 = 0, . . . 𝑑 − 𝐷 − 1, 𝑑 being the critical dimensions of the string theory and 𝑔𝑖 𝑗 and 𝐵𝑖 𝑗

constant moduli of the torus𝑇𝐷 . 𝐴𝜇𝑖 (𝑋𝜈) and 𝐵𝜇𝑖 (𝑋𝜈) are the lower dimensional𝑈 (1) gauge fields
which are assumed to have constant field strengths 𝐹𝐴

𝜇𝜈; 𝑖 and 𝐹𝐵
𝜇𝜈; 𝑖 , respectively in the forthcoming

discussion.
The Bosonic string coordinates 𝑋 𝑖 (τ, 𝜎), 𝑖 = 1, . . . 𝐷, extend along the compact directions of

the manifold where they satisfy the periodic identifications

𝑋 𝑖 (τ, 𝜎 + ℓ) = 𝑋 𝑖 (τ, 𝜎) + 2𝜋
√
𝛼′ 𝑛𝑖 , 𝑛𝑖 ∈ Z . (27)

The ℓ can be either 𝜋 or 2𝜋 depending on the adopted conventions and 𝛼′ is the string slope.
In this compact background, we consider the (1, 1) supersymmetric sigma model in ten di-

mensions. This corresponds to Type II superstring theory. It is described by the world-sheet
action:

𝑆 =
1

4𝜋𝛼′

∫
𝑑2𝜎

[
4𝐺𝑀𝑁𝜕+𝑋

𝑀𝜕−𝑋
𝑁 + 4𝐵𝑀𝑁𝜕+𝑋

𝑀𝜕−𝑋
𝑁 + 2𝑖𝐺𝑀𝑁𝜓

𝑀
+ ∇̃−𝜓

𝑁
+

+ 2𝑖𝐺𝑀𝑁𝜓
𝑁
− ∇̃+𝜓

𝑀
− + 1

2
�̃�𝑀𝑁𝑃𝑄𝜓

𝑀
+ 𝜓

𝑁
+ 𝜓

𝑃
−𝜓

𝑄
−

]
. (28)
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Here, 𝜓±(τ, 𝜎) are the world-sheet supersymmetric partners of the bosonic coordinates and the
covariant derivatives ∇̃± are defined by

∇̃±𝜓
𝑀
∓ = 𝜕±𝜓

𝑀
∓ + Γ̃𝑀

± 𝑃𝑄𝜓
𝑃
∓ 𝜕±𝑋

𝑄 , Γ̃𝑀
±𝑃𝑄 = Γ𝑀

𝑃𝑄 ± 1
2
𝐻𝑀

𝑃𝑄 (29)

The Γ̃𝑃
±𝑀𝑁

are the connections with a totally antisymmetric torsion. The �̃�𝑀𝑁𝑃𝑄 are given by

�̃�𝑀𝑁𝑃𝑄 = 𝑅𝑀𝑁𝑃𝑄 + 1
2
∇𝑃𝐻𝑀𝑁𝑄 − 1

2
∇𝑄𝐻𝑀𝑁𝑃 + 1

4
𝐻𝑀𝑅𝑃𝐻

𝑅
𝑄𝑁 − 1

4
𝐻𝑀𝑅𝑄𝐻

𝑅
𝑃𝑁 . (30)

The information on the gyromagnetic ratios of the massive string states charged with respect to the
emerging Abelian gauge fields is encoded in the part of string Hamiltonian which is linear in the
fields 𝐴𝜇𝑖 and 𝐵𝜇𝑖. For convenience, we separate such contributions into two classes of interactions.
Those giving the interaction of one gauge field with the world-sheet fields:

