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1. Introduction

In this talk, I will present two results related to the use of fuzzy geometry as the underlying
structure for a theory of gravity. This is based on the work published in [1] and [2]. Let me
begin by recalling that in fuzzy geometry we have an 𝑁-dimensional Hilbert space of states H𝑁 ,
which maybe viewed as describing the (dynamical) degrees of freedom pertaining to space itself.
Observables must be defined in terms of the algebra of matrices or linear transformations acting on
H𝑁 ; we will refer to this algebra as M𝑁 . Space as a continuum is obtained as an approximation
in the limit 𝑁 → ∞. This limit, however, can be ambiguous if we do not specify additional data
beyond just the abstract structure of H𝑁 itself. Such data usually take the form of a Dirac operator
or Laplace operator, but the key point is that the choice of such an operator leads to a specification
of the metric (and other geometric) data on the emergent space and hence the procedure for making
this choice (presumably implemented dynamically based on matter content) should be considered
as what is meant by a theory of gravity in the fuzzy context. Rather than specifying a Laplace or
Dirac operator at the level of H𝑁 , one can think of the possible large 𝑁 limits as parametrized in
terms of the gauge fields and spin connections in the final emergent continuous manifold. In other
words, we can take the starting data for fuzzy geometry as (H𝑁 ,M𝑁 ), along with a procedure
for taking large 𝑁 limits. This procedure can be stated in terms of a set of gauge fields and spin
connections on the final emergent manifold.1 A theory of gravity is then a prescription for choosing
one specific large 𝑁 limit, which we may consider as “optimal", the field equations for gravity are
this optimization condition. This is the setting for the results discussed below.

The first of the two results is about the entanglement entropy (EE) for a fuzzy space, i.e.,
entanglement pertaining to the degrees of freedom of space itself. In the usual way, here we are
considering a division of space into two regions, and looking for a (reduced) density matrix relevant
for local observables in one of these regions. The result for the entropy should thus follow from
a suitable reduction of H𝑁 . The dominant term for the EE will be, as usual, proportional to the
area of the interface. One can even see that there are some features reminiscent of the type III1 von
Neumann algebra for the local observables [1]. But here my focus will be on the dependence of
this EE on the gauge fields and spin connection in the emergent continuum. We will argue that this
dependence is given by a generalized Chern-Simons (CS) form [1]. The interest in the question of
how EE may be related to the gauge fields and spin connection and how it can inform the issue of
gravity for fuzzy spaces are due to the following observations. As has been known for many years,
the extremization of the Bekenstein-Hawking (BH) entropies for Rindler horizons of all accelerated
observers in a spacetime leads to the Einstein equations of gravity in vacuum [3]. Secondly, at
least in some contexts, the BH entropy can also be viewed as an entanglement entropy [4]. Finally
for gravity in (2+1) dimensions (and for CS-type gravity in higher dimensions) the field equations
correspond to the extremization of appropriate CS forms [5, 6]. We see that the connection between
EE for fuzzy spaces and CS forms becomes relevant within this circle of known results on gravity.

Our second result is on the interaction of matter fields with the gauge fields and spin connection
mentioned above. Again, to make our statement regarding this a little more precise, consider the

1It may be worth emphasizing that the gauge fields we are talking about here are not the usual electroweak or
chromodynamic gauge fields of the standard model. We are talking about the gauge fields relevant to the definition of
the fuzzy space itself.
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situation where H𝑁 is the space of sections of a power of the canonical line bundle on a compact
Kähler space, i.e., arising from the geometric quantization of the symplectic structureΩ = 𝑛 𝜔 ≡ 𝑑𝑎,
where 𝜔 is the Kähler two-form. This shows clearly that 𝑎 (which is an Abelian gauge field defining
Ω and hence the structure of H𝑁 ) should be one of the gauge fields of interest, relevant to defining
the fuzzy space itself. And more generally we can consider 𝐴 = 𝑎 + 𝐴′ where we add some
perturbation to the starting 𝑎, without changing the topological class of Ω. We could also consider
perturbations of the spin connection on this Kähler space. As we will see later, we could further
include additional structures corresponding to nonabelian gauge fields as well. Let 𝑆(𝐴) denote the
CS form of the gauge fields and the spin connection, we will make the specific nature of this term
very explicit later. The second result I shall discuss is that the coupling of matter fields is then given
by 𝑆(𝐴 + A) where the 𝑈 (1) field 𝐴 is shifted by the Poincaré-Cartan one-form A for matter [2].2
This will give the action in the first order Hamiltonian formulation. In terms of the Lagrangian, the
resulting action is of the form

𝑆 =

∫
(polynomial in 𝑅, 𝐹) × Lmatter (1)

This implies that in addition to the minimal coupling of mater fields to gauge fields and gravity,
which is to be expected, there are specific nonminimal terms which is a polynomial in the curvatures
(𝑅) and gauge field strengths (𝐹). The matter Lagrangian will have the usual covariant derivatives
of fields and so on, but the density for integration over the volume has a polynomial in terms of
𝐹, 𝑅, in addition to the usual

√︁
det 𝑔 factor. It may be interesting to mention at this point that

such couplings have been used in some attempts to explain galactic rotation curves and similar
phenomena usually attributed to dark matter [7].

