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1. Introduction

The purpose of these notes is two-fold. The first and main purpose is to provide a justification
for the geometric framework which is underlying the higher-spin gravity and gauge theory in the
IKKT matrix model, as described in a series of recent papers [1–5]. We will show that generic
3+1-dimensional space-time geometries can indeed be realized as backgrounds within the IKKT
matrix model, whose structure is that of covariant quantum spaces. This means that there is no
explicit Poisson tensor or 𝐵 field on space-time which would manifestly break Lorentz invariance.

The second purpose of these notes is to summarize and discuss some further implications
of emergent gravity in this framework, in particular the recent 1-loop computation leading to
the Einstein-Hilbert action [5]. The underlying framework is now fully justified by the present
reconstruction of generic geometries.

The main result of the paper is a recipe how to realize or reconstruct generic background
geometries (with trivial topology) in the matrix model, starting from some metric 𝐺𝜇𝜈 on space-
time. Even though this was assumed in the above works, no full justification has been given, and
the statement is in fact rather non-trivial and subtle. It turns out that the geometric reconstruction
works provided we restrict ourselves to a certain regime dubbed weak gravity regime. This basically
means that the gravitational curvature (length) scale should be sufficiently large, bounded by the
geometric mean of a cosmic scale and a UV scale (of noncommutativity). For geometries with
stronger curvature, their reconstruction as covariant quantum space contains significant higher-spin
contributions (or “contaminations”), which goes beyond the classical framework of manifolds.

The matrix models under consideration have an extremely simple structure, given by

𝑆𝑌𝑀 = Tr[𝑇 ¤𝑎, 𝑇
¤𝑏] [𝑇 ¤𝑎′

, 𝑇
¤𝑏′]𝜂 ¤𝑎 ¤𝑎′𝜂 ¤𝑏 ¤𝑏′ + fermions. (1)

Here𝑇 ¤𝑎, ¤𝑎 = 0, ..., 𝐷−1 are a set of hermitian matrices which transform under a global 𝑆𝑂 (𝐷−1, 1)
symmetry acting on the dotted Latin indices, and 𝜂 ¤𝑎 ¤𝑏 can be interpreted as 𝑆𝑂 (𝐷 − 1, 1)- invariant
metric on target space R𝐷−1,1. The models are invariant under gauge transformations

𝑇 ¤𝑎 → 𝑈−1𝑇 ¤𝑎𝑈 . (2)

It is straightforward to include fermions, which is very important for the quantization; in fact we
will require maximal supersymmetry, as realized in the IKKT model [6] with 𝐷 = 10. There is
no a priori notion of space-time or differential geometry; all geometrical structures relevant for the
fluctuations on some given background solution emerge dynamically within the model. We will
show how generic 3+1-dimensional space-time geometries as required for gravity can be realized
as deformations of the covariant cosmic background M̄3,1 introduced in [1].

A general framework which allows to make geometric sense of the matrix model is that of
quantized symplectic spaces. We consider any given set of matrices 𝑇 ¤𝑎 as a matrix configuration.
Since the action is given by the square of commutators, only “almost-commutative” matrix config-
urations are expected to play a significant role at low energies, i.e. matrices whose commutators are
much smaller in some sense than the matrices 𝑇 ¤𝑎. One can then argue on rather general grounds
[7, 8] that such matrix configurations can be interpreted in terms of a quantized symplectic space
(M, 𝜔), where the algebra of functions C(M) is replaced by the operator algebra End(H). More
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precisely, this is expected to hold for some subspace of IR functions and almost-local operators;
more details can be found in [7]. Such functions

Φ ∈ End(H) ∼ 𝜙 ∈ C(M) (3)

can be identified with their classical counterpart via some (de-) quantization map defined via
quasi-coherent states. We will work mostly in the semi-classical regime indicated by ∼, where
commutators can be replaced by Poisson brackets

[Φ,Ψ] ∼ 𝑖{𝜙, 𝜓} (4)

as familiar from quantum mechanics. In particular, the 𝑇 ¤𝑎 can accordingly be viewed as quantized
functions on M, which thereby define an embedding of M into target space:

𝑇 ¤𝑎 ∼ 𝑡 ¤𝑎 : M ↩→ R9,1 . (5)

This suggests to interpret M as a brane, very much like in string theory. However from the point of
view of the physics on M, the 𝑇 ¤𝑎 and their commutators

Θ ¤𝑎 ¤𝑏 := 𝑖[𝑇 ¤𝑎, 𝑇
¤𝑏] ∼ −{𝑇 ¤𝑎, 𝑇

¤𝑏} (6)

play also another role, and can be related to geometric i.e. tensorial objects on M.
The key to understand 𝑇 ¤𝑎 and Θ ¤𝑎 ¤𝑏 is to observe that they generate Hamiltonian vector fields

on M:

𝐸 ¤𝑎 [𝜙] := {𝑇 ¤𝑎, 𝜙} (7)

T ¤𝑎 ¤𝑏 [𝜙] := {Θ ¤𝑎 ¤𝑏, 𝜙} (8)

acting on some test-function 𝜙 ∈ C(M). These vector fields can be made more explicit by
introducing local coordinates 𝑦𝜇 on the 𝑛-dimensional manifold M. Define

𝐸 ¤𝑎𝜇 := {𝑇 ¤𝑎, 𝑦𝜇} , (9)

T ¤𝑎 ¤𝑏𝜇 := {Θ ¤𝑎 ¤𝑏, 𝑦𝜇} ; (10)

their significance will be clarified shortly. We must carefully distinguish the different types of
indices: Greek indices 𝜇, 𝜈 = 1, ..., 𝑛 will denote local coordinate indices on M, which play the
role of tensor indices. Dotted Latin indices ¤𝑎, ¤𝑏 = 0, ..., 9 indicate frame-like indices which are
unaffected by a change of coordinates 𝑦𝜇, but transform under the global 𝑆𝑂 (1, 9) symmetry of the
matrix model. These frame-like indices will be raised and lowered with 𝜂 ¤𝑎 ¤𝑏. In particular, the 𝐸 ¤𝑎𝜇

define vector fields

𝐸 ¤𝑎 = 𝐸 ¤𝑎𝜇𝜕𝜇 (11)

on M, which play a role of a (generalized) frame on M. This will allow to understand the effective
geometry and the gauge theory which arises on M through the matrix model. In particular, we can
recognize the infinitesimal gauge transformations in the matrix model

𝛿Λ𝑇
¤𝑎 = [𝑇 ¤𝑎,Λ] ∼ 𝑖{𝑇 ¤𝑎,Λ} = 𝑖𝐸 ¤𝑎𝜇𝜕𝜇Λ (12)

as generators of a sub-sector of diffeomorphisms on M, namely of the symplectomorphisms.
Finally, the tensor T ¤𝑎 ¤𝑏𝜇 can be recognized as torsion of the Weitzenböck connection associated to
the frame 𝐸 ¤𝑎, which is very useful to describe the non-linear regime of the matrix model in the
semi-classical regime [3, 9].
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Covariant quantum space-time. In the following we will focus on branesM which are embedded
in target space along the ¤𝑎, ¤𝑏 = 0, ..., 3 directions. Then the extra dotted indices will mostly be
ignored, but they play a role once fuzzy extra dimensions are included. However, this assumption
does not mean that M is a 4-dimensional manifold; if M is 4-dimensional, then the Poisson tensor
𝜃𝜇𝜈 on M plays the role of some background tensor on space-time, which is problematic since it
breaks Lorentz invariance. To avoid this we will consider a different class of covariant quantum
spaces, which have the structure of a 𝑆2 bundle over space or space-time

M � 𝑆2 ×M3,1 locally . (13)

The prototype M̄ of such a structure [1] is obtained as a certain projection of the fuzzy hyperboloid
𝐻4