𝐻1 =
1

2𝜋𝛼′

∫ ℓ

0
𝑑𝜎

[
𝐴𝜇𝑖

{
−(2𝜋𝛼′)2Π𝜇Π𝑖 − (2𝜋𝛼′)Π𝜇𝐵𝑖

𝑗𝜕𝜎𝑋
𝑗 + 𝜕𝜎𝑋 𝑖𝜕𝜎𝑋

𝜇

+ 𝑖

2

(
𝜓
𝜇
+ 𝜕𝜎𝜓

𝑖
+ − 𝜓𝜇

−𝜕𝜎𝜓
𝑖
− + 𝜓𝑖

+𝜕𝜎𝜓
𝜇
+ − 𝜓𝑖

−𝜕𝜎𝜓
𝜇
−

)}
+ 𝐵𝜇𝑖

{
(2𝜋𝛼′)Π𝜇𝜕𝜎𝑋

𝑖 + (2𝜋𝛼′)Π𝑖𝜕𝜎𝑋
𝜇 + 𝑔𝑖 𝑗𝐵 𝑗𝑘𝜕𝜎𝑋

𝑘𝜕𝜎𝑋
𝜇
}]

(31)

and the terms describing the interactions among the world-sheet and the field strengths of the
background gauge fields:

𝐻2 = − 𝑖
4

∫ ℓ

0
𝑑𝜎

[
𝐹𝐴
𝜇𝜈; 𝑖

{
Π𝜇Ψ𝜈𝑖

+ − Π𝑖Ψ
𝜇𝜈
+ − 1

2𝜋𝛼′
(
𝐵𝑖

𝑗𝜕𝜎𝑋
𝑗Ψ

𝜇𝜈
+ + 𝜕𝜎𝑋𝜇Ψ𝜈𝑖

− − 𝜕𝜎𝑋 𝑖Ψ𝜇𝜈
−

)}
+𝐹𝐵

𝜇𝜈;𝑖

{
−2Π𝜇Ψ𝜈𝑖

− − Π𝑖Ψ𝜇𝜈
− + 1

2𝜋𝛼′
(
−𝐵𝑖

𝑗𝜕𝜎𝑋
𝑗Ψ𝜇𝜈

− + 2𝜕𝜎𝑋𝜇Ψ𝜈𝑖
+ + 𝜕𝜎𝑋 𝑖Ψ

𝜇𝜈
+

)}]
(32)

where, we have defined Ψ𝑀𝑁
± = 𝜓𝑀

+ 𝜓
𝑁
+ ± 𝜓𝑀

− 𝜓
𝑁
− . The expectation value of the interacting

Hamiltonian between two generic string states of mass 𝑚 is given by

⟨Φ|H𝐼 |Φ⟩ = ⟨Φ| 𝑙

2𝜋𝛼′𝑚
𝐻1 |Φ⟩ + ⟨Φ| 𝑙

2𝜋𝛼′𝑚
𝐻2 |Φ⟩ (33)

where the normalization factor 𝑙
2𝜋𝛼′𝑚 is introduced to relate the string Hamiltonian to that of charged

massive point particles [41]. Φ is a generic physical state of the closed superstring spectrum. By
using the expression of the string fields given in terms of creation an annihilation oscillators and
introducing the constant field strength of the𝑈 (1)-gauge fields, one gets

⟨Φ|H𝐼 |Φ⟩ = − 1
2𝑚

𝐹𝐴
𝜇𝜈; 𝑖

〈
Φ

���12𝐿𝜇𝜈
(
𝑝𝑖𝑅 + 𝑝𝑖𝐿

)
+ 𝑝𝑖𝑅𝑆

𝜇𝜈

𝐿
+ 𝑝𝑖𝐿𝑆

𝜇𝜈

𝑅

���Φ〉
− 1

2𝑚
𝐹𝐵
𝜇𝜈; 𝑖 ⟨Φ|1

2
𝐿𝜇𝜈

(
𝑝𝑖𝑅 − 𝑝𝑖𝐿

)
− 𝑆𝜇𝜈

𝑅
𝑝𝑖𝐿 + 𝑆

𝜇𝜈

𝐿
𝑝𝑖𝑅 |Φ⟩ . (34)

In the above expression, 𝑝𝑅 and 𝑝𝐿 are the compact momenta defined in [45], 𝑆𝐿 and 𝑆𝑅 are the
usual left and right spin operators that in superstring theories get contributions from the bosonic
and fermionic world-sheet oscillators [46]. Here, equation (34) has been derived in Type II theory.
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ℓ1 + ℓ2 − 𝑘

𝑘

Figure 2: Young diagram with two rows

However, in [42], they are also studied in the Bosonic and Heterotic sigma-models in arbitrary
compact toroidal backgrounds. It turns out that expression (34) is universal being invariant in form
for all the cases considered, the only difference is in the definition of the spin operators which are
theory dependent.

