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According to the ’t Hooft–Susskind holography, the black hole entropy, (BH, is carried by the
chaotic microscopic degrees of freedom, which live in the near horizon region and have a Hilbert
space of states of finite dimension 3 = exp((BH). In previous work we have proposed that the near
horizon geometry, when the microscopic degrees of freedom can be resolved, can be described
by the AdS2 [Z# ] discrete, finite and random geometry, where # ∝ (BH. What had remained
as an open problem is how the smooth AdS2 geometry can be recovered, in the limit when
# → ∞. In this contribution, we present the salient points of the solution to this problem, which
involves embedding the discrete and finite AdS2 [Z# ] geometry in a family of finite geometries,
AdS"2 [Z# ], where " is another integer. This family can be constructed by an appropriate
toroidal compactification and discretization of the ambient (2+1)-dimensional Minkowski space-
time. In this construction # and " can be understood as “infrared” and “ultraviolet” cutoffs
respectively. This construction allows us to obtain the continuum limit of the AdS"2 [Z# ] discrete
and finite geometry, by taking both # and " to infinity in a specific correlated way, following
a reverse process: Firstly, by recovering the continuous, toroidally compactified, AdS2 [Z# ]
geometry, by removing the ultraviolet cutoff; secondly, by removing the infrared cutoff, in a
specific decompactification limit, while keeping the radius of AdS2 finite. It is in this way that
we recover the standard non-compact AdS2 continuum space-time. This method can be applied
directly to higher-dimensional AdS spacetimes.
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1. Introduction

The present work, mathematically, belongs to the area of algebraic geometry over finite rings.
However its relevance for physics stems from the proposal of using specific, discrete and finite
arithmetic geometries, as toy models, in order to describe properties of quantum gravity in general
and the structure of space-time, in particular, at distances of the order of the Planck scale(10−33cm),
where the notions of the metric and of the continuity of spacetime break down [1].

At Planck scale energies, quantum mechanics, as we know it from lower energy scales, implies
that the notion of spacetime itself becomes ill-defined, through the appearance from the vacuum of
real or virtual black holes of Planck length size [2].

Probing this scale by scattering experiments of any sort of particle–like objects, black holes
will be produced and the strength of the gravitational interaction will be of O(1), which leads to a
breakdown of perturbative gravity and of the usual continuum spacetime description [3, 4].

The above remarks led some authors to consider the idea, that one has to abandon continuity
of spacetime, locality of interactions and regularity of dynamics. Indeed there are recent arguments
that quantization of gravity implies discretization and finiteness of space time [5, 6]. This is, indeed,
an old idea, that was put forward, already way back, by the founders of quantum physics and gravity.

A few years ago the seminal paper [12] highlighted the relevance of the so–called “new
black hole information paradox” [13], which finally lead to the conjectures that go under the label
ER=EPR [14] and culminate in the so–called QM=GR correspondence [15].

These conjectures relate strongly the description of spacetime geometry and quantum gravity
to quantum information theoretic tools, such as entanglement of information, algorithmic complex-
ity,random quantum networks,quantum holography, error correcting codes.
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A discrete and finite spacetime for quantum gravity is a possible way for describing the
remarkable fact that the Hilbert space of states of the BH microscopic degrees of freedom is
finite-dimensional. Its dimensionality equals to the exponential of the Bekenstein-Christodoulou-
Hawking black hole entropy, which is of quantum origin. The generalization of the Bekenstein
entropy bounds implies that, for any pair of local observers in a general gravitational background,
the physics inside their causal diamond is also described by a finite dimensional Hilbert space of
states [16]. This result has been exploited further and consistently under the name of holographic
spacetime, in the works of refs. [17–19].

Our idea about the nature of spacetime at the Planck scale, takes the notion of a holographic
spacetime one step further: Namely, that the finite dimensionality of the Hilbert space of local
spacetime regions originates from a discrete and finite spacetime, which underlies the emergent
continuous geometric description [1, 20].

Our starting point, therefore, is the hypothesis that space-time, at the Planck scale, is funda-
mentally discrete and finite and, moreover, does not emerge from any other continuous descrip-
tion(conformal field theory, string theory, or anything else). We claim that, at “large” distances (in
units of the Planck length), the continuous spacetime geometry can be described as an infrared limit
thereof. This hypothesis, indeed, is similar to the proposal by ’t Hooft [5].