𝑛 [10, 11], and gives rise to a quantum space-time M̄3,1
𝑛 with FLRW geometry and Minkowski

signature. For other examples and approaches to covariant quantum spaces1 see e.g. [11–18].
Let us describe the structure of the covariant quantum space-time M̄ in some detail. In the

semi-classical limit 𝑛 → ∞, M̄ reduces to an 𝑆𝑂 (3, 1)- equivariant 𝑆2 bundle over M̄3,1. The
functions on the 6-dimensional M̄ are generated by generators 𝑥𝜇 which describe M̄3,1, and 𝑡𝜇

which generate the internal sphere 𝑆2. Both sets of generators transform covariantly under 𝑆𝑂 (3, 1),
and satisfy the constraints

𝑥𝜇𝑥
𝜇 = −𝑅2 − 𝑥2

4 = −𝑅2 cosh2(𝜂) , 𝑅 ∼ 𝑟

2
𝑛 (14)

𝑡𝜇𝑡
𝜇 = 𝑟−2 cosh2(𝜂) (15)

𝑡𝜇𝑥
𝜇 = 0 (16)

where indices are contracted with 𝜂𝜇𝜈 . Here 𝜂 ∈ (−∞,∞) plays the role of a FLRW time
parameter, featuring a big bounce at 𝜂 = 0. The space of functions decomposes into a direct sum
End(Hn) = ⊕ Cs of higher spin (hs) modes on M3,1, which in the semi-classical regime can be
organized in terms of totally symmetric traceless tensors

𝜙 (𝑠) = 𝜙𝜇1...𝜇𝑠 (𝑥)𝑡𝜇1 ...𝑡𝜇𝑠

𝜙𝜇1...𝜇𝑠𝑥
𝜇𝑖 = 0 = 𝜙𝜇1...𝜇𝑠𝜂

𝜇𝑖𝜇 𝑗 . (17)

M̄ is a symplectic manifold (which is quantized in the matrix model), and the Poisson tensor
𝜃𝜇𝜈 = {𝑥𝜇, 𝑥𝜈} vanishes upon projection to space-time M3,1. This projection or averaging over 𝑆2

will be denoted by [.]0:

[𝜃𝜇𝜈]0 ≡
∫
𝑆2

𝜃𝜇𝜈 = 0 . (18)

The more generic covariant quantum spaces under consideration here are by definition the same
symplectic bundle M � M̄ , realized as a background of the model through a different, perturbed
embedding map 𝑇 ¤𝑎 ∼ 𝑡 ¤𝑎. More explicitly,

𝑇 ¤𝑎 = 𝑇 ¤𝑎 + A ¤𝑎 ∼ 𝑡 ¤𝑎 + A ¤𝑎 (19)

1The framework of [19] is also somewhat similar to ours, but the bundles under consideration there are vastly bigger.
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where A ¤𝑎 are functions on M or equivalently hs-valued functions on M3,1 which can be expanded
in the form (17). In particular, all these backgrounds are equivalent as symplectic spaces, and we
will always use the standard coordinate functions 𝑥𝜇 and 𝑡𝜇 as for the undeformed background
M̄, with the same the symplectic form or Poisson structure. This is very natural since symplectic
manifolds are rigid, so that any deformation is equivalent (locally, at least) to the undeformed space
by some diffeomorphism.

The purpose of this short paper is to clarify if and under what conditions the higher-spin gauge
theory on M3,1 can be reduced to (or is dominated by) the classical geometry i.e. the lowest spin
sector on M3,1, which is supposed to play the role of physical space-time. More explicitly, we want
to understand if it is consistent to restrict to fluctuations of the form

A ¤𝑎 = A ¤𝑎𝜇 (𝑥) 𝑡𝜇 , (20)

dropping or neglecting higher-spin hs contributions A ¤𝑎𝜇1...𝜇𝑠 𝑡𝜇1 ...𝑡𝜇𝑠 . We will indeed establish
that backgrounds of the structure

𝑇 ¤𝑎 = 𝑇 ¤𝑎𝜇 (𝑥) 𝑡𝜇 (21)

are sufficiently rich to describe generic 3+1-dimensional space-time geometries, and provide a self-
consistent class of configurations in the matrix model where higher-spin corrections are negligible
in the weak gravity regime, to be discussed below.

2. Effective metric and frame on covariant quantum space-time

Now we establish the interpretation of 𝐸 ¤𝑎𝜇 as frame on M3,1. As in any field theory, the
effective metric governing some field or fluctuation mode is encoded in the kinetic term of the action.
Consider a matrix background corresponding to some 2𝑛-dimensional brane M ↩→ R3,1 ⊂ R9,1.
Then the kinetic (=quadratic) term for transversal fluctuations2 in Yang-Mills matrix models has
the structure

𝑆[𝜙] = Tr( [𝑇 ¤𝑎, 𝜙] [𝑇 ¤𝑎, 𝜙]) ∼ − 1
(2𝜋)𝑛

∫
M

Ω {𝑇 ¤𝑎, 𝜙}{𝑇 ¤𝑎, 𝜙}

= − 1
(2𝜋)𝑛

∫
M

Ω 𝜂 ¤𝑎 ¤𝑏𝐸
¤𝑎𝜇𝐸

¤𝑏𝜈𝜕𝜇𝜙𝜕𝜈𝜙

= − 1
(2𝜋)𝑛

∫
M

Ω 𝛾𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 (22)

in the semi-classical regime, recognizing (9). Here Ω is the symplectic volume form on M, and

𝛾𝜇𝜈 := 𝜂 ¤𝑎 ¤𝑏𝐸
¤𝑎𝜇𝐸

¤𝑏𝜈 . (23)

This is clearly the metric determined by the frame 𝐸 ¤𝑎𝜇; however the effective metric acquires an
extra conformal factor, which arises as follows. In the case of covariant quantum spaces under

2The case of tangential fluctuations can be analyzed similar and leads to the same metric.
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consideration, we can assume that M = M̄ = 𝑆2 ×M3,1, with a global 𝑆𝑂 (3) symmetry acting on
𝑆2 and M3,1 simultaneously. Then Ω factorizes into the volume of the 𝑆2 fiber times the effective
density 𝜌𝑀 on space-time M3,1 [1]:

Ω = 𝜌𝑀𝑑4𝑥Ω2 , 𝜌𝑀 =
1

𝑟2𝑅2 sinh(𝜂)
∼ 𝐿−4

NC . (24)

Here 𝑆2 is normalized with volume 4𝜋, and 𝑥𝜇 are the Cartesian coordinates (14) onM3,1 or3 M̄3,1.
𝐿NC characterizes the scale of noncommutativity. Then (22) can be written in a more familiar form

𝑆[𝜙] ∼ − 1
2𝜋2

∫
M

𝜌𝑀 𝛾𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 = − 1
2𝜋2

∫
M3,1

𝑑4𝑥
√︃
|𝐺𝜇𝜈 |𝐺𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 . (25)

We can now read off the effective metric on M3,1:

𝐺𝜇𝜈 = 𝜌−2 𝛾𝜇𝜈 (26)

where 𝜌 is the dilaton, which relates the symplectic density 𝜌𝑀 to the Riemannian density via

𝜌−2
√︃
|𝐺𝜇𝜈 | = 𝜌𝑀 = 𝜌2

√︃
|𝛾𝜇𝜈 | (27)

using
√︁
|𝐺𝜇𝜈 | = 𝜌4√︁|𝛾𝜇𝜈 |. From the string theory point of view, the metric 𝐺𝜇𝜈 can be interpreted

as open-string metric on M3,1. Noting that√︁
|𝛾𝜇𝜈 | = | det 𝐸 ¤𝑎𝜇 | , (28)

the dilaton is determined by the frame as

𝜌2 = 𝜌𝑀 | det 𝐸 ¤𝑎𝜇 | . (29)

It is important that the frame 𝐸 ¤𝑎𝜇 in the present context does not admit local 𝑆𝑂 (3, 1) gauge
transformations acting on ¤𝑎, only global 𝑆𝑂 (3, 1) transformations are allowed. The frame is a
physical object here which is subject to certain constraints (68), and determines not only the metric
but also additional physical information, such as the dilaton 𝜌 and also an axion �̃� (104).

