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Information of a blackhole inside has a long history. After mentioning the original information
idea, we show that local gauge invariance can connect the inside information to the outside surface
area due to the Sperner’s lemma.
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Figure 1: The allowed mass range of ULA. The lavender area is forbidden. There remains a small gap near
10−32 eV.

1. Introduction

In this talk, I apply a simple mathematical lemma to the blackhole information. The similarities
of blackhole and thermodynamics was noted by Beckenstein [1]:

• A large blackhole increases its mass by absorbing nearby mass that can be compared to
thermodynamic system losing more information as time passes by, and

• Combining two same mass blackholes, the surface area increses, that can be compared to the
entropy increase in thermodynamics.

For a blackhole radius 𝑟ℎ = 2𝐺𝑀 , the surface area is 𝐴 = 16𝜋𝐺2𝑀2. Expressing 𝐴 as a
dimensionless surface area, the information count is

𝑆 =
𝑀2

ir

2𝑀2
P

(1)

where 𝑀P is the reduced Planck mass 2.43 × 1018 GeV and 𝑀ir is the irreducible mass [1, 2].
A massless particle has two polarizations. Massive one has 3. Digitization of mass information

shows that for blackhole mass 𝑀ir = 10−5 gram distinguishes mass information over the particle
information. For our discussion, therefore, we consider blackholes with 𝑀ir > 10−5 gram.

If our visible universe is a blackhole, then the dimensionless information (or { entropy with
𝑘𝐵 = 1) of our universe must be about 10122−123 [3]. Reference [3] excludes the visible universe
filled with primodial blackholes. If a fixed mass is composed of very light particles, it carries
a lot of information. Such a particle ultra light axion (ULA) is some barometer counting a lot
of information. Reference [3] argues that ULA of mass order 10−32 eV can provide the needed
information. Figure 1 shows a small gap allowed near the ULA of mass order 10−32 eV. In this talk,
irrespective of these, we look for a logical possibility, “Can there be a method to see the information
inside a blackhole?”

Suppose that we punctuate a hole of diameter ℓ in the blackhole surface as shown in the LHS
figure of Fig. 2. Waves with wavelength 𝜆 > ℓ cannot come out from the puncture while waves of
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Figure 2: Punctures in the blackhole surface. The RHS figure has five punctures.

𝜆 < ℓ can come out. But we will ignore these quantum waves for getting information inside the
blackhole. We are interested in the flux lines of the classical concept. Flux lines are topological in
the sense that they have no thickness, unlike the quanta.

Consider the dashed surface in the RHS figure of Fig. 2. Follow the flux lines into the
blackhole inside. Then, it is the surface integral of the inside sphere, and by the Gauss theorem we
obtain the total inside charge. So, through this puncture we obtain the information of the blackhole
inside. Following the flux lines to outside, they must land on some place that is possible only on
the surface. Thus, the surface(area) is the information the blackhole possesses inside. This is an
equality, i.e. 𝑀ir becoming the reducible mass 𝑀r [4]. It is because the flux lines can go and come
through the puncture. Blackhole entropy is the afore-mentioned dimensionless surface area, or
information,

𝑆 =
𝑀2

2𝑀2
P

(2)

where 𝑀 is the blackhole mass.

2. Sperner’s Lemma

A triangle is topologically the same as a disk. Anyway a triangle rubber cloth can cover the
surface of a sphere. So does a triangle rubber band. In lattice gauge theory, the line integral is
equivalent to the plaquet which is the surface intgral of 𝐹𝑎

𝜇𝜈𝐹
𝑎 𝜇𝜈 over the surface that is enclosed

by the closed curve. The plaquet is a gauge singlet. Figure 3 shows three line integrals. In this
talk, we are not doing lattice gauge theory. To prove Sperner’s lemma [5], just we integrate some
quantity over the surface enclosed by a closed curve.

Let us consider Fig. 4 which is the triangle (pqr) enclosed by the line integral in Fig. 3 (c).
Within (pqr), the gauge invariance requires that a specific quantity denoted by the adjoint index 𝑎

can pass through this lavender triangle, where 𝑎 is determined once (pqr) is chosen. So, we consider
the surface integral of the quantity,

𝐹𝑎 𝜇𝜈 (3)
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Figure 3: The counterclockwise line integral: (a) circle, (b) square, (c) triangle.

Depending on p, q, and r of Fig. 4, 𝑎 of Eq. (3) is determined. Consider SU(3) gauge theory. Then,
for 𝑝 = 1(or A), q = 2(or B), r = 3(or C), 𝑎 becomes an SU(3) singlet direction.

Figure 4: Triangle (pqr).

An easy proof of Sperner’s lemma [5] is given in [6]. It is also given in [7] together with
the history on the Brouer Fixed Point Theorem since Sperner’s lemma is a part of the theorem.
A large triangle (pqr) is divided into small triangles (ijk), as shown in Fig. 5. At each vertex of
small triangles, an index (i) is assigned. It can be a color index if QCD is considered. Considering
triangles is general enough. For example, if we consider squares, we can divide the squares to
triangles and we go back to the case of Fig. 5. On the outside segment (pq), the vertices of small
triangles contain only p or q. The same assignments apply to the outside segments (qr) and (rp)
also.

The proof is composed of two parts. First count the number of small segments on one outside
segment. Second, count the number of small triangles. Some scores are assigned for the indices
(ij) on the outside segment (pq). Also, some scores are assigned for small triangles (ijk). In these
cases, the scores are shown odd numbers. For example, on (AB) in the LHS of Fig. 5 there are
three (ab), one (aa) and one (bb). For triangle (ABC) in the LHS of Fig. 5 there are three (123),
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Figure 5: Triangle (ABC) is divided into small triangles (ijk). In the LHS figure, there are three (123)’s. In
the RHS figure, a different labeling on BC allows just one (123).

Table 1: Scores for the cases of short segments (ij) and small triangles (ijk).

Base line (AB) Triangle (ABC)
Segments (ij) Score Small triangles (ijk) Score
External (ab) 1 (abc) 1
Internal (ab) 2 every internal (aab) and (abb) 2
All others 0 All others 0

eight (122), five (223), five (112), one (113), two (133), and one (111). For each of these, scores
are given in Table 1. The score of (ab) is 3, and the score of (abc) is 3. So, it is easier to count the
score of triangles by counting the score of (ab) on (AB). It is easy to see that the score of (ab) is
always odd on (AB).

Let us apply the lemma to QCD. There are three colors 1, 2, and 3. The number of triangle
(123) is odd. In Fig. 6, we colored all small triangles according to the colors made by three
fundamental colors of light: red, blue and green. For a typical choice of (ijk), there remains only
one white triangle. For other choices, the number of white triangles must be odd, and removing
triangles pairwise, there remains one white triangle. Then, we go back to Fig. 2, and information
of the blackhole inside is related the surface information of the blackhole.
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Figure 6: Labels 1, 2, 3 are three colors of QCD. Triangle (123) allows only SU(3) invariant quantity, which
is colored white. The other triangles are colored, which is equivalent to saying that only colored fluxes can
pass through those colored triangles.
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