This assumption implies developing and using the appropriate mathematical tools, that can
describe the properties and dynamics of discrete and finite geometries as well as the emergence, in
their infrared limits, of continuous geometries. So what we shall show in this contribution is an
explicit example of how the continuous geometry of AdS2 can emerge as a scaling limit of a specific
discretization procedure.

We do not wish to imply that it is not possible to define quantum gravity, with a finite
dimensional Hilbert space, in any other way; just that this is one possible way to describe quantum
physics with finite dimensional Hilbert space.

2. Discretization and toroidal compactification of the AdS2 geometry

2.1 The UV cutoff, the lattice of integral points and the SO(2, 1,Z) isometry of AdS"2 [Z]

We shall now present and study in detail the lattice of integral points of AdS2, along with its
isometries.

The physical lengthscale in our problem is the radius of the AdS2 spacetime, 'AdS2 . We set
'AdS2 = 1 and we divide it into " segments, of length 0 = 'AdS2/". This defines 0 as the UV
cutoff (lattice spacing) and " ∈ N and, hence, a lattice inℳ2,1.

The continuum limit is defined by taking " →∞ and 0 → 0 with 'AdS2 = 1 fixed.
The global embedding coordinates (G0, G1, G2) of this lattice are (:0, ;0, <0) = 0(:, ;, <),

where :, ;, < ∈ Z. They are measured in units of the lattice spacing 0. Therefore the lattice points,
that lie on AdS2 satisfy the equation

:2 + ;2 − <2 = "2 (1)

whose solutions define AdS"2 [Z], the set of all integral points of AdS2 with integer radius ".
In the literature there has been considerable effort in counting the number of solutions to the

above equation, in particular the asymptotics of the density of such points [21–26]. This problem
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can be mapped to a problem whose solution is known, namely the Gauss circle problem. This
pertains to finding the number A2(<, ") of solutions to the equation :2 + ;2 = "2 + <2. This
number is determined by factoring "2 + <2 into its prime factors [21] and counting the number of
primes, ?8 , of the form ?8 ≡ 1 mod 4 (this is described in detail in [27]; the dependence on " is a
topic of current research [25, 26]).

This factorization procedure generates a sequence of primes that contains an element of
inherent randomness. It is this property that captures the random distribution of the integral points
on AdS2–this is illustrated in figs. 1.

Figure 1: Integral points on AdS2.

Therefore, from these facts, the number of integral points of the hyperboloid, up to height <,
is given by the expression

Sol(<) = 4 + 2
<∑
9=1
A2( 9 , ") (2)

We plot this function–in fig. 2, for " = 1, when < runs from −200 to 200 (due to the symmetry,
< ↔ −<, we plot only the positive values of <.)

It is, indeed, striking that the result is an almost straight line [25, 26].
We shall now discuss how to actually construct these points, using the property that they belong

to light–cone lines, which emerge from the rational points of the circle on the throat of AdS2.

Using the ruling property of AdS2,

: = cos q − ` sin q
; = sin q + ` cos q
< = `

(3)

we may repackage these as follows

G0 + iG1 = : + i; = 4iq (1 + i`) = 4iq (1 + i<) ⇔ 4iq =
: + i;
1 + i<

(4)
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Figure 2: The number of integral points, on AdS2, as a function of the height, <, for " = 1. Due to
symmetry, < ↔ −<, we plot only the positive values of <.

hence
cos q =

: + ;<
1 + <2 and sin q =

; − <:
1 + <2 (5)

We remark that these are rational numbers–therefore they label rational points on the circle [28].
The light cone lines at (:, ;, <) are, therefore, parametrized by ` ∈ (−∞,∞), as

G0 = :+;<
1+<2 − ` ;−<:1+<2

G1 = ;−<:
1+<2 + ` :+;<1+<2

G2 = `

(6)

(When ` = G2 = <, G0 = : and G1 = ;.)

Proposition 1. On these specific light-cone lines there exist infinitely many integral points, when
`, that labels the space–like direction G2, takes appropriate integer values.