2.1 Cosmological FLRW solution

A special case of the above class of backgrounds is given by

𝑇 𝜇 =
1
𝑅
𝑀𝜇4 ∼ 𝑡𝜇 (30)

where 𝑀𝑎𝑏 are generators of the doubleton representation H𝑛 of so(4, 1) ⊂ so(4, 2). It is easy
to see that 𝑇 𝜇 is a solution of the matrix model in the presence of a suitable mass term; we shall
simply discuss some of its properties here. 𝑇 𝜇 defines a matrix configuration with manifest 𝑆𝑂 (3, 1)
symmetry, which in the semi-classical regime reduces to a 6-dimensional background M̄ which is
an 𝑆2 bundle over M̄3,1. The Cartesian coordinate functions on the base manifold M̄3,1 arise as

𝑋𝜇 = 𝑟 𝑀𝜇5 ∼ 𝑥𝜇 . (31)

3Recall that M = M̄ as a manifold, only the embedding and the frame are deformed.
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We will focus on the semi-classical (Poisson) limit 𝑛 → ∞, working with commutative functions
of 𝑥𝜇 and 𝑡𝜇, but keeping the Poisson structure [., .] ∼ 𝑖{., .}. Then End(Hn) ∼ C reduces to the
algebra of functions on the bundle space M � C𝑃2,1, dropping the bar for now. The sub-algebra
C0 ⊂ C of functions on the base space M3,1 is generated by the

𝑥𝜇 : M3,1 ↩→ R3,1 (32)

for 𝜇 = 0, ..., 3, which are interpreted as Cartesian coordinate functions. The generators 𝑥𝜇 and
𝑡𝜇 satisfy the constraints (16), which arise from the special properties of H𝑛. The 𝑡𝜇 generators
describe the 𝑆2 fiber over M3,1, which is space-like due to (16). Here 𝜂 plays the role of a time
parameter, defined via

𝑥4 = 𝑅 sinh(𝜂) . (33)

Hence 𝜂 = 𝑐𝑜𝑛𝑠𝑡 defines a foliation of M3,1 into space-like surfaces 𝐻3; this can be related to the
scale parameter of a FLRW cosmology with 𝑘 = −1. Note that 𝜂 runs from −∞ to ∞, and the sign
of 𝜂 distinguishes the two degenerate sheets of M3,1 linked by a Big Bounce, cf. [20]. The Poisson
brackets on M̄ are given explicitly by

{𝑥𝜇, 𝑥𝜈} = 𝜃𝜇𝜈 = −𝑟2𝑅2{𝑡𝜇, 𝑡𝜈} ,

{𝑡𝜇, 𝑥𝜈} = 𝑥4

𝑅
𝜂𝜇𝜈 , (34)

where the Poisson tensor 𝜃𝜇𝜈 satisfies the constraints

𝑡𝜇𝜃
𝜇𝛼 = − sinh(𝜂)𝑥𝛼, (35a)

𝑥𝜇𝜃
𝜇𝛼 = −𝑟2𝑅2 sinh(𝜂)𝑡𝛼, (35b)

𝜂𝜇𝜈𝜃
𝜇𝛼𝜃𝜈𝛽 = 𝑅2𝑟2𝜂𝛼𝛽 − 𝑅2𝑟4𝑡𝛼𝑡𝛽 + 𝑟2𝑥𝛼𝑥𝛽 . (35c)

𝜃𝜇𝜈 can be expressed in terms of 𝑡𝜇 as

𝜃𝜇𝜈 =
𝑟2

cosh2(𝜂)

(
sinh(𝜂) (𝑥𝜇𝑡𝜈 − 𝑥𝜈𝑡𝜇) + 𝜖 𝜇𝜈𝛼𝛽𝑥𝛼𝑡𝛽

)
, (36)

and can therefore be viewed as spin 1 valued “function” on M3,1. More generally, the space of
functions C on M decomposes into a tower of higher-spin (hs) valued functions

C =
⊕
𝑠≥0

C𝑠 (37)

on M3,1, where C𝑠 is spanned by irreducible polynomials (17) of degree 𝑠 in 𝑡𝜇. The Poisson
brackets do not respect the decomposition into C𝑠, but the following holds

{C𝑠, 𝑥𝜇} ∈ C𝑠+1 ⊕ C𝑠−1 (38)

noting that 𝜃𝜇𝜈 ∈ C1.
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Frame, metric and torsion on M̄3,1. Following the general strategy discussed above, we can
extract the effective metric on M̄3,1. Frame and metric are obtained in Cartesian coordinates from
(34) as

𝐸 ¤𝑎 = {𝑡 ¤𝑎, ·} = 𝐸 ¤𝑎𝜇𝜕𝜇, 𝐸 ¤𝑎𝜇 = 𝜂 ¤𝑎𝜇 sinh(𝜂) ,

𝛾𝜇𝜈 = 𝜂 ¤𝑎 ¤𝑏𝐸
¤𝑎𝜇𝐸

¤𝑏𝜈 = sinh2(𝜂)𝜂𝜇𝜈 . (39)

Recalling that 𝜌𝑀 ∼ sinh(𝜂)−1, the effective metric on M̄3,1 and the dilaton are obtained as

𝐺𝜇𝜈 = sinh3(𝜂)𝛾𝜇𝜈 = sinh(𝜂)𝜂𝜇𝜈 ,

𝜌2 = sinh3(𝜂) . (40)

This metric is 𝑆𝑂 (3, 1)-invariant with signature (− + ++) and conformal to the induced (“closed-
string”) metric 𝜂𝜇𝜈 . It can be written in standard FLRW form as follows [1]

𝑑𝑠2
𝐺 = 𝐺𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 = −𝑑𝑡2 + 𝑎2(𝑡)𝑑Σ2 (41)

where 𝑑Σ2 is the metric on 𝐻3, and the FLRW time 𝑡 is related to the time parameter 𝜂 via

𝑎(𝑡) ∼ 𝑅 sinh3/2(𝜂) =: 𝐿cosm, 𝑡 → ∞ . (42)

One finds 𝑎(𝑡) ∼ 3
2 𝑡 for late times, and 𝑎(𝑡) ∼ 𝑡1/5 near the Big Bounce. The torsion tensor (10) is

also easily computed using Θ ¤𝑎 ¤𝑏 = 1
𝑅2M ¤𝑎 ¤𝑏, which gives

T ¤𝑎 ¤𝑏𝜇 = {Θ ¤𝑎 ¤𝑏, 𝑥𝜇} = 1
𝑅2

(
𝜂 ¤𝑎𝜇𝑥

¤𝑏 − 𝜂
¤𝑏𝜇𝑥 ¤𝑎) (43)

in Cartesian coordinates 𝑥𝜇. This can be recast as a rank 3 tensor on M3,1 using the frame 𝐸 ¤𝑎𝜇,

T 𝜇
𝜈𝜎 =

1
𝑅2𝜌2

(
𝛿
𝜇
𝜈 𝜏𝜎 − 𝛿

𝜇
𝜎𝜏𝜈

)
(44)

where

𝜏𝜇 = 𝐺𝜇𝜈𝜏
𝜈 = 𝐺𝜇𝜈𝑥

𝜈 = sinh(𝜂)𝜂𝜇𝜈𝑥𝜈 (45)

is a global time-like 𝑆𝑂 (3, 1)-invariant vector field on the FLRW background.

