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1. Introduction

We describe two closely related applications of a new rich class of strong homotopy algebras:
(i) integrable models [1] and (ii) three-dimensional bosonization duality [2, 3]. A cornerstone of
these applications is a new approach to constructing strong homotopy algebras [2, 4] via intrinsic
deformations. On the physics side, the 3d-bosonization duality conjecture [5–10] takes place in
(Chern–Simons) vectormodels that describe various second-order phase transitions in 3d, i.e., in the
‘real physical world’. The class of L∞-algebras, to be described below, allows one to give rigorous
mathematical grounds to the idea of the slightly-broken higher spin symmetry [4, 11]. Correlation
functions are then invariants of this symmetry. At least in the large-N limit the bosonization duality
can be reduced to the proof of uniqueness of these invariants.

Strong homotopy algebras, A∞, L∞, G∞, ..., help to implement the idea of the (most general)
consistent algebraic structure. They play a central role in string field theory and provide another
point of view on the BV–BRST quantization method, see e.g. [12–19]. However, strong homotopy
algebras did not seem to have appeared as symmetries of physical systems in the past. In [2] it
was proposed to implement the idea of the slightly-broken higher spin symmetry [6] as a certain
L∞-algebra. The usual symmetries are realized by Lie algebras whose generators act on one-particle
states and the action on multiparticle states is the sum of the actions on each of the one-particle
states. There are examples of symmetries that go beyond the standard Lie one. For instance,
Yangian is the algebra of conserved charges of an integrable model, whose action on multiparticle
states is defined in accordance with a nontrivial co-product and differs from the canonical one.

Slightly-broken higher spin symmetry extends the notion of symmetries in a different way. First
of all, higher spin symmetry is an infinite-dimensional symmetry present in free theories (or in the
N = ∞ limit of vector models). It is manifested by infinitely many conserved tensors Js = ja1 · · ·as

that include the stress-tensor (and global symmetry currents, if present). Canonically, the conserved
tensors lead to conserved currents parameterized by Killing tensors and then to conserved charges
Qs. The conserved charges Qs form an infinite-dimensional Lie algebra hs, which includes and
extends the usual space-time symmetries. For example, the higher spin currents Js form a single
multiplet of hs, [Q, J] = J. It is significant that the Lie algebra hs originates from an associative
algebra,1 which we denote by the same symbol hs. The associative algebra hs carries all information
about the free theory, so that one can write a symbolic equality

Free CFT (QFT) = Associative algebra .

It is worth noting that the algebra hs is much smaller than the full operator algebra of a given theory,
otherwise the equality above would be rather a trivial statement. Since each higher spin algebra
enjoys a canonical trace, Tr : hs→ C, the correlation functions of the corresponding free theory can
be understood as simple trace-type invariants. This can be summarized by the following sequence:

Conserved tensor → current → symmetry → invariants=correlators .

When we turn on interactions or depart from the N = ∞ limit, the conservation of higher spin
currents is violated (∂ · Js , 0) the stress-tensor (and global symmetry currents, if any) remain

1Symmetries of free/linear equations can be multiplied and, hence, form an associative algebra. The commutator of
two is, of course, a symmetry, but the associative structure is more rigid and powerful.
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conserved though. Now, everything depends on the spectrum of primary operators. Vector models
have a relatively sparse spectrum of primary operators, as different from models with matter in
matrix representations of gauge groups. Therefore, there are few operators that can appear in the
right-hand side of the equality ∂ · Js = .... In the large-N limit, it is easy to see [5, 6] that one can
have composite operators of type [J J]. Therefore, the conservation law gets broken by the higher
spin currents themselves:

∂ · J = 1
N [J J] . (1)

Had we found completely different primary operators on the right-hand side, almost no information
could have been extracted. Now, it is possible to close the loop!

The apparent simplicity of equation (1) is deceptive. Since the currents are not conserved, the
charges are no longer conserved as well. As a consequence, the charges do not have to form a Lie
algebra anymore, while the higher spin currents may not define a representation of Q, i.e.,

[Q,Q] = Q + . . . and [Q, J] = J + . . . ,

where the dots stand for 1/N corrections. One can also show that the algebra hs is rigid and the
currents J, as an hs-module, cannot be deformed as well. Hence, it is impossible to account for
the dots on the right by any usual deformation of a Lie algebra or/and its representation. The main
proposal made in [2] is that we should deform the whole structure “Lie algebra plus its module”
into a strong homotopy Lie algebra. Now, the lowest structure maps l2(•, •) simply encode hs and
J as its module. Higher structure maps ln(•, . . . , •) allow one to deform the Lie algebra hs together
with its module J, so that they form a single algebraic structure.

To summarize, the new type of symmetry we propose deforms a Lie algebra and module(s) of
this algebra into a single L∞-algebra. Such a structure requires the L∞ to bemade of two components
as a graded vector space: one for the initial Lie algebra and another for its module(s). Therefore,
this can also be understood as a Lie algebroid, but we will not exploit this interpretation. Now, the
problem of correlation functions is equivalent to the problem of invariants of this L∞-algebra.