Proof. We write
G0(`) + iG1(`) = 4iq (1 + i`) (7)

where q is defined by eq. (5).
We look for integer values of ` = = ∈ Z, such that G0(=) and G1(=) are, also, integers.
That is

G0(=) + iG1(=) =
: + i;
1 + i<

(1 + i=) (8)

should be a Gaussian integer and this can hapen iff (1 + i=)/(1 + i<) = 0 + i1 with 0, 1 ∈ Z.
Therefore

1 + i= = (0 − <1) + i(0< + 1) ⇔
{

1 = 0 − <1
= = 0< + 1 (9)

5
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Thus on the light cone line passing through the point (:, ;, <) there are infinite integer points
parametrized as:

G0 = : + 1(:< − ;)
G1 = ; + 1(: + ;<)
G2 = = = < + 1(1 + <2)

(10)

�

Proposition 2. Conversely, on any light cone line emanating from any rational point of the circle
on the throat of the hyperboloid there is an infinite number of integer points.

Proof. Indeed,we have
4iq ≡ 0 + i1

0 − i1
⇔ G0 + iG1 =

0 + i1
0 − i1

(1 + i=) (11)

with 0, 1 ∈ Z. In order to to obtain an integral point, for ` = =, we must have

1 + i=
0 − i1

= 3 + i2 (12)

with 2, 3 ∈ Z
We immediately deduce that

1 = 03 − 12
= = 02 + 13 (13)

These expressions imply that, given the integers 0 and 1, it’s possible to find the integers 2 and 3
and to express the coordinates G0, G1 and G2 as

G0 = 03 + 12
G1 = 02 − 13
G2 = 02 + 13

(14)

The Diophantine equation 1 = 03 − 12 is solved for 2 and 3, given two coprime integers 0 and
1, by the Euclidian algorithm–which seems to lead to a unique solution, implying that the point
(G0, G1, G2) is unique.

However there’s a subtlety! There are infinitely many solutions (2, 3), to the equation 03−12 =
1! The reason is that, given any one solution (2, 3), the pair (2 + ^0, 3 + ^1), with ^ ∈ Z, is, also, a
solution, as it can be checked by substitution.

Therefore there is a one–parameter family of points, labeled by the integer ^:

G0 = 03 + 12 + 2^01
G1 = 02 − 13 + ^(02 − 12)
G2 = 02 + 13 + ^(02 + 12)

(15)

We remark, however, that the vector (201, 02 − 12, 02 + 12) is light–like, with respect to the
(+ + −) metric: (201)2 + (02 − 12)2 − (02 + 12)2 = 0. So eq. (15) describes a shift of the point
(03 + 12, 02 − 13, 02 + 13), along a light–like direction. Since the shift is linear in the “affine
parameter”, ^, it generates a light–like line, passing through the original point.

In this way we have established the dictionary between the rational points of the circle and the
integral points of the hyperboloid.

�
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Now we proceed with the study of the discrete symmetries of the integral Lorentzian lattice
of ℳ2,1, where the lattice of integral points on AdS2 is embedded. The lattice of integral points
of ℳ2,1, with one space-like and two time-like dimensions, carries as isometry group the group
of integral Lorentz boosts SO(2, 1,Z), as well as integral Poincaré translations. The double cover
of this infinite and discrete group is SL(2,Z), the modular group. This has been shown by
Schild [29, 30] in the 1940s. The group SO(2, 1,Z) can be generated by reflections, as has been
shown by Coxeter [31], Vinberg [32]. This work culminates in the famous book by Kac [33],
where he introduced the notion of hyperbolic, infinite dimensional, Lie algebras. The characteristic
property of such algebras is that the discrete Weyl group of their root space is an integral Lorentz
group. Generalization from (! (2,Z) to other normed algebras has been studied in [34].

The fundamental domain of SO(2, 1,Z) is the minimum set of points of the integral lattice
of ℳ2,1,which are not related by any element of the group and from which, all the other points
of the lattice can be generated by repeated action of the elements of the group. It turns out that
the fundamental region is an infinite set of points which can be generated by repeated action of
reflections in the following way:

Using themetric ℎ ≡ diag(1, 1,−1) onℳ2,1 the generating reflections, elements of SO(2, 1,Z),
are given by the matrices

'1 =
©«
−1

1
1

ª®®¬ , '2 =
©«

1
1
−1

ª®®¬ , '3 =
©«

0 1
1 0

1

ª®®¬
'4 =

©«
1 −2 −2
2 −1 −2
−2 2 3

ª®®¬
(16)

If (:, ;, <) are the coordinates of the integral lattice, the fundamental domain of SO(2, 1,Z) can
be defined by the conditions < ≥ : + ; ≥ 0 and : ≥ ; ≥ 0. This fundamental domain, restricted
on AdS"2 [Z], defines the corresponding fundamental domain of SO(2, 1,Z), acting on AdS"2 [Z] .
This region of AdS2 [Z] lies in the positive octant of ℳ2,1 and between the two planes, that define
the conditions–cf.fig. 3. It is of infinite extent.