Late-time regime and noncommutativity scale. Consider the regime of late time or large 𝜂, so
that sinh(𝜂) ≫ 1. Then the Poisson tensor 𝜃𝜇𝜈 (36) reduces to

𝜃𝜇𝜈 ∼ 𝑟2

cosh(𝜂) (𝑥
𝜇𝑡𝜈 − 𝑥𝜈𝑡𝜇) , 𝜂 → ∞. (46)

More specifically, consider some given reference point 𝜉 = (𝑥0, 0, 0, 0) on M. Then this reduces to

𝜃0𝑖 𝜉
=

𝑟2

cosh2(𝜂)
sinh(𝜂)𝑥0𝑡𝑖 ∼ 𝑟2𝑅𝑡𝑖 = 𝑂 (𝐿2

NC)

𝜃𝑖 𝑗
𝜉
=

𝑟2

cosh2(𝜂)
𝑥0𝜖0𝑖 𝑗𝑘𝑡𝑘 ∼ 1

sinh(𝜂) 𝑟
2𝑅𝜖 𝑖 𝑗𝑘𝑡𝑘 = 𝑂 (𝑟𝑅) , (47)

8
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where

𝐿2
NC = 𝑅𝑟 cosh(𝜂) (48)

is the effective scale of noncommutativity on M3,1 (cf. (24)), using |𝑡 | ∼ 𝑟−1 cosh(𝜂) (15). Even
though this grows with 𝜂, it is much shorter than the cosmic curvature scale (42):

𝐿2
cosm

𝐿2
NC

∼ 𝑅

𝑟
cosh2(𝜂) ∼ 𝑛 cosh2(𝜂) . (49)

Therefore there is plenty of space for interesting physics in between. In particular, 𝜃0𝑖 ∼ 𝑟2𝑅𝑡𝑖 ≫ 𝜃𝑖 𝑗

at late times 𝜂 ≫ 1. The space-like generators 𝑡𝑖 describe the internal fuzzy sphere 𝑆2
𝑛 with

{𝑡𝑖 , 𝑡 𝑗} 𝜉
= − 1

𝑟2𝑅2 𝜃
𝑖 𝑗 = − 1

𝑅 sinh(𝜂) 𝜖
𝑖 𝑗𝑘𝑡𝑘 (50)

and generate the higher-spin algebra hs. Even though 𝑡0
𝜉
= 0 vanishes as function at 𝜉, it is a

non-trivial generator which induces local time translations via {𝑡0, .}.

2.2 Derivations

Fuzzy hyperboloid 𝐻4
𝑛. The above space-time M3,1 can be understood as a projection of the

fuzzy hyperboloid 𝐻4
𝑛 [10], which can be viewed as a submanifold of R4,1 defined in terms of the 5

generators

𝑋𝑎 = 𝑟 𝑀𝑎5 ∼ 𝑥𝑎 , 𝑎 = 0, ..., 4 (51)

(cf. (31)) which transform as vectors of 𝑆𝑂 (4, 1). The underlying symplectic space is the same
as for M3,1, given by the non-compact projective space C𝑃2,1 which is nothing but (projective)
twistor space, cf. [21]. The Poisson structure on the bundle space allows to define derivations as
follows

ð𝑎𝜙 B − 1
𝑟2𝑅2 𝜃

𝑎𝑏{𝑥𝑏, 𝜙} =
1

𝑟2𝑅2 𝑥𝑏{𝜃
𝑎𝑏, 𝜙}, 𝜙 ∈ C . (52)

They satisfy the useful identities

𝑥𝑎ð𝑎𝜙 = 0 ,

ð𝑎𝑥𝑐 = 𝜂𝑎𝑏 + 1
𝑅2 𝑥

𝑎𝑥𝑏 ,

ð𝑎 ({𝑥𝑎, 𝜙}) = 0 (53)

for any 𝜙 ∈ C. Furthermore, we note that all (even hs-valued) Hamiltonian vector fields on 𝐻4
𝑛 are

tangential to 𝐻4 ⊂ R4,1, due to the identity

𝑥𝑎{𝑥𝑎,Λ} = 0 . (54)

9
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Derivatives on M3,1. Since the algebra of functions C for M3,1 and 𝐻4
𝑛 is the same, we can use

the above derivative operators to define the following derivations on M3,1

𝜕𝜇 := ð𝜇 − 𝑥𝜇
1
𝑥4
ð4 on C . (55)

Using the identities (53), it is easy to show

𝜕𝜇𝑥
𝜈 = 𝛿𝜈𝜇

𝜕𝜇 (𝜌𝑀𝜃𝜇𝜈) = 0 . (56)

This will imply that all Hamiltonian vector fields on M3,1, in particular the frame, are conserved.

3. Divergence-free vector fields on 𝐻4 and M3,1

Divergence-free vector fields will play an important role in the following. Clearly any vector
field𝑉𝑎 on 𝐻4 can be mapped to a vector field𝑉 𝜇 onM3,1, by simply dropping the𝑉4 component (in
Cartesian coordinates). This can be understood as push-forward via a projection [1]. For example,
a Hamiltonian vector field 𝑉𝑎 = {𝑇, 𝑥𝑎} is mapped to 𝑉 𝜇 = {𝑇, 𝑥𝜇} in Cartesian coordinates.
Conversely, any vector field 𝑉 𝜇 on M3,1 can be lifted to 𝐻4 by defining

𝑉4 := − 1
𝑥4
𝑥𝜇𝑉

𝜇 , (57)

which defines a tangential vector field 𝑉𝑎𝑥𝑎 = 0 on 𝐻4. We claim that this correspondence maps
divergence-free vector fields ð𝑎𝑉𝑎 = 0 on 𝐻4 to divergence-free vector fields on M3,1, in the sense
that

𝜕𝜇 (𝜌𝑀𝑉 𝜇) = 0 . (58)

Here 𝜌𝑀 is the symplectic density (24) on M3,1, which in Cartesian coordinates is given by
𝜌𝑀 = sinh(𝜂)−1. In fact the following more general result holds:

Lemma 3.1. Let 𝑉𝑎 be a (tangential) vector field on 𝐻4, i.e. 𝑉𝑎𝑥𝑎 = 0. Then its reduction (or
push-forward) 𝑉 𝜇 to M3,1 satisfies

ð𝑎𝑉
𝑎 = sinh(𝜂)𝜕𝜇 (𝜌𝑀𝑉 𝜇) (59)

Conversely, the lift of 𝑉 𝜇 to 𝐻4 defined by (57) satisfies (59). If 𝑉𝑎 is divergence-free on 𝐻4 i.e.
ð𝑎𝑉

𝑎 = 0, then its reduction to M3,1 satisfies

𝜕𝜇 (𝜌𝑀𝑉 𝜇) = 0 . (60)

In particular, all Hamiltonian vector fields on fuzzy 𝐻4 and M3,1 are conserved, in the sense

ð𝑎{𝑥𝑎, 𝑇} = 0, 𝜕𝜇 (𝜌𝑀 {𝑥𝜇, 𝑇}) (61)

10
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Proof. Using the definition of 𝜕𝜇 (55) on C, we compute

ð𝑎𝑉
𝑎 = ð𝜇𝑉

𝜇 + ð4𝑉
4

=
(
𝜕𝜇 + 1

𝑥4
𝑥𝜇ð4

)
𝑉 𝜇 + ð4𝑉

4

= 𝜕𝜇𝑉
𝜇 + 1

𝑥4
ð4(𝑥𝜇𝑉 𝜇) − 1

𝑥4
𝑉 𝜇ð4𝑥𝜇 + ð4𝑉

4

= 𝜕𝜇𝑉
𝜇 − 1

𝑥4
ð4(𝑥4𝑉

4) − 1
𝑅2 𝑥𝜇𝑉

𝜇 + ð4𝑉
4

= 𝜕𝜇𝑉
𝜇 − 1

𝑥4
𝑉4ð4𝑥4 +

1
𝑅2 𝑥4𝑉

4

= 𝜕𝜇𝑉
𝜇 − 1

𝑥4
𝑉4

= sinh(𝜂)𝜕𝜇
( 1
sinh(𝜂)𝑉

𝜇
)
. (62)

(61) now follows using (53).
□

In particular, the identity (56) can now be understood by noting that𝑉𝑎 = {𝑥𝜈 , 𝑥𝑎} is conserved
on 𝐻4. We also note that the divergence constraint (60) for vector fields on M3,1 can be written
using (27) in covariant form in terms of the effective metric 𝐺𝜇𝜈 on M3,1:

0 = ∇𝜇 (𝜌−2𝑉 𝜇) = 1√︁
|𝐺 |

𝜕𝜇
(
𝜌𝑀𝑉 𝜇

)
(63)

where ∇ is the Levi-Civita connection corresponding to 𝐺.