2. Field dependence of entanglement entropy

2.1 How does field dependence arise for the EE?

Turning to details, consider the complex projective space CP𝑘 . We can carry out the geometric
quantization of Ω = 𝑛𝜔 = 𝑑𝑎 in the holomorphic polarization. The corresponding sections of the
line bundle are holomorphic, they are the “wave functions" which give a realization of the Hilbert
space H𝑁 . We can also view these wave functions as defining the lowest Landau level (LLL) of
a quantum Hall problem, with Ω as the background magnetic field. In other words, these wave
functions are the lowest eigenstates of a Laplace operator, with covariant derivatives defined with
the connection 𝑎. While the quantum Hall analogy is not necessary for our analysis, it is a useful
picture giving intuition about some of the arguments to follow [8, 9]. For example, in this picture,
the state describing the fuzzy space is the fully occupied LLL with one fermion for each state. If
we consider the fermion field expanded as

𝜓 =
∑︁
𝑠

𝑏𝑠 𝑢𝑠 (𝑥) + higher Landau levels (2)

2This is somewhat converse to the usual approach. Instead of starting with a matter Lagrangian and “gauging" it with,
say, spin connection to obtain the coupling to gravity, here we start with 𝑆(𝐴) given in terms of the spin connection and
any other gauge fields needed to define the fuzzy space and then shift 𝐴 to obtain the matter coupling.
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where 𝑏𝑠 are fermion annihilation operators for the LLL and 𝑢𝑠 are the wave functions mentioned
above, fuzzy CP𝑘 is the state 𝑏†0 𝑏

†
1 · · · 𝑏†

𝑁
|0〉 or, equivalently, it is described by the density matrix

𝜌 = 𝑏
†
0 𝑏

†
1 · · · 𝑏†

𝑁
|0〉 〈0| 𝑏𝑁 · · · 𝑏1𝑏0 (3)

This is a pure state and if we reduce it to a subset of 𝑏’s (by tracing over the rest of them) we still
obtain a pure state and hence no entropy. However, if we consider dividing CP𝑘 into two regions,
say, 𝐷 and its complement, then we do get a nontrivial entropy upon reducing 𝜌 to 𝜌Red relevant for
local observables in 𝐷. This entropy is given by

𝑆EE = −
∑︁
𝑠

[_𝑠 log_𝑠 + (1 − _𝑠) log(1 − _𝑠)] , _𝑠 =

∫
𝐷

𝑢∗𝑠𝑢𝑠 (4)

I will not go over the derivation of this formula since it has appeared in the literature before [10]
and has been used in related work [1, 11] and in the previous talk [12] to calculate the entanglement
entropy for quantum Hall droplets.

A few comments might be appropriate at this point before we proceed to discuss the field
dependence of the entropy. First of all, we may note that the wave functions 𝑢𝑠 have support
everywhere on CP𝑘 , although they are exponentially small away from where 𝑢∗𝑠𝑢𝑠 is a maximum.
This allows for a “leakage" of 𝑢∗𝑠𝑢𝑠 across any interface between 𝐷 and its complement. This is the
essence of how a nonzero 𝑆EE can arise. This is similar to what happens in relativistic quantum field
theory where the two-point function, for example, for a scalar field, is nonzero even for spacelike
separations. This fact is, in turn, related to the nonfactorizability of the vacuum wave functional for
the field, to the Reeh-Schlieder theorem and the result that the reduced density matrices for local
observables are KMS (Kubo-Martin-Schwinger) states with nonzero entropy.

Secondly, notice that the wave functions carry information about the gauge field 𝑎 and the spin
connection (and metric) on CP𝑘 . In taking the large 𝑁 limit of an operator �̂� on H𝑁 , we construct
the symbol which is a function (on CP𝑘) associated to it given by

𝐹 =
∑︁
𝑟 ,𝑠

𝑢𝑟 𝐹𝑟𝑠 𝑢
∗
𝑠 (5)

where 𝐹𝑟𝑠 = 〈𝑟 | �̂� |𝑠〉 are the matrix elements of the operator �̂�. Operator products are then realized
as star products of the symbols, i.e.,∑︁

𝑟 ,𝑠

𝑢𝑟 〈𝑟 | �̂��̂� |𝑠〉 𝑢∗𝑠 =
∑︁
𝑟 ,𝑠,𝑘

𝑢𝑟
(
𝐹𝑟 𝑘𝐺𝑘𝑠

)
𝑢∗𝑠 = 𝐹 ∗ 𝐺 (6)