2.2 The IR cutoff and the toroidal compactification of AdS2

Having introduced the lattice of integral points on AdS2, which we consider as defining an UV
cutoff, we proceed, now, to impose an infrared (IR) cutoff. The crucial reason for such a cutoff
is that in order to study chaotic Hamiltonian dynamics on this spacetime. [35], we have made use
of the interpretation of AdS2 as a phase space of single particles, due to the symplectic nature of
the isometry (! (2,R) = (?(2,R). The additional requirement of mixing (scrambling) imposes
the condition of the compactness of the phase space and therefore the necessity of imposing of an
infrared cutoff (for a detailed discussion of this point cf. [36]).

Having embedded the AdS2 hyperboloid,

G2
0 + G

2
1 − G

2
2 = '2

AdS2
(17)
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Figure 3: The fundamental domain of SO(2, 1,Z) on AdS"2 [Z] is the dark green part of the hyperoboloid,
in the positive octant, that lies between the two planes, < ≥ : + ; ≥ 0 and : ≥ ; ≥ 0.

in ℳ
2,1, the IR cutoff, ! is defined by periodically identifying all the spacetime points of ℳ2,1, if

the difference of their coordinates is an integral vector×!:

G ∼ H ⇔ G − H = (:, ;, <)! (18)

where :, ;, < ∈ Z. In this way we have compactified ℳ
2,1 to the three-dimensional torus, of size

!, T3(!).
More concretely,T3(!) is the fundamental domain of the group of integral translations,Z×Z×Z,

acting onℳ2,1. To describe this geometric property by the algebraic operation, mod !, that acts on
the coordinates of ℳ2,1, we are led to identify the fundamental domain with the positive octant of
ℳ

2,1, i.e. G0, G1, G2 ≥ 0
After this compactification, the spacetime geometry of AdS2 becomes a foliation of the 3-torus,

with leaves the images of AdS2 under the operation mod !. So the equation, whose solutions define
the points of the compactified AdS2, is

G2
0 + G

2
1 − G

2
2 ≡ '2

AdS2
mod ! (19)

where (G0, G1, G2) ∈ T3(!).
It is obvious, that inside the 3-torus, there is a part of the AdS2 surface, which corresponds to

solutions of eq. (19), without the mod ! operation. On the other hand, the infinite part of AdS2,

that lies outside the torus, is partitioned in infinitely many pieces, which belong to images of T3(!)
in ℳ

2,1. These pieces are brought inside the torus by the mod ! operation.
Nowwe choose the IR cutoff ! in units of 0, so that ! = 0#,where # is an integer, independent

of ". It is constrained by # > ", since the cube should contain, at least, the throat of AdS2.

8
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So the scaling limit entails taking " →∞, # →∞, but keeping ! fixed.
The periodic nature of the IR cutoff implies that we must take the images of all integral points

of AdS2 [Z] under the mod # operation, inside the cubic lattice of #3 points.
The set of these images satisfy the equations

:2 + ;2 − <2 ≡ "2 mod # (20)

The set of points satisfying this condition will be called AdS"2 [Z# ].
Our definition for AdS2 [Z# ] in our previous work was similar to the one given here. The only

difference being that the RHS of eq. (20) was 1 mod #, which was chosen for convenience, rather
than for any intrinsic reason. We remark that the two definitions are consistent iff "2 ≡ 1 mod #.

The solutions of eq. (20), when "2 ≡ 1 mod #, produce the AdS2 [Z# ] geometry introduced
in our previous work.