4. Generic backgrounds from deformed M3,1

Starting from the above FLRW background, we can obtain more generic geometries as defor-
mations, by simply adding fluctuations of the background:

𝑇𝑎 = 𝑇𝑎 + A𝑎 (64)

The fluctuations A𝑎 are any hs valued gauge fields, which are governed by a Yang-Mills gauge
theory. We want to focus in the following on purely geometric deformations, leaving aside the
higher spin modes. We therefore focus on fluctuations of the form

A𝑎 = A𝑎𝜇 (𝑥)𝑡𝜇 (65)

Since we don’t want to restrict ourselves to the linearized perturbations, we simply consider generic
backgrounds of the form

𝑇𝑎 = 𝑇𝑎𝜇 (𝑥)𝑡𝜇 (66)

which include the cosmic background for 𝑇 ¤𝑎𝜇 (𝑥) = 𝜂 ¤𝑎𝜇. As discussed in section 2, such a
background defines a frame (66)

𝐸 ¤𝑎𝜇 = {𝑇 ¤𝑎, 𝑥𝜇} (67)

11
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Taking into account the above results, we conclude that any such frame satisfies the divergence
constraint [2]

𝜕𝜇
(
𝜌𝑀𝐸 ¤𝑎𝜇 ) = ∇𝜇 (𝜌−2𝐸 ¤𝑎𝜇) . (68)

In the following we will establish the converse statement: any frame given by divergence-free vector
fields can indeed be implemented as above, for a suitable background of the form (66). Moreover,
the 𝑇 ¤𝑎 can be computed explicitly. This entails in general some extra hs valued contribution to the
frame, which will be shown to be insignificant in section 5 in the weak gravity regime.

4.1 Reconstruction of divergence-free vector fields

We start by recalling two results given in [4], starting with the Euclidean case:

Lemma 4.1. Given any divergence-free tangential vector field ð𝑎𝑉𝑎 = 0 on 𝐻4 with𝑉𝑎 ∈ C0, there
is a unique generator 𝑇 ∈ C1 such that

𝑉𝑎 = {𝑇, 𝑥𝑎}0 . (69)

This 𝑇 is given explicitly by

𝑇 := −3(□𝐻 − 4𝑟2)−1{𝑉𝑎, 𝑥𝑎} ∈ C1 (70)

where □𝐻 = {𝑥𝑎, {𝑥𝑎, .}}.

However, the Hamiltonian vector field {𝑇, 𝑥𝑎} generated by the above 𝑇 ∈ C1 contains in
general also a spin 2 component

𝑉 (2)𝑎 := {𝑇, 𝑥𝑎}2 ∈ C2 (71)

due to (38). Since ð respects C𝑛, this is also divergence-free ð𝑎𝑉 (2)𝑎 = 0. One might hope that is
can be canceled by adding higher corrections to 𝑇 , but this is not possible in general. Therefore the
above reconstruction of vector fields on 𝐻4 generically leads to extra hs components 𝑉 (2)𝑎 ∈ C2

(71), which however encode the same information as 𝑉𝑎. It remains an open question if these can
be cancelled by allowing higher-spin corrections to the coordinate generators 𝑥𝑎.

We can use this to obtain an analogous “reconstruction” statement on M3,1 [4]:

Lemma 4.2. Given any C0-valued divergence-free vector field 𝑉 𝜇 on M3,1,

𝜕𝜇 (𝜌𝑀𝑉 𝜇) = 0 (72)

there is a generating function 𝑇 ∈ C1 such that

𝑉 𝜇 = {𝑇, 𝑥𝜇}0 . (73)

Explicitly, 𝑇 is given by

𝑇 = −3(□𝐻 − 4𝑟2)−1 ({𝑉 𝜇, 𝑥𝜇} + {𝑉4, 𝑥4}
)

(74)

where

𝑉4 = − 1
𝑥4
𝑥𝜇𝑉

𝜇 . (75)
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This is simply obtained by lifting𝑉 𝜇 to a divergence-free vector field𝑉𝑎 on𝐻4 as in Lemma 3.1.
Then the result (69) on 𝐻4 states that𝑉𝑎 = {𝑇, 𝑥𝑎}0 for some𝑇 ∈ C1, which implies𝑉 𝜇 = {𝑇, 𝑥𝜇}0.
Moreover, 𝑇 is uniquely determined by (73). One can show that this spin 2 component vanishes
only for 𝑇 ∈ so(4, 1).

To summarize, we have shown that every divergence-free vector field on M3,1 can be realized
or reconstructed as Hamiltonian vector field, i.e. 𝑉 𝜇 = {𝑇, 𝑥𝜇}0. However, this entails the presence
of a spin two sibling𝑉 (2)𝜇 = {𝑇, 𝑥𝜇}2 ∈ C2. In other words, the Hamiltonian vector field generated
by 𝑇 ∈ C1 acts on a function 𝜙 = 𝜙(𝑥) ∈ C0 via

{𝑇, 𝜙} = {𝑇, 𝑥𝜇}𝜕𝜇𝜙 = (𝑉 𝜇 +𝑉 (2)𝜇)𝜕𝜇𝜙 . (76)

Both components of 𝑉 𝜇 + 𝑉 (2)𝜇 ∈ C0 ⊕ C2 are isomorphic as so(4, 1) modes. This applies in
particular to the frame in the effective field theory on M3,1 arising from matrix models.

4.2 Reconstruction of classical geometry

Now we apply the results of the previous section to reconstruct a classical frame 𝑒 ¤𝑎𝜇 within
the present framework. This is the basis for describing gravity through the effective metric on a
suitable covariant quantum spaces. It is clear from (68) that only divergence-free frames can be
realized here, but this does not restrict the possible metrics as explained in section 6. Hence for any
divergence-free classical frame 𝑒 ¤𝑎𝜇, there is a unique 𝑇 ¤𝑎 ∈ C1 given by

𝑇 ¤𝑎 = −3(□𝐻 − 4𝑟2)−1 ({𝑒 ¤𝑎𝜇, 𝑥𝜇} + {𝑒 ¤𝑎4, 𝑥4}
)

= −3(□𝐻 − 4𝑟2)−1 ({𝑒 ¤𝑎𝜇, 𝑥𝜇} −
1
𝑥4

{𝑒 ¤𝑎𝜇𝑥𝜇, 𝑥4}
)

(77)

such that

𝑒 ¤𝑎𝜇 = {𝑇 ¤𝑎, 𝑥𝜇}0 . (78)

E.g. for the cosmic frame 𝑒 ¤𝑎𝜇 = sinh(𝜂)𝜂 ¤𝑎𝜇 on M3,1, this gives

𝑒 ¤𝑎4 = −
𝑥𝜇

𝑥4
𝑒 ¤𝑎𝜇 = −1

𝑟
𝑥 ¤𝑎 (79)

and we recover the background (30)

𝑇 ¤𝑎 = −3(□𝐻 − 4𝑟2)−1 ({𝑒 ¤𝑎𝜇, 𝑥𝜇} −
1
𝑟
{𝑥 ¤𝑎, 𝑥4}

)
= 6(□𝐻 − 4𝑟2)−1{sinh(𝜂), 𝑥 ¤𝑎}
= 𝑡 ¤𝑎 (80)

using □𝐻 𝑡
𝜇 = −2𝑟2𝑡𝜇. The generator 𝑇 ¤𝑎 ∈ C1 is uniquely determined by (67). However, the

reconstructed frame will in general contain higher spin hs components {𝑇 ¤𝑎, 𝑥𝜇}+ ∈ C2 due to (38).
Even though these drop out in the linearized theory upon averaging over 𝑆2

𝑛, this is no longer true
in the non-linear regime, and we must clarify the importance of these contributions.
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5. Weak gravity regime and classical geometry

Finally we address the crucial question if and under what conditions the reconstructed frame
can be approximated by its classical component in C0:

𝐸 ¤𝑎𝜇 = {𝑇 ¤𝑎, 𝑥𝜇} ?≈ {𝑇 ¤𝑎, 𝑥𝜇}0 = 𝑒 ¤𝑎𝜇 . (81)

Here {., .}0 denotes the projection of {𝑇 ¤𝑎, 𝑥𝜇} ∈ C0 ⊕ C2 to C0. That approximation was used or
assumed in the description of the non-linear regime of gravity in [2, 3], where the (Weitzenböck)
torsion and the Riemannian curvature are given by expressions of the form

T 𝜎
𝜇𝜈 ∼ 𝑒−1𝜕𝑒

R𝜇𝜈𝜎𝜅 ∼ 𝑒−1𝜕𝑒𝑒−1𝜕𝑒 . (82)

We will show that this holds in the “weak gravity regime”, i.e. as long as the curvature of space-time
is not too large. This is the regime where the frame 𝐸 ¤𝛼𝜇 = {𝑇 ¤𝑎, 𝑥𝜇} can be considered as a function
of 𝑥 only, while the hs contributions are negligible. If the curvature becomes too large, then the hs
components arising from the internal 𝑆2 can no longer be neglected, and the theory becomes more
complicated.