In the large 𝑁 limit, the star product simplifies, becoming commutative, so that the operator algebra
M𝑁 tends to the commutative algebra of pointwise multiplication of the symbols. This is the
procedure for obtaining the continuum description. (See [8] for explicit calculations for CP𝑘 .) The
expressions for the symbols and the star product will, of course, depend on the gauge field 𝑎 and
the spin connection on the space via the dependence of the wave functions 𝑢𝑠 on the same. Each
choice of the background field gives a particular large 𝑁 limit. It is in this sense that I mentioned
that the large 𝑁 limits are parametrized by the background gauge fields. More generally, one can
consider the lowest eigenfunctions of the Laplacian with more general background fields, including
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nonabelian gauge fields as well as general spin connections. So the data defining the wave functions
and hence the large 𝑁 limits will then be these more general background fields.3 (As we consider
different choices for these background fields, it is important to keep 𝑁 the same, so that the Hilbert
space H𝑁 has the same abstract structure. This can be ensured by keeping all background fields in
the same topological class as defined by an index theorem; this will be explained below.)

2.2 Moser’s lemma and Chern-Simons term

We can now turn to the crucial question we posed earlier. How do _𝑠 =
∫
𝐷
𝑢∗𝑠𝑢𝑠 depend on

the background gauge fields and the spin connection? For analyzing this, we will again use CP𝑘 ,
starting with Ω = 𝑛𝑑𝑎, and the standard spin connection for the Fubini-Study metric, and making
perturbations to both. Towards the calculation of the change in _𝑠, we define an “occupancy matrix"
𝑃 for H𝑁 as

(𝑃)𝑎𝑏 =

{
𝛿𝑎𝑏 𝑎, 𝑏 = 0, 1, · · · , 𝑠 − 1
0 otherwise

(7)

(We are still considering the state (3) with all states occupied, 𝑃 is just an auxiliary quantity to
help with the argument here.) As mentioned above, the large 𝑁 simplification of matrices on H𝑁

is facilitated by using functions which are the symbols [8]. From (5), the symbol or the function
corresponding to the matrix 𝑃 is (𝑃)𝑠−1 =

∑𝑠−1
𝑎=0 𝑢

∗
𝑎𝑢𝑎. Therefore we can write

𝑢∗𝑠𝑢𝑠 = (𝑃)𝑠 − (𝑃)𝑠−1 (8)

To obtain the background field dependence of this quantity, we look at𝑊 ≡ Tr(𝑃𝐴0)𝑠, in terms of
which

𝛿𝑊

𝛿𝐴0
= (𝑃)𝑠 + ∗-product corrections (9)

Here 𝐴0 is just a dummy variable used to define𝑊 ; it can be set to zero after the functional derivative
is taken, although it may be viewed as the time-component of a𝑈 (1) gauge field. The point is that
𝑊 is easier to calculate. Once we have 𝑊 , equations (9), (8) will lead us to 𝑢∗𝑠𝑢𝑠, including its
dependence on the gauge fields and spin connections.

First let us focus on changing the background values only for the𝑈 (1) field which occurs in Ω,
i.e., just for the canonical one-form. The symplectic form is thus given byΩ = (𝑛𝜔+𝑑𝐴′) = Ω0+𝑑𝐴′.
We can now relate Tr(𝑃𝐴0) calculated with Ω0 + 𝑑𝐴′ (i.e., calculated with the wave functions
corresponding to Ω0 + 𝑑𝐴′) to a trace calculated with Ω0 as

Tr(𝑃𝐴0)Ω0+𝑑𝐴′ = Tr(𝑃A)Ω0 =

∫
(𝑃) ∗ A =

∫
(𝑃) A + · · · (10)

where A is to be determined in terms of 𝐴′ and Ω0. The integral in (10) is over the whole manifold.
The point is that Ω0 and Ω0 + 𝑑𝐴′ belong to the same topological class, so they can be related by
a diffeomorphism, i.e., by a change of coordinates as 𝑣 → 𝑣 − 𝑤. Here we are essentially using
Moser’s lemma familiar from classical mechanics. The condition we need is

Ω0 + 𝑑𝐴′
]
𝑣−𝑤

= Ω0

]
𝑣
, A = 𝐴0

]
𝑣−𝑤

(11)

3Again, as mentioned in footnote 1, these are not the gauge fields of the standard model, these are part of the structure
defining the large 𝑁 limit of the fuzzy space itself.
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In terms of the one-form potentials, this becomes

𝑎 + 𝐴′
]
𝑣−𝑤

− 𝑎
]
𝑣
= 𝑑𝑓 ≈ 0 (12)

Here 𝑓 is any function on the manifold and ≈ indicates equality up to an exact form. Taking 𝑎 (with
𝑑𝑎 = Ω0) as the term of the zeroth order, and 𝐴′ as of the first order, we can solve for 𝑤 as a series
in the perturbation. For the first two orders, the condition (12) reduces to 4