3. Continuum limit for large #

3.1 Constraints on the double sequences of the UV/IR cutoffs

Having constructed the finite geometry, AdS"2 [Z# ] and established its relationwithAdS2 [Z# ],
we shall discuss the meaning of the limit, ", # →∞. It is in this limit that we hope to recover the
continuum AdS2 geometry.

Such a limit can be defined using the topology of the ambient Minkowski spacetimeℳ2,1.
Specifically, we use a reverse, two–step, process: Firstly, by removing the UV cutoff; next, by

removing the IR cutoff. This is realized by choosing any sequence of pairs of integers, ("=, #=),
= = 1, 2, 3, . . . , such that, for any = = 1, 2, 3, . . .

• #= > "=,

• "2
= ≡ 1 mod #=,

• The limit of the ratio #=/"= takes a finite value, > 1 (as = → ∞), which we can identify
with !/'AdS2 .

Below we shall present the general solution to the equation "2 ≡ 1 mod #. Subsequently, we shall
select those solutions that satisfy the other requirements.

The first step is to factor # into (powers of) primes, # = #1 × #2 × · · · × #; = @:1
1 @

:2
2 · · · @

:;
;
.

Then the equation "2 ≡ 1 mod #, is equivalent to the system

"2
� ≡ 1 mod @:�

�
(21)

where � = 1, 2, . . . , ;. The Chinese Remainder Theorem [27] then implies that all the solutions of
eq. (21) can be used to construct ", with " = "1<1=1 + · · ·";<;=;, where "� ≡ " mod #� ,
<� = #/#� , =� ≡ <−1

�
mod #� .

When @� ≠ 2, the solutions are "� = 1 and @=�
�
− 1. When @� = 2, there exist four solutions,

"� = 1, 2=� − 1, 2=�−1 ± 1.
Now we must choose sequences, #= and determine the corresponding "=, satisfying the

constraints listed above.

9
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In the next two subsectionswe shall present nontrivial examples of sequences of pairs, ("=, #=)
satisfying the above constraints, whose limiting ratio, lim=→∞ #=/"=, is the “golden” or “silver”
ratios. The general question of determining sequences which have an arbitrary, but given, limiting
ratio, is an interesting question, which is deferred to a future work.

3.2 Removing the UV cutoff by the Fibonacci sequence

Although it is easy to demonstrate the existence of such sequences–for example, #= = 2= and
"= = 2=−1 ± 1, where "2

= ≡ 1 mod #= and #=/"= → 2, which implies that !/'AdS2 = 2, in
this section we focus on another particular class of sequences, based on the Fibonacci integers,
5= [27]. This case is of particular interest, since, in our previous paper [35], where we studied fast
scrambling, we found that, for geodesic observers, moving in AdS2 [#], with evolution operator the
Arnol’d cat map, the fast scrambling bound is saturated, when # is a Fibonacci integer.

The Fibonacci sequence, defined by

50 = 0; 51 = 1
5=+1 = 5= + 5=−1

(22)

can be written in matrix form (
5=

5=+1

)
=

(
0 1
1 1

)
︸     ︷︷     ︸

A

(
5=−1
5=

)
(23)

We remark that the famous Arnol’d cat map can be written as(
1 1
1 2

)
= A2 (24)

Since the matrix A doesn’t depend on =, we can solve the recursion relation in closed form, by
setting 5= ≡ �d= and find the equation, satisfied by d

d=+1 = d= + d=−1 ⇔ d2 − d − 1 = 0⇔ d ≡ d± =
1 ±
√

5
2

Therefore, we may express 5= as a linear combination of d=+ and d=− = (−)=d−=+ :

5= = �+d
=
+ + �−d=− ⇔

{
50 = �+ + �− = 0
51 = �+d+ + �−d− = 1

(25)

whence we find that
�+ = −�− =

1
d+ − d−

=
1
√

5
therefore,

5= =
d=+ − (−)=d−=+√

5
(26)

It’s quite fascinating that the LHS of this expression is an integer!

10



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
4
3

The continuum limit of the modular discretization of AdS2 Emmanuel Floratos

The eigenvalue d+ > 1 is known as the “golden ratio” (often denoted by q in the literature) and
it’s straightforward to show that 5=+1/ 5= → d+, as =→∞.

Furthermore, it can be shown, by induction, that the elements of A= are, in fact, the Fibonacci
numbers themselves, arranged as follows:

A= =

(
5=−1 5=

5= 5=+1

)
(27)

One reason this expression is useful is that it implies that det A= = (−)= = 5=−1 5=+1 − 5 2
= .