To understand the validity of the approximation (81), consider some generic background

𝑇 ¤𝑎 = 𝑇 ¤𝑎𝜎 (𝑥)𝑡𝜎 ∈ C1 (83)

which defines a frame

𝐸 ¤𝑎𝜇 = {𝑇 ¤𝑎, 𝑥𝜇} = 𝑇 ¤𝑎𝜎{𝑡𝜎 , 𝑠𝜇} + {𝑇 ¤𝑎𝜅 , 𝑥𝜇}𝑡𝜎

= sinh(𝜂)𝑇 ¤𝑎𝜇 + 𝜕𝑇 ¤𝑎𝜎

𝜕𝑥𝜈
𝜃𝜈𝜇𝑡𝜎

=: 𝑒 ¤𝑎𝜇 + 𝛿𝐸 ¤𝑎𝜇 . (84)

This decomposes into a local C0-valued background

𝑒 ¤𝑎𝜇 := sinh(𝜂)𝑇 𝛼𝜇 ∈ C0 (85)

and a perturbation

𝛿𝐸 ¤𝑎𝜇 :=
𝜕𝑇 ¤𝑎𝜎

𝜕𝑦𝜈
𝜃𝜈𝜇𝑡𝜎 ∈ C0 ⊕ C2 . (86)

We would like to understand if and when the latter can be neglected, so that the first term provides
a good approximation:

{𝑇 ¤𝑎𝜎 (𝑥)𝑡𝜎 , 𝑥𝜇}
!≈ 𝑇 ¤𝑎𝜎{𝑡𝜎 , 𝑥𝜇} = 𝑒 ¤𝑎𝜇 (87)

so that

𝐸 ¤𝑎𝜇 = {𝑇 ¤𝑎, 𝑥𝜇} ≈ 𝑒 ¤𝑎𝜇 ∈ C0 . (88)
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This is justified if the derivatives of 𝑇 ¤𝑎𝜅 (𝑥) is sufficiently small, more precisely

𝛿𝐸 ¤𝑎𝜇 |𝑝 =
𝜕𝑇 ¤𝑎𝜎

𝜕𝑥𝜈
𝜃𝜈𝜇𝑡𝜎

!≪ sinh(𝜂)𝑇 ¤𝑎𝜇 = 𝑒 ¤𝑎𝜇 . (89)

Recalling that 𝜃𝜈𝜇 = 𝑂 (𝐿2
NC) = 𝑅𝑟 cosh(𝜂) (47) and 𝑡 = 𝑂 (𝑟−1 cosh(𝜂)) (15), this holds provided

𝑅 cosh2(𝜂) 𝜕𝑇
¤𝑎𝜎

𝜕𝑥𝜈
≪ sinh(𝜂)𝑇 ¤𝑎𝜇 = 𝑒 ¤𝑎𝜇 . (90)

The lhs can be rewritten by the same token in terms of 𝑒, and this condition becomes

𝜕𝑒 ¤𝑎𝜎

𝜕𝑥𝜈
≪ 𝑒 ¤𝑎𝜇

𝑅 cosh(𝜂) (91)

for all components. This means that the torsion and curvature tensors (82) are bounded in Cartesian
coordinates by

T ∼ 𝑒−1𝜕𝑒 ≪ 1
𝑅 cosh(𝜂) (92)

and

R = 𝑒−1𝜕𝑒𝑒−1𝜕𝑒 ≪ 1
𝑅2 cosh2(𝜂)

. (93)

All of these conditions boil down to the requirement that the characteristic length scale 𝜆 of the
geometry (as encoded in the torsion and curvature) should satisfy

𝜆 ≫ 𝐿grav :=
√︁
𝐿cosm𝐿NC = 𝑅 cosh(𝜂) . (94)

This defines the weak gravity regime within the present framework, where the approximation (88)
holds. Then the frame 𝐸 ¤𝛼𝜇 ≈ 𝑒 ¤𝛼𝜇 can be treated as C0-valued, and

{𝑇 ¤𝑎, 𝜙(𝑥)} = 𝐸 ¤𝑎𝜇𝜕𝜇𝜙 ≈ 𝑒 ¤𝑎𝜇𝜕𝜇𝜙 ∈ C0 (95)

is justified. Therefore all the considerations on volume-preserving frames, torsion, and curvature
in [2–5] go through. If we tentatively identify 𝐿NC ≈ 𝐿Pl = 10−35𝑚 with the Planck scale and set
𝐿cosm ≈ 1028𝑚 which is 10 times the size of the visible universe, then 𝐿grav ≈ 10−4𝑚. This regime
leaves plenty of space for interesting gravitational physics, and e.g. event horizons of macroscopic
black holes are easily within this regime by a large margin. Note also that (49)

𝐿cosm
𝐿grav

∼ cosh1/2(𝜂) → ∞ (96)

grows with the cosmic expansion. Moreover, the lower bound 𝐿grav for the weak gravity regime
should be regarded as conservative, since the higher-spin components of the frame at any point 𝑝
can always be locally absorbed in terms of adapted local coordinates4; however it is not known if
this can also be achieved in a finite neighborhood of 𝑝.

4This is not hard to see, and will be published elsewhere.
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To summarize, the characteristic property of the weak gravity regime is that the full frame
𝐸 ¤𝑎𝜇 reconstructed from a classical frame 𝑒 ¤𝑎𝜇 according to section 4.2 approximately reduces to the
classical frame,

𝐸 ¤𝑎𝜇 = {𝑇 ¤𝑎, 𝑥𝜇} ∈ C ≈ 𝑒 ¤𝑎𝜇 ∈ C0 . (97)

This means that such geometry can indeed be faithfully realized in the matrix model, and all the stan-
dard geometric considerations go through, including the discussion in [2–5] on volume-preserving
frames, torsion, and curvature. In particular, the gauge transformations (12) on covariant quantum
spaces include all volume-preserving diffeos generated by divergence-free vector fields 𝜉𝜇 ∈ C0,
which can be reconstructed from their classical counterparts as discussed above. For shorter
wavelengths, these gauge transformations are typically accompanied by hs-valued components.

Some further remarks are in order. First, it is worth pointing out that the above steps can be
easily adapted to obtain similarly

{𝑡𝜇, 𝑇 ¤𝑎} = {𝑡𝜇, 𝑇 ¤𝑎𝜎 (𝑥)𝑡𝜎} ≈ 𝑇 ¤𝑎𝜎{𝑡𝜇, 𝑡𝜎} (98)

in analogy to (88), as the derivatives of 𝑇 ¤𝑎𝜎 (𝑥) are again negligible in the weak gravity regime. It
should also be noted that the above discussion is based on the rescaled frame 𝑒 corresponding to the
metric 𝛾𝜇𝜈 (23) rather than the effective frame for the effective metric 𝐺𝜇𝜈 , which differ by a factor
of the dilaton 𝜌. However since the dilaton 𝜌2 is determined by the metric 𝐺𝜇𝜈 via (27), the weak
gravity condition applies equally to both metrics. Finally, the above considerations do not seem to
require that the frame 𝑒 ¤𝑎𝜇 is divergence free. However, this is taken care of by the C0 component
of 𝛿𝐸 ¤𝑎𝜇 (86), which is sub-leading in the weak gravity regime.