𝑤
𝑗

1𝜕 𝑗𝑎𝑖 + 𝑎 𝑗𝜕𝑖𝑤
𝑗

1 − 𝐴
′
𝑖 ≈ 0

𝑤
𝑗

2𝜕 𝑗𝑎𝑖 + 𝑎 𝑗𝜕𝑖𝑤
𝑗

2 + 𝑤
𝑗

1𝜕 𝑗𝐴
′
𝑖 + 𝐴′

𝑗𝜕𝑖𝑤
𝑗

1 −
1
2
𝑤𝑘

1𝑤
𝑙
1𝜕𝑘𝜕𝑙𝑎𝑖 − 𝑤

𝑘
1𝜕𝑘𝑎 𝑗𝜕𝑖𝑤

𝑗

1 ≈ 0 (13)

By adding certain exact one-forms, (since we only have the weak equality ≈), these equations can
be solved as

𝑤
𝑗

1 = −(Ω−1
0 ) 𝑗𝑘𝐴′

𝑘

𝑤
𝑗

2 = −(Ω−1
0 ) 𝑗𝑘

[
(𝜕𝑘𝐴′

𝑙 − 𝜕𝑙𝐴
′
𝑘)𝑤

𝑙
1 +

1
2𝑤

𝑚
1 𝑤

𝑛
1𝜕𝑚(Ω0)𝑛𝑘 +

1
2
(𝑤𝑚

1 𝜕𝑘𝑤
𝑛
1 ) (Ω0)𝑚𝑛

]
(14)

We can now calculate A = 𝐴0

]
𝑣−𝑤

as

A = 𝐴0 − (Ω0)−1𝑖 𝑗𝐴′
𝑖𝜕 𝑗𝐴0 + (Ω0)−1𝑖 𝑗

[(
1
2 𝐴

′
𝑗𝜕𝑘𝐴

′
𝑖 − 𝐴′

𝑗𝜕𝑖𝐴
′
𝑘

)
(Ω0)−1𝑘𝑙𝜕𝑙𝐴0

−1
2 𝐴

′
𝑗𝐴

′
𝑘𝜕𝑖

(
(Ω0)−1𝑘𝑙𝜕𝑙𝐴0

)]
+ · · · (15)

We can now multiply this expression by 𝑃 and integrate over the whole manifold to get

𝑊 =

∫
𝐴0

[
𝑃 + 𝑑

(
𝑃𝑘Ω𝑘−1

0 𝐴′) + 𝑃
2
𝑘 (𝑘 − 1)Ω𝑘−2

0 𝑑𝐴′ 𝐴′ + · · ·
)]

+ 𝑘
2

∫
𝑃Ω𝑘−1

0 𝑑
[
𝐴′(Ω0)−1𝑖 𝑗𝐴′

𝑖𝜕 𝑗𝐴0
]
+ · · · (16)

The factors of 𝑘 , (𝑘 −1), etc. arise from writing the expression in terms of differential forms. Again
using integration by parts and rearranging factors, we can write the last term in terms of 𝐴0, rather
than its derivative, to obtain

𝑊 =

∫
𝐴0

[
𝑃 + 𝑑

(
𝑃𝑘Ω𝑘−1

0 𝐴′) + 𝑃
2
𝑘 (𝑘 − 1)Ω𝑘−2

0 𝑑𝐴′ 𝐴′ + · · ·
)]

−1
2

∫
𝐴0𝑑

(
Ω𝑘−1

0 𝐴′(Ω0)−1𝑖 𝑗𝜕𝑖𝑃 𝐴
′
𝑗

)
+ · · · (17)

Taking the functional derivative with respect to 𝐴0 we get

Ω𝑘
0𝑃

]
𝑎+𝐴′ = Ω𝑘

0𝑃 + 𝑑
(
𝑃𝑘Ω𝑘−1

0 𝐴′) + 𝑃
2
𝑘 (𝑘 − 1)Ω𝑘−2

0 𝑑𝐴′ 𝐴′ + · · ·
)

−1
2
𝑑

(
Ω𝑘−1

0 𝐴′(Ω0)−1𝑖 𝑗𝜕𝑖𝑃 𝐴
′
𝑗

)
4One can, of course, include higher orders, but these will suffice to illustrate the argument.
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= Ω𝑘
0𝑃 + 𝑑

(
𝑃𝑄(𝑎 + 𝐴′, 𝑎)

)
− 1

2
𝑑

(
𝑄(𝑎 + 𝐴′, 𝑎) (Ω0)−1𝑖 𝑗𝜕𝑖𝑃 𝐴

′
𝑗

)
(18)

where

𝑄(𝑎 + 𝐴′, 𝑎) = 𝑘
∫ 1

0
𝑑𝑡 (𝑑𝑎 + 𝑡 𝑑𝐴′)𝑘−1 𝐴′ (19)

The left hand side of (18) corresponds to calculations with 𝑎 + 𝐴′, while the 𝑃’s on the right hand
side are in terms of 𝑢∗𝑢 with just 𝑎, i.e., with 𝐴′ = 0. The whole expression is linear in 𝑃, so we can
easily take the difference of such terms with 𝑃𝑠 and 𝑃𝑠−1, to obtain the field-dependent corrections
to 𝑢∗𝑠𝑢𝑠. This result is