Gyromagnetic factors, as shown in[42], can also be extracted from 3-point amplitudes involving
a graviton vertex in interaction with arbitrary string states. The compactification of these amplitudes
produces the 𝑈 (1) gauge fields with their minimal and non-minimal couplings described by the
effective action given in equation (1). In this approach the gyromagnetic factors are entirely encoded
in the minimal couplings of the gravity before the compactification. Thus these are unique and
translate into highly constrained electromagnetic couplings in the lower dimensional theory. The
expressions obtained from the amplitude and the Hamiltonian formalism are consistent and give the
following electromagnetic coupling of the HS-states

𝑔𝑎𝐴;𝐵 =
1

𝑝𝑎
𝐿
± 𝑝𝑎

𝑅

〈
Φ

���𝑝𝑎𝑅𝑆𝜇𝜈𝐿 ± 𝑝𝑎𝐿𝑆
𝜇𝜈

𝑅

���Φ〉
. (35)

This expression was originally obtained for Bosonic string in [41] and extended to Heterotic and
Type II string theories in [42].

Eq. (35) is still a formal expression, to extract the explicit value of the gyromagnetic factors. one
needs to consider explicit examples. For 𝑝𝑅 = ±𝑝𝐿 , which corresponds to vanishing Kaluza Klein
(𝑝𝐿 = −𝑝𝑅) or Winding charges (𝑝𝐿 = 𝑝𝑅), the relevant interactions depend on the combination
𝑆 = 𝑆𝐿+𝑆𝑅 which allows us to read off the gyromagnetic ratio for arbitrary elements of the spectrum
regardless of the Young Tableau representation of the string states. The gyromagnetic factor, in this
case, is 𝑔 = 1. This includes the result obtained in Sec.3 for the KK spin-2 particles via the soft
theorem and generalizes previous results obtained in different contexts[17, 19].

The mixed symmetry case is more instructive and is relevant when the non-compact directions
are larger than four. We focus here on the example of two row Young Tableaux which appear in the
first Regge trajectory of the closed Bosonic string. In this case, one starts from the product of two
totally symmetric representations of spins ℓ𝑅 and ℓ𝐿 with ℓ𝑅 ≥ ℓ𝐿 , associated with the first Regge
trajectory of the open string and project onto the irreducible components associated to the tableaux
{ℓ𝑅 + ℓ𝐿 − 𝑘, 𝑘}, 𝑘 ≤ ℓ𝐿 (see Fig. 2). The resulting HS-state, in the compact representation of the
physical states discussed in Section 2, is

𝜙ℓ𝐿+ℓ𝑅−𝑘,𝑘 = Nℓ𝐿+ℓ𝑅−𝑘,𝑘 (𝑢 · 𝑤)ℓ𝐿−𝑘 (𝑢 · �̄�)ℓ𝑅−𝑘 (𝑢 · 𝑤 �̄� · �̄� − 𝑢 · �̄� �̄� · 𝑤)𝑘 . (36)
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The gyromagnetic ratios follow from the following identity which is derived in [42]〈
Φ

���𝑝𝑅𝑆𝜇𝜈𝐿 + 𝑝𝐿𝑆𝜇𝜈𝑅
���Φ〉

=
〈
Φ
��𝛼1𝑆

𝜇𝜈

1 + 𝑎2𝑆
𝜇𝜈

2

��Φ〉
𝑢
, (37)

where on the left hand side we have the closed string-correlator and on the right-hand side we used
the inner-products among Young Tableaux. Here, 𝑆1 and 𝑆2 are defined in equation (6) and