6. Realization of generic 3 + 1-dimensional geometries in matrix models

Finally, we address the question if any given metric𝐺𝜇𝜈 can be realized in terms of a divergence-
free frame. The first step is to determine the dilaton, which is obtained from (27) as

𝜌2 = 𝜌−1
𝑀

√︁
|𝐺 | . (99)

The next step is to find some classical divergence-free frame 𝑒 ¤𝑎𝜇 which gives rise to (23)

𝜌2𝐺𝜇𝜈 = 𝛾𝜇𝜈 = 𝜂 ¤𝑎 ¤𝑏𝑒
¤𝑎𝜇𝑒

¤𝑏𝜈 . (100)

Without the constraint, there are of course many frames (in fact a 6-dimensional orbit of 𝑆𝑂 (3, 1))
which achieve that. The 4 divergence constraints are fairly easy to take into account in Cartesian
coordinates 𝑥𝜇: for any given space-like components 𝑒 ¤𝑎 𝑗 , the time components 𝑒 ¤𝑎0 are determined
by

𝜕0(𝜌𝑀𝑒 ¤𝑎0) = −𝜕 𝑗 (𝜌𝑀𝑒 ¤𝑎 𝑗) . (101)

This can be viewed as an ordinary differential equation in 𝑥0, which is solved by

𝑒 ¤𝑎0 = −𝜌−1
𝑀

𝑥0∫
𝜉0

𝑑𝜉 𝜕 𝑗 (𝜌𝑀𝑒 ¤𝑎 𝑗) + 𝑒 ¤𝑎0(𝜉0) (102)
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where the value 𝑒 ¤𝑎0(𝜉0) at any given time 𝜉0 can be chosen as desired. This means that we can
freely choose the 12 space-like 𝑒 ¤𝑎 𝑗 , which should allow to reproduce the 10 dof in 𝛾𝜇𝜈 even if the
divergence constraint is imposed.

A more systematic, iterative way to determine the frame is as follows: choose some reference
point 𝑥. After a global 𝑆𝑂 (3, 1) transformation on the frame indices, we can assume that 𝛾𝜇𝜈 | �̄� =

𝑐𝜂𝜇𝜈 , and we assume 𝑐 = 1 for simplicity. Then choose the diagonal elements as 𝑒 ¤𝑎𝑎 = 𝜂 ¤𝑎𝑎, and
off-diagonal frame elements which vanish at 𝑥, such that the frame reproduces 𝛾𝜇𝜈 . To satisfy the
divergence constraint, we define a correction of the diagonal frame elements by

𝛿𝑒 ¤𝑎𝑎 = −𝜌−1
𝑀

𝑥𝑎∫
�̄�𝑎

𝑑𝜉𝑎
∑︁
𝜇≠ ¤𝑎

𝜕𝜇 (𝜌𝑀𝑒 ¤𝑎𝜇) , (103)

which vanishes at 𝑥. Then the improved frame 𝑒 ¤𝑎𝑎 → 𝑒 ¤𝑎𝑎+𝛿𝑒 ¤𝑎𝑎 satisfies the divergence constraint,
and reproduces 𝛾𝜇𝜈 to a good approximation near 𝑥. Now we repeat this procedure iteratively by
correcting the off-diagonal elements of the frame such that 𝛾𝜇𝜈 is reproduced, and correcting the
diagonal elements again with (103), and so on. Since the corrections vanish at 𝑥, this procedure will
converge to a divergence-free frame which reproduces 𝛾𝜇𝜈 exactly at least in some neighborhood
of 𝑥. This could presumably be proved e.g. using the Banach fixed point theorem, but we leave it
as a plausibility argument here and accept the statement as true.

We conclude that there are always divergence-free frames 𝑒 ¤𝑎𝜇 which realize (100) for any
𝛾𝜇𝜈 . As explained in section 4.2, we can then find a corresponding matrix background which
implements the frame in the sense of (88), and the higher spin contributions are negligible as long
as the geometry is within the weak gravity regime. Therefore generic 3+ 1-dimensional space-time
geometries can indeed be implemented as backgrounds of the matrix model with an ansatz of the
form (66), leading to a covariant quantum space-time.

Moreover, the above analysis shows that 2 of the 12 dof in 𝑒 ¤𝑎𝜇 remain undetermined even
if the divergence constraint is imposed. They can be used to restrict the totally antisymmetric
components of the torsion (114), which define a vector field via 𝑇𝜅 ∝ 𝑇 (𝐴𝑆)𝜈𝜎𝜇𝜀𝜈𝜎𝜇𝜅 . For
example, it is plausible that the frame can be chosen such that

𝑇𝜇 = 𝜓−1𝜕𝜇 �̃� (104)

in terms of an axion �̃�; this is a consequence of the (semi-classical) matrix model equations of
motion [2]. This question and its implications should be addressed elsewhere.

7. Quantization, extra dimensions and induced gravity

Even though the semi-classical matrix model action defines a dynamical theory of space-time
geometry, it is expected that a (near-) realistic theory of gravity can be obtained only from the
Einstein-Hilbert action. Remarkably, this arises indeed in the 1-loop effective action under certain
assumptions, in the spirit of induced gravity [22, 23]. The quantization of the matrix model is
defined non-perturbatively through a matrix path integral

Z =

∫
𝑑𝑇𝑑Ψ𝑒𝑖𝑆 .
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The oscillatory integral becomes absolutely convergent for finite-dimensionalH upon implementing
the regularization

𝑆 → 𝑆 + 𝑖𝜀
∑︁
¤𝛼
𝑌 ¤𝛼𝑌 ¤𝛼 , (105)

which amounts to a Feynman 𝑖𝜀 term in the noncommutative gauge theory. For recent results of
numerical simulations of such models see e.g. [24, 25].

In general, the quantization of matrix models on some noncommutative background leads
to highly non-local action due to UV/IR mixing, except in the maximally supersymmetric IKKT
model. This phenomenon was shown first identified in [26], but it is most transparent in terms
of string states |𝑥⟩⟨𝑦 | ∈ End(H), which govern the deep quantum (or extreme UV) regime of
noncommutative functions [27, 28]. These states are also extremely useful to compute the 1-loop
effective action of the IKKT matrix model on generic backgrounds. It was indeed show in [5] that
the Einstein-Hilbert action arises at 1 loop, provided the transversal 6 matrices 𝑇 ¤𝑎 of the IKKT
model assume some non-trivial background given by some compact fuzzy space:

𝑇
¤𝑘 ∼ 𝑡

¤𝑘 : K ↩→ R6, ¤𝑘 = 4, ..., 9 . (106)

This describes a quantized compact symplectic space K embedded along the transversal directions,
which plays the role of fuzzy extra dimensions. Together with the space-time brane M3,1, the
overall background geometry then has a product structure

M3,1 × K ↩→ R9,1 . (107)

The detailed structure of K will be irrelevant5; we only require that the internal matrix Laplacian
□K = [𝑇 ¤𝑘 , [𝑇 ¤𝑘 , .]] has positive spectrum,

□K𝑌Λ = 𝑚2
Λ𝑌Λ , 𝑚2

Λ = 𝑚2
K𝜇2

Λ (108)

with a finite number of (Kaluza-Klein KK) eigenmodes 𝑌Λ ∈ End(HK) enumerated by some label
Λ. Here 𝑚2

K determines the radius of K and sets the scale of the KK modes, which will play an
important role below.