Ω𝑘
0

[
(𝑢∗𝑠𝑢𝑠)𝐴′

𝑖
≠0 − (𝑢∗𝑠𝑢𝑠)𝐴′

𝑖
=0

]
= 𝑑

[
(𝑢∗𝑠𝑢𝑠)𝐴′

𝑖
=0𝑄(𝑎 + 𝐴′, 𝑎)

]
− 𝑘

2
𝑑

[
Ω𝑘−1

0 𝐴′(Ω−1
0 )𝑖 𝑗𝜕𝑖 (𝑢∗𝑠𝑢𝑠)𝐴′=0 𝐴

′
𝑗

]
+ · · · (20)

(For more details on these calculations using the idea of Moser’s lemma, see [1, 13]. These
calculations can also be done using the symbols and star products, see [8, 9].) We can now integrate
this result over 𝐷 to obtain the change in _𝑠 due to 𝑎 → 𝑎 + 𝐴′ as

_𝑠

]
𝐴′
𝑖
≠0

− _𝑠
]
𝐴′
𝑖
=0

=

∮
𝜕𝐷

𝑄(𝑎 + 𝐴′, 𝑎) (𝑢∗𝑠𝑢𝑠) −
1
2

∮
𝜕𝐷

[
𝑄(𝑎 + 𝐴′, 𝑎) (Ω−1

0 )𝑖 𝑗𝜕𝑖 (𝑢∗𝑠𝑢𝑠) 𝐴′
𝑗

]
+ · · ·

(21)
In the integrands on the right hand side, 𝑢∗𝑠𝑢𝑠 and other quantities are evaluated on 𝜕𝐷.

The quantity 𝑄(𝑎 + 𝐴′, 𝑎) which is given in (19) and appears in this formula is a generalized
Chern-Simons form connecting two nonzero gauge potentials 𝐴1 = 𝑎, 𝐴2 = 𝑎 + 𝐴′. If P(𝐹) is an
invariant polynomial (such as an index density) expressed as the symmetrized trace of a product of
𝑘 𝐹’s, we define 𝑄(𝐴2, 𝐴1) by

𝑄(𝐴2, 𝐴1) = 𝑘
∫ 1

0
𝑑𝑡 P(𝐴2 − 𝐴1, 𝐹𝑡 , 𝐹𝑡 , · · · , 𝐹𝑡 ), 𝐴𝑡 = 𝐴1 + 𝑡 (𝐴2 − 𝐴1) (22)

This leads to P(𝐹2) − P(𝐹1) = 𝑑 𝑄(𝐴2, 𝐴1). Thus up to an exact form, 𝑄(𝐴2, 𝐴1) is the difference
of two CS terms, but equation (22) gives a specific formula for the extra exact form. Such generalized
CS forms are important in defining the anomaly with nontrivial background fields, see [14]. For
our simple Abelian case, choosing P(𝐹) = 𝐹𝑘 , 𝐴2 = 𝑎 + 𝐴′, 𝐴1 = 𝑎,

𝑄(𝑎 + 𝐴′, 𝑎) = 𝑘
∫ 1

0
𝑑𝑡 (𝑑𝑎 + 𝑡 𝑑𝐴′)𝑘−1 𝐴′ (23)

which agrees with (19). Upon comparison with (21), we see that the first correction to _𝑠 is indeed
proportional to this generalized CS form. The second term in (21), which has additional Ω−1

0 , is
subdominant at large 𝑁 . Since 𝛿𝑆EE = −∑

𝑠 𝛿_𝑠 log(_𝑠/(1 − _𝑠)), we can write

𝛿𝑆EE =

∮
𝑄(𝑎 + 𝐴′, 𝑎)

∑︁
𝑠

𝐶𝑠 (𝑢∗𝑠𝑢𝑠)𝜕𝐷 + · · · , 𝐶𝑠 = log(_𝑠/(1 − _𝑠)) (24)

Restating, our conclusion from this analysis is:

The leading field-dependent correction to the entanglement entropy is propor-
tional to the generalized Chern-Simons term 𝑄(𝑎 + 𝐴′, 𝑎).
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2.3 Higher dimensions, the Dolbeault index

This result can be generalized to include nonabelian gauge fields and arbitrary gravitational
backgrounds. The wave functions for the LLL are holomorphic, they belong to the kernel of
𝜕-operator and so the number of states is given by the Dolbeault index theorem [15]. Since the
bulk part of Tr (𝑃𝐴0) is related to the number of states, it can also be calculated directly using the
Dolbeault index density. The theorem states that the index is given as