𝛼1 =
(ℓ𝑅 − 𝑘)𝑝𝑅 + (ℓ𝐿 − 𝑘)𝑝𝐿

ℓ𝑅 + ℓ𝐿 − 2
, 𝛼2 =

(ℓ𝑅 − 𝑘)𝑝𝐿 + (ℓ𝐿 − 𝑘)𝑝𝑅
ℓ𝑅 + ℓ𝐿 − 2

. (38)

We can then read off the gyromagnetic ratios for the gauge field 𝐴𝑎
𝜇

𝑔
(𝑎)
1 =

2
𝑝𝑎
𝐿
+ 𝑝𝑎

𝑅

(ℓ𝑅 − 𝑘)𝑝𝑎
𝐿
+ (ℓ𝐿 − 𝑘)𝑝𝑎

𝑅

ℓ𝑅 + ℓ𝐿 − 2𝑘
, (39)

𝑔
(𝑎)
2 =

2
𝑝𝑎
𝐿
+ 𝑝𝑎

𝑅

(ℓ𝑅 − 𝑘)𝑝𝑎
𝑅
+ (ℓ𝐿 − 𝑘)𝑝𝑎

𝐿

ℓ𝑅 + ℓ𝐿 − 2𝑘
, (40)

as well as for the gauge field 𝐵𝑎
𝜇

𝑔
(𝑎)
1 =

2
𝑝𝑎
𝐿
− 𝑝𝑎

𝑅

(ℓ𝑅 − 𝑘)𝑝𝑎
𝐿
− (ℓ𝐿 − 𝑘)𝑝𝑎

𝑅

ℓ𝑅 + ℓ𝐿 − 2𝑘
, (41)

𝑔
(𝑎)
2 =

2
𝑝𝑎
𝐿
− 𝑝𝑎

𝑅

−(ℓ𝑅 − 𝑘)𝑝𝑎
𝑅
+ (ℓ𝐿 − 𝑘)𝑝𝑎

𝐿

ℓ𝑅 + ℓ𝐿 − 2𝑘
. (42)

Similar expressions can be obtained for any mixed-symmetry representation in subleading Regge
trajectories.

5. Conclusions

In these notes, we have discussed interesting relationships emerging from the compactification
of soft theorems and the formulation of string theories in arbitrary compact toroidal backgrounds
determining the electromagnetic couplings of massive spinning particles carrying KK and winding
charges. A universal expression for the gyromagnetic factors has been derived holding for all the
string states minimally coupled to Abelian gauge fields arising from the dimensional reduction
of the graviton and Kalb-Ramond state. The same results have also been obtained from the
compactification of three-point string amplitudes with a massless state of the NS-NS-sector in
interaction with arbitrary massive string states, evaluated in Bosonic, Heterotic and Type II string
theories. These amplitudes have been extensively discussed in [18].

We have followed a top-down approach. From this perspective, the universality of the gy-
romagnetic ratios, for the states carrying only KK-charges, follows both from the universality of
gravitational soft theorems and from their minimal couplings with the higher dimensional gravi-
tons from which they originate via compactification. However, similar considerations cannot be
extended to generic string states, of the models discussed above, carrying also arbitrary winding
charges. For these, the origin of the universality of their couplings with the Abelian gauge fields,
arising from compactification, is still obscure.

It would be interesting to get the same results directly from the lower dimensional higher
spin theories where, by analogy with the case 𝑔 = 2, unitarity based arguments applied to the
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high energy limit of Compton scattering amplitudes could explain the general expression found for
electromagnetic couplings of generic compact HS-states. Furthermore, it would also be compelling
to explore the gyromagnetic couplings of massive spinning particles in other related set-ups such
as orbifold, flux compactification or in ADS backgrounds where these results could be mapped in
some property of the dual CFT correlators, along similar patterns analysed in [47].

Acknowledgement: We would like to thank M. Taronna for the relevant contributions given
to this project and summarized in these notes.
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