For = = 2; + 1, we remark that this relation takes the form 5 2
2;+1 = 1 + 52; 52;+2.

Now, since 52;+1 and 52;+2 are successive iterates, they’re coprime, which implies, that 5 2
2;+1 ≡

1 mod 52;+2.
Therefore, the sequence of pairs, ("; = 52;+1, #; = 52;+2), where ; = 1, 2, 3, . . . , satisfy all of

the requirements and the corresponding limiting ratio, !/'AdS2 , can be found analytically. It is,
indeed, equal to d+ = (1 +

√
5)/2, the golden ratio.

In the next subsection we shall consider the so-called :−Fibonacci sequences, which will be
important for obtaining other values for the ratio !/'AdS2 , as well as for removing the IR cutoff.

3.3 Removing the IR cutoff using the generalized :−Fibonacci sequences

It’s possible to generalize the Fibonacci sequence in the following way:

6=+1 = :6= + 6=−1 (28)

with 60 = 0 and 61 = 1 and : an integer. This is known as the “:−Fibonacci” sequence [37].
We may solve for 6= ≡ �d=; the characteristic equation for d, now, reads

d2 − :d − 1 = 0⇔ d±(:) =
: ±
√
:2 + 4
2

(29)

and express 6= as a linear combination of the d±:

6= = �+d+(:)= + �−d−(:)= =
d+(:)= − (−)=d+(:)−=√

:2 + 4
(30)

that generalizes eq. (26).
In matrix form (

6=

6=+1

)
=

(
0 1
1 :

)
︸     ︷︷     ︸

A(:)

(
6=−1
6=

)
(31)

Similarly as for the usual Fibonacci sequence, we may show, by induction, that

A(:)= =
(
6=−1 6=

6= 6=+1

)
(32)

We find that det A(:)= = (−)=, therefore that 62
2;+1 ≡ 1 mod 62;+2; thus, 62;+2/62;+1 → !/'AdS2 =

d+(:), where the eigenvalue of A(:), d+(:), that’s greater than 1, of course, depends on :. In this

11
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way it is possible to obtain infinitely many values of the ratio !/'AdS2 . Furthermore, we have
determined !, the IR cutoff, in terms of 'AdS2 .

What is remarkable is that, using the additional parameter, :, of the :−Fibonacci sequence, it
is, now, possible to remove the IR cutoff, as well, since it is possible to send ! → ∞, as : → ∞,
keeping 'AdS2 fixed.

While : remains finite, the periodic box cannot be removed and, in the continuum limit, 0 → 0,
we obtain infinitely many foldings of the AdS2 surface inside the box due to the mod ! operation.

The Fibonacci sequence, taken mod #, is periodic, with period ) (#); this turns out to be a
“random” function of #. The “shortest” periods, as has been shown by Falk and Dyson [38], occur
when # = �;, for any ;. In that case, ) (�;) = 2;.

We may, thus, ask the same question for the :−Fibonacci sequence, where the ratio of its
successive elements, 6=+1/6= tend to the so-called “:−silver ratio”,

d+(:) =
: +
√
:2 + 4
2

(33)

(the “silver ratio” is d+(: = 2))
From eq. (32), taking mod 6; on both sides, we find that, when = = ;, the matrix becomes ±(the

identity matrix), so ) (6;) = ; or 2;, respectively; thereby generalizing the Falk–Dyson result for the
:−Fibonacci sequences.

4. Conclusions

The logical approach for discussing the relation between classical and quantum physics involves
showing how the former can be obtained as a limit of the latter, since it is the quantum description
that is more “fundamental” and it isn’t possible to describe quantum effects in terms of classical
physics. In this contribution we have, therefore, shown how the smooth AdS2 geometry, that is
a hallmark of the near horizon geometry of extremal black holes, can, indeed, be obtained by a
limiting process from a finite and discrete geometry, that has been shown to capture the consistent
description of the single-particle probes of the near horizon geometry, that can resolve the individual
black hole microstates.

This approach can be readily generalized to higher dimensional AdS: spacetimes, : > 2.
The next step involves describing the near horizon degrees themselves, as a many-body system.
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