Index(𝜕𝑉 ) =
∫

td(𝑇𝑐𝐾) ∧ ch(𝑉) (25)

where td(𝑇𝑐𝐾) is the Todd class on the complex tangent space of 𝐾 and ch(𝑉) is the Chern character
of the vector bundle𝑉 . The vector bundle refers to the fact that we can have gauge fields in addition
to the gravitational fields. The Todd class is given by

td =
∏
𝑖

𝑥𝑖

1 − 𝑒−𝑥𝑖

= 1 + 1
2
𝑐1 +

1
12

(𝑐2
1 + 𝑐2) +

1
24
𝑐1 𝑐2 +

1
720

(−𝑐4 + 𝑐1 𝑐3 + 3 𝑐2
2 + 4 𝑐2

1 𝑐2 − 𝑐4
1) + · · · (26)

where the first line gives the formula in terms of the splitting principle and the second gives the
expansion for low dimensions in terms of the Chern classes 𝑐𝑖 , which, for any vector bundle with
curvature F , are defined by

det
(
1 + 𝑖 F

2𝜋
𝑡

)
=
∑︁
𝑖

𝑐𝑖 𝑡
𝑖 (27)

The Chern character is defined by

ch(𝑉) = Tr
(
𝑒𝑖F/2𝜋

)
= dim𝑉 + Tr

𝑖F
2𝜋

+ 1
2!

Tr
𝑖F ∧ 𝑖F
(2𝜋)2 + · · · (28)

With these formulae, one can see that the index, for low dimensions, is contained in the expansion

Index(𝜕𝑉 ) =

∫
dim𝑉 Tr

(
𝑖𝑅

4𝜋

)
+ Tr

(
𝑖𝐹

2𝜋

)
+ dim𝑉

12
(𝑐2

1 + 𝑐2) +
1
2

Tr
(
𝑖𝐹

2𝜋

)2
+ · · ·

𝑐1 = Tr
𝑖𝑅

2𝜋
, 𝑐2 =

1
2

[(
Tr
𝑖𝑅

2𝜋

)2
− Tr

(
𝑖𝑅

2𝜋

)2
]

(29)

Taking this index density as the invariant polynomial, we can define a corresponding generalized
Chern-Simons term by the same formula as before, i.e.,

𝑄(𝐴2, 𝐴1) = 𝑘
∫ 1

0
𝑑𝑡 P(𝐴2 − 𝐴1, F𝑡 , F𝑡 , · · · , F𝑡 ), 𝐴𝑡 = 𝐴1 + 𝑡 (𝐴2 − 𝐴1) (30)

where F can be 𝐹 or 𝑅, with 𝐴 referring to a gauge potential or the spin connection, respectively.
Again, this definition (30) is consistent with P(F2) − P(F1) = 𝑑 𝑄(𝐴2, 𝐴1). The fields 𝐴2 and 𝐴1

belong to the same topological class in the sense that the integrated index is the same for both, and
one can continuously connect 𝐴2 to 𝐴1 as in 𝐴𝑡 = 𝐴1+ 𝑡 (𝐴2− 𝐴1). This is the meaning of the phrase
“without changing the topological class of Ω" in the introduction. The rest of the argument for the

8
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field-dependence of _𝑠 is similar to the Abelian case. (For more details, see [1].) Equation (21) still
holds with 𝑄(𝑎 + 𝐴, 𝑎) replaced by the generalized CS form for the Dolbeault index given in (30).
The formula for the leading correction to the entropy is the same as (24), with 𝑄 corresponding to
the Dolbeault index density. So we can now restate our result more generally as:

The leading field-dependent correction to the entanglement entropy is propor-
tional to the generalized Chern-Simons term 𝑄(𝑎 + 𝐴′, 𝑎) associated to the
Dolbeault index density.

This completes my statement of the first result mentioned in the introduction.

3. The condensed matter perspective

Although this meeting is on particle physics and gravity, it may be interesting to change hats
for a quick aside and view our result from a condensed matter perspective. We are considering the
Hall state where all one-particle lowest Landau level (LLL) states are filled, so the density matrix
(3) corresponds to the a = 1 integer quantum Hall state. The fermions in the LLL may be viewed
as a droplet of a fluid, which is effectively incompressible because of the Pauli exclusion principle.
For the same reason, the many-particle state is highly correlated. For simplicity, let me consider
the two-dimensional case, i.e., CP1 ∼ 𝑆2 or its flat limit as we take the radius to be large. (The
generalization to higher dimensional quantum Hall systems is straightforward.) The symplectic
form Ω0 is the magnetic field, 𝑎 being the electromagnetic vector potential. The responses of the
state to variations of this field (i.e., under 𝑎 → 𝑎 + 𝐴′) and to variations of the spin connection are
related to the electrical conductivity and the Hall viscosity, respectively. These are clearly quantities
of physical interest. In the same spirit, one can ask about the entanglement entropy which can arise
when we restrict attention to observables defined locally in some region of the droplet. As is to be
expected, there will be a formally divergent constant term proportional to the phase volume [12],
but the dependence on the background fields, from our result, is of the form

𝛿𝑆EE ∼ 1
2𝜋

∮
𝜕𝐷

[
𝐴 − 𝑎 + 1

2
(𝛼 − 𝛼0)

] ∑︁
𝑠

𝐶𝑠 (𝑢∗𝑠𝑢𝑠)𝜕𝐷 (31)

where 𝑎 corresponds to the starting constant magnetic field, 𝐴 − 𝑎 = 𝐴′ gives the perturbation to
it, and likewise, 𝛼0 is the spin connection for CP1 with the Fubini-Study metric and 𝛼 − 𝛼0 is the
perturbation to it. The EE has been argued to be useful in characterizing topological phases of
matter, and so, in this context, I expect the result (31) should be of interest.