Computing the 1-loop effective action on such a background then leads in particular to the
following term [5]

ΓK−M
1loop = −

𝑐2
K

(2𝜋)4

∫
M

𝑑4𝑥
√
𝐺 𝜌−2𝑚2

K𝑇
𝜌
𝜎𝜇 𝑇

𝜎
𝜌 𝜈𝐺

𝜇𝜈 (109)

which describes the effective interaction between M3,1 and K. Here

𝑐2
K =

𝜋2

8

∑︁
Λ,𝑠

(2𝑠 + 1)𝐶2
Λ

𝜇2
Λ
+ 𝑚2

𝑠

𝑚2
K

> 0 (110)

5K could be a fuzzy sphere 𝑆2
𝑁

, or some richer fuzzy space leading to interesting low-energy gauge theories, cf. [29].
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is finite, determined by the dimensionless KK masses 𝜇Λ on K (108) and their cousins 𝐶2
Λ
, which

also depend on the structure of K. The mass scale of the internal hs modes on 𝑆2
𝑛 is given by

𝑚2
𝑠 =

𝑠(𝑠 − 1)
𝑅2 . (111)

Using partial integration, one can rewrite the above effective action in terms of an Einstein-Hilbert
term with effective Newton constant

1
16𝜋𝐺𝑁

=
𝑐2
K

14𝜋4 𝜌
−2𝑚2

K . (112)

However, this requires assuming some specific behavior of 𝑚2
K or 𝐺𝑁 . If we assume 𝐺𝑁 = 𝑐𝑜𝑛𝑠𝑡,

we can use the identity [5]∫
𝑑4𝑥

√︁
|𝐺 |
𝐺𝑁

R = −
∫

𝑑4𝑥

√︁
|𝐺 |
𝐺𝑁

(7
8
𝑇
𝜇
𝜎𝜌𝑇

𝜌

𝜇𝜎′ 𝐺𝜎𝜎′ + 3
4
𝑇𝜈𝑇𝜇𝐺

𝜇𝜈
)

(113)

where R is the Ricci scalar of the effective metric 𝐺𝜇𝜈 , and

𝑇𝜇𝑑𝑥
𝜇 = −★ (1

2
𝐺𝜈𝜎𝑇

𝜎
𝜌𝜇 𝑑𝑥

𝜈𝑑𝑥𝜌𝑑𝑥𝜇) (114)

is the Hodge-dual of the totally antisymmetric torsion. This gives

ΓK−M
1loop =

∫
M

𝑑4𝑥

√
𝐺

16𝜋𝐺𝑁

(
R + 3

4
𝑇𝜈𝑇𝜇𝐺

𝜇𝜈
)
. (115)

Using the eom of the matrix model, 𝑇𝜈 reduces to a gravitational axion �̃� [2]

𝑇𝜇 = 𝜌−2𝜕𝜇 �̃� . (116)

Since 𝑇𝜇 vanishes exactly on the cosmic background, it is plausible that its effect is small, in which
case we recover the Einstein-Hilbert action as desired.

However since 𝐺𝑁 depends on 𝜌 and 𝑚K , it is not evident that 𝐺𝑁 = 𝑐𝑜𝑛𝑠𝑡. If we assume
instead that𝑚K = 𝑐𝑜𝑛𝑠𝑡 (which is reasonable as discussed below), then one can derive an analogous
identity ∫

𝑑4𝑥

√︁
|𝐺 |
𝐺𝑁

R = −
∫

𝑑4𝑥

√︁
|𝐺 |
𝐺𝑁

(1
8
𝑇
𝜇
𝜎𝜌𝑇

𝜌

𝜇𝜎′ 𝐺𝜎𝜎′ + 1
4
𝑇𝜈𝑇𝜇𝐺

𝜇𝜈
)

(117)

based on results in [2]. This leads to a slightly modified gravitational action

ΓK−M
1loop = 7

∫
M

𝑑4𝑥

√
𝐺

16𝜋𝐺𝑁

(
R + 1

4
𝑇𝜈𝑇𝜇𝐺

𝜇𝜈
)

(118)

where the Newton constant is modified by a factor 7. The precise form of the gravitational action
thus depends on the behavior of the compactification scale 𝑚2

K , which needs to be clarified in future
work.
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These results are remarkable in many ways. The first observation is that the Newton constant
𝐺𝑁 (112) is set by the compactification scale 𝑚K . This means that the Planck scale is related to
the Kaluza-Klein scale for the fuzzy extra dimensions K. Without the fuzzy extra-dimensional K,
no Einstein-Hilbert action is induced, and only some (rather obscure) higher-derivative action is
obtained. It should be noted that no UV divergence arises in the loop computation, due to maximal
supersymmetry of the matrix model and the fact that K supports only a finite number of modes.

We can justify the presence of K to some extent by studying how the 1-loop effective action
depends on its radius, or equivalently on 𝑚K . This is obtained from the same computation as above:
It turns out that (109)

ΓK−M
1loop = 𝑐2𝑚2

K = −𝑉1loop(𝑚2
K) > 0 (119)

is positive for the covariant FLRW space-time in [1]. Combined with the bare matrix model action,
the effective potential has the structure

𝑉 (𝑚2
K) = −𝑐2𝑚2

K + 𝑑2

𝑔2 𝑚
4
K (120)

at weak coupling. This clearly has a minimum for 𝑚2
K > 0 with 𝑉 < 0. Since 𝑚K is essentially

the radius of K, this strongly suggests that K is stabilized by quantum effects, thus providing some
justification for (107).

One may worry that the effective potential for 𝑚K depends on the geometry of M3,1, which
we have assumed to be the cosmic background brane. Thus gravitational deformations of the
geometry should have some influence on the Newton constant. Nevertheless, 𝑚K is expected to be
constant to a very good approximation. Since 𝑚K is essentially the radius of K, its kinetic term∫
𝜕𝜇𝑚K𝜕𝜇𝑚K in the matrix model is huge, which would strongly suppress any local variations;

note that 𝑚2
K ∼ 𝜌2𝐺−1

𝑁
is a huge energy beyond the Planck scale. Therefore 𝑚K should be almost

constant, and hence governed by the large-scale cosmic background as assumed above.
On the other hand, this suggests that the Newton constant may change during the cosmic

expansion. This may be a significant concern, since there are rather strong observational bounds
on such a variation. Nevertheless, at this early stage such worries are presumably sub-leading, and
the prime focus should be to gain a more detailed understanding of this new mechanism for gravity.

Furthermore, the above induced gravity action in 3+1 dimensions can be interpreted as a
quasi-local interaction of K and M via 9+1-dimensional IIB supergravity, recalling that the 1-loop
effective action is related to IIB supergravity [6, 28, 30, 31]. This provides additional confidence
into the above rather formal computations, since 9 + 1-dimensional supergravity is well established
in string theory and expected to be recovered in the matrix model. A more detailed understanding of
the relation with supergravity for backgrounds of the structure M3,1×K ⊂ R9,1 would be desirable.

Note that in contrast to orthodox string theory, target space R9,1 is not compactified here. This
makes sense, since the perturbative physics on such backgrounds is restricted to the brane, and there
are no bulk modes radiating off the brane at weak coupling. Hence the main problem of string
theory - i.e. the need for compactification and the lack of preferred choices thereof - turns into a
blessing, as there would be no induced gravity on space-time without the extra dimensions of target
space.
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Vacuum energy due to K. The 1-loop contribution to the vacuum energy due to K is obtained
using an analogous trace computation, leading to a result of the structure

ΓK
1loop =

3𝑖
4

Tr
(𝑉K

4
□4

)
∼ − 𝜋2

8(2𝜋)4

∫
M

Ω 𝜌−2𝑚4
K

∑︁
Λ𝑠

𝑉4,Λ

𝜇4
Λ

(121)

assuming 1
𝑅2 ≪ 𝑚2

Λ
∼ 𝑚2

K . Here 𝑉4,Λ depends on the structure of K. This is typically a large
vacuum energy with scale set by 𝑚K which was related to the Planck scale above, which could have
either sign. However as the symplectic volume form Ω is independent of the metric, this 1-loop
vacuum energy is not equivalent to a cosmological constant; its effect on the dilaton 𝜌 remains to be
understood. The present framework can therefore be viewed as a realization of induced gravity in
the spirit of Sakharov [22, 23], which is free of UV divergences, and appears to avoid the associated
cosmological constant problem.
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