4. Coupling matter fields

We now return to the main topic and the second result mentioned in the beginning. Again, we
will consider the manifold CP𝑘 , with possible perturbations to the gauge fields and spin connection
within the same topological class as before. Consider now a matter system with the degrees of
freedom described by a set of variables {𝑞_} and conjugate variables {𝑝_}. The relevant physical

9
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quantity for the quantum dynamics of these degrees of freedom is the transformation kernel, which,
for an infinitesimal change 𝜖 of time, is

〈𝑞′ | 𝑒−𝑖𝐻 𝜖 |𝑞〉 =
∫

[𝑑𝑝] exp
[
𝑖𝑝_(𝑞′_ − 𝑞_) − 𝐻 (𝑝, 𝑞) 𝜖

]
(32)

The variables 𝑞_ may be viewed as the coefficients in the mode expansion of an 𝑁 × 𝑁 matrix 𝑞
with matrix elements

𝑞𝑖 𝑗 =
∑︁
_

𝑞_ (𝑇_)𝑖 𝑗 , 𝑖, 𝑗 = 1, 2, · · · , 𝑁, (33)

where {𝑇_} form an orthonormal basis for matrices acting on H𝑁 . (This is how the matter system is
placed in the fuzzy space.) As in the case of 𝑃, we can rewrite the {𝑇_} in terms of functions which
are symbols associated to the matrices. In the present situation it is slightly easier to use the so-
called contravariant symbols which form the basis for the Berezin-Toeplitz quantization procedure
[16, 17]. The contravariant symbol 𝜙 associated to 𝑞𝑖 𝑗 is defined by 5

𝑞𝑖 𝑗 =

∫
𝑑` 𝑢∗𝑖 𝜙 𝑢 𝑗 (34)

We can now convert the set of variables {𝑞_, 𝑝_} to symbols and products of them to star products;
for example, we can write∑︁

_

𝑝_𝑝_ =
∑︁
_,_′

Tr(𝑝_𝑇_) (𝑝_′𝑇_′) =
∑︁
𝑖, 𝑗

∫
𝑑`𝑑`′

[
𝑢∗𝑖 (𝑧)Π(𝑧)𝑢 𝑗 (𝑧)

] [
𝑢∗𝑗 (𝑧′)Π(𝑧′)𝑢𝑖 (𝑧′)

]
≡

∫
𝑑`

∑︁
𝑖

𝑢∗𝑖 (Π ∗ Π)𝑢𝑖 =
∫

𝑑` 𝜌 Π ∗ Π (35)

The transition from the first line to the second line of this equation uses the definition of the star
product for the contravariant symbols. Using this equation, and similar formulae for other terms in
(32), the transformation kernel can be converted to the path integral

𝑍 = N
∫

[𝐷Π𝐷𝜙] exp
(
𝑖

∫
𝑑𝑡 𝑑` 𝜌

[
Π ∗ ¤𝜙 − 𝐻 (Π, 𝜙)

] )
= N

∫
[𝐷Π𝐷𝜙] exp

(
−
∫

𝑑` 𝜌 A

)
(36)

where A is given by
A = −𝑖

(
Π ∗ ¤𝜙 − 𝐻 (Π, 𝜙)

)
𝑑𝑡 (37)

A is the Poincaré-Cartan one-form for the dynamics of the variables {𝑞_, 𝑝_}, i.e., for matter fields.
(We have also generalized (32) to a finite change of time.)

In the path integral (36) and in the definition of A in (37), all the products with 𝜙 and the
conjugate variable Π involve star-products. The Hamiltonian will contain such products as well,
among the fields and their conjugates. As an example, let 𝑇𝛼 be the basis matrices obeying the

5The contravariant symbol is a classical function which, upon “quantization" according to the formula (34), leads to
the quantum version, i.e., to the matrix 𝑞. The symbol we used in (8) started with the matrix and obtained a classical
function from it. That function is referred to as the covariant symbol. In either case, the definitions are made using the
wave functions 𝑢𝑖 .

10
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𝑆𝑈 (𝑘 + 1) algebra in the 𝑁 × 𝑁 representation; they form a subset of the full basis {𝑇_} and
commutators with 𝑇𝛼 serve as derivatives and local rotations. Then we can consider a Hamiltonian
of the form

𝐻 =
1
2

Tr
[
Π̂ Π̂ + 𝛽1 [𝑇𝛼, 𝑞] [𝑇𝛼, 𝑞] + 𝑚2

0𝑞𝑞
]
+ 𝑔0 Tr(𝑞4) (38)

where 𝛽1, 𝑚0, 𝑔0 are constants. This Hamiltonian, if we evaluate the trace using the expansion (33)
(and a similar one for Π̂) is expressed entirely in terms of {𝑞_, 𝑝_}. Using symbols and star products
according to (34), (35), 𝐻 in (38) becomes

𝐻 (Π, 𝜙) =
∫

𝑑` 𝜌

[
1
2

(
Π ∗ Π + 𝛼1 (∇𝛼𝜙) ∗ (∇𝛼𝜙) + 𝑚2

0𝜙 ∗ 𝜙
)
+ 𝑔0 𝜙 ∗ 𝜙 ∗ 𝜙 ∗ 𝜙

]
(39)

Going back to (36), the key point to note is the presence of the factor 𝜌 which gives the density of
states. As I mentioned earlier, the number of states is given by the Dolbeault index theorem, so we
can identify the density 𝜌 with the Dolbeault index density (up to terms which are total derivatives
and hence vanish upon integration). In the case of the entanglement entropy, we considered the
difference of this index density for two different connections, which led to the (2𝑘 − 1)-form
𝑄(𝑎 + 𝐴′, 𝑎), appropriate for integration over the (2𝑘 − 1)-dimensional interface between 𝐷 and its
complement. It is also possible to “integrate up" from the index density to define a (2𝑘 + 1)-form
on CP𝑘 ×R, R being the time direction. This CS (2𝑘 +1)-form is designed to have the property that
upon variation with respect to 𝐴0 (the time-component of 𝑈 (1) field 𝐴) it will give the Dolbeault
index density. Explicitly this CS form is given by [15]

𝑆eff =

∫ [
td(𝑇𝑐𝐾) ∧

∑︁
𝑝

(𝐶𝑆)2𝑝+1(𝐴)
]

2𝑘+1
+ 2𝜋

∫
Ω

grav
2𝑘+1 (40)

where (𝐶𝑆)2𝑝+1 is the usual Chern-Simons (2𝑝 + 1)-form for gauge fields and Ω
grav
2𝑘+1 is defined by

dim𝑉 [td(𝑇𝑐𝐾)]2𝑘+2 = 𝑑Ω
grav
2𝑘+1 (41)

𝑆eff in (40) depends on the gauge fields 𝐴, spin connection 𝛼. Because it is the integral of a
differential form, 𝑆eff in (40) can have, at most, one power of the time-component of the Abelian
part of 𝐴, i.e. with 𝐴0𝑑𝑡. We can write (40) as

𝑆eff =

∫
𝜌 𝐴0 𝑑𝑡 + 𝑆 (0)eff (42)

where 𝑆 (0)eff is independent of 𝐴0. The coefficient of 𝐴0, by construction, is the index density 𝜌,
which is also the field-dependent generalization of

∑
𝑖 𝑢

∗
𝑖
𝑢𝑖 . Since Poincaré-Cartan one-form A has

only the time-component, we see that we can also write

𝑆eff (𝐴 + A, 𝛼) =
∫

𝜌 A + 𝑆eff (𝐴, 𝛼) (43)

Going back to (36), we see that we can write the exponent in as 𝑆eff (𝐴 + A, 𝛼) − 𝑆eff (𝐴, 𝛼). Rather
than subtracting out 𝑆eff (𝐴, 𝛼), we will keep this in the path integral, as it does correspond to the
dynamics of the background fields themselves [18]. This finally brings us to our second result:
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The path integral describing the dynamics of matter fields coupled to gauge and
gravitational fields defining the large 𝑁 limit for fuzzy spaces is given by

𝑍 = N
∫

[𝐷Π𝐷𝜙] exp
(
𝑖𝑆eff (𝐴 + A)

)
(44)

where A is the Poincaré-Cartan form for the matter dynamics and 𝑆eff is as given
in (40).

As an example, in four dimensions, the matter coupling takes the form

𝑆matter =
1

32𝜋2

∫
(𝑖A)

[
dim𝑉

(
𝐹`a𝐹𝛼𝛽 + 1

24
𝑅𝑎𝑏
`a𝑅

𝑎𝑏
𝛼𝛽

)
+ Tr(𝑡𝑎𝑡𝑏)�̄�𝑎

`a �̄�
𝑏
𝛼𝛽)

]
𝑑𝑥` · · · 𝑑𝑥𝛽 (45)

where 𝐹 = (−𝑖) 1
2𝐹`a𝑑𝑥

` 𝑑𝑥a is the Abelian gauge field, and �̄� = (−𝑖𝑡𝑎) 1
2𝐹

𝑎
`a𝑑𝑥

` 𝑑𝑥a is the
nonabelian part of the background gauge fields, see footnote 1 for a clarifying remark on this. 𝑅𝑎𝑏

`a

is the Riemann curvature tensor. Thus A is multiplied by a polynomial of fields and curvatures
whose form is determined by the Dolbeault index. If the integration over the “momenta" Π is done
in (44), one can write it in terms of a spacetime action. In this case the matter part takes the form
mentioned in equation (1).

I thank the organizers of CORFU21 for the invitation and opportunity to present these results
and for the wonderful hospitality. This work was supported in part by the U.S. National Science
Foundation Grants No. PHY-2112729 and No. PHY-1820271.
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