In applications to the 3d-bosonization duality conjecture, hs is the Weyl algebra, i.e., the
universal enveloping of the Lie algebra of canonical commutation relations [qi, pj] = i~δij . It results
from the deformation quantization of the simplest Poisson Manifold. The L∞ algebra is completely
determined by a closely related algebra, which can be understood as a deformation quantization of
the simplest PoissonOrbifoldR2/Z2. The last fact implies a deep relation between the two problems.
For the simplest case of O(N ) vector models, one can see [20] that the L∞-algebra depends on
two phenomenological parameters, which can be related with 1/N and the Chern–Simons level
k. It is also possible to show [20] that the trace invariants of hs are unique invariants that deform
to the invariants of the L∞-algebra. The 3d-bosonization duality is a simple consequence of the
uniqueness: since the correlation functions are completely specified by the symmetry, it does not
matter if the underlyingmicroscopical realization involves bosonic or fermionic degrees of freedom.

It should be remembered that (1) is an exact quantum equation of motion, which is true even for
N = 1 (the case of the Isingmodel). It is unclear at themoment if the semi-classical arguments based
on L∞ can be extended to the quantum domain. What makes them semi-classical is a simple form
of relation between J and [J J] suggested by the representation theory. These operators, however,
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renormalize in a nontrivial way. Therefore, it would be important to understand if ‘quantization’ of
the L∞-symmetry is possible to be able to extend the proof beyond the large-N limit.

Let us give an overview of other results that rely on the same construction [2, 4] of L∞-algebras.
In its simplest realization the idea of intrinsic deformations allows us to construct an A∞-algebra
from any associative algebra Au that depends on a parameter u. Canonically, every A∞-algebra
generates an L∞-algebra via the anti-symmetrization map. On the other hand, every L∞-algebra
can be identified with a homological vector field Q on a formal graded manifoldN with coordinates
ΦA . Given such a homological vector field Q, we can construct a sigma-model with the following
equations of motion:

dΦ = Q(Φ) ≡ l2(Φ,Φ) + l3(Φ,Φ,Φ) + . . . . (2)

Here the fields ΦA define a map from the odd tangent bundle T∗[1]M of a space-time manifoldM
to the target spaceN . This construction can, in principle, be applied to any field theory, as one can
always formulate classical equations of motion in the form (2) and there is a canonical procedure
of assigning a homological vector field Q to any field theory [17, 21].

The class of strong homotopy algebras obtained via intrinsic deformations has a number of
special properties. First and foremost, all the multilinear maps ln entering the r.h.s. of (2) can be
constructed from the bilinear maps

a ◦ b = a ? b +
∑
k=1

φk (a, b) uk

that determine expansion of the associative product ◦ in Au around u = 0. Second, the resulting
classical field theory/mechanics appears to be integrable, e.g., one can construct all its solutions
with the help of a Lax pair. To summarize, each one-parameter family of associative algebras gives
rise to a classical integrable model:

Softu Associative Algebras −→ Integrable models .

As an interlude we also discuss Deformation Quantization of Poisson Orbifolds as a rich source
of one-parameter families of algebras; in particular, we discuss R2/Z2, which is relevant to the
3d-bosonization duality. At present, this is largely an open problem since no analog of Kontsevich’s
formality is known for the case of Orbifolds.

2. Integrable models from associative algebras

A Lax pair is a cornerstone of integrable models. As the name suggests, it is a pair of two
matrices, usually called L and A, that depend on the ‘time’ t and, possibly, on other parameters.
The matrices are required to satisfy the Lax equation

∂tL = [A, L] . (3)

Often, A is a given function of L, so this is a nonlinear equation for L as a function of t. As a
result, one gets immediately an infinite family of integrals of motion In = Tr[Ln], n = 1, 2, . . ., not
all of which may be independent. Clearly, A plays the role of connection along t, and L is required
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to be covariantly constant. This suggests a natural generalization of the Lax pair to d dimensions.
Extension to d dimensions is not unique as one can have more structures. Given a d-dimensional
manifoldMd, introduce a connection A on some vector bundle overMd where a zero-form L takes
its values and set

dA = 1
2 [A, A] , dL = ρ(A)L . (4)

Here the covariant derivative is (implicitly) DA = d − ρ(A), where ρ denotes the action of A on
L. Optionally, one can introduce forms of various degrees that are constrained to be covariantly
constant with respect to A. Assume further that both A and L take values in the algebra A0 = End(V )
of endomorphism of a vector space V . Such A0, depending on a situation, can be viewed as an
associative algebra or as a Lie algebra with the Lie bracket defined by the commutator. Setting
ρ(A)L = [A, L] and using the trace on A0, we obtain an infinite sequence of integrals of motion
In = Tr[Ln]. It may also be convenient sometimes to solve the generalized Lax’s equations (4) in a
‘pure gauge’ form:

A = g−1dg , L = g−1L0g , (5)

where L0 is constant, dL0 = 0. The zero-form L0 parameterizes the solution space locally, but not
necessarily globally. The simplest Lax pair (4) will provide integrability of the class of models to
be introduced shortly.

Interactions. A model that can explicitly be reduced to (4) can be thought of as non-interacting
one, which is justified by local solutions (5). We would like to study the most general deformation
of (4). Based on the simple form-degree counting, a generic deformation is of the form

dA = l2(A, A) + l3(A, A, L) + l4(A, A, L, L) + . . . = FA(A; L) ,

dL = l2(A, L) + l3(A, L, L) + . . . = FL (A; L) ,
(6)

where ln are various interaction vertices, or structure maps, with all arguments indicated explicitly.
The formal sum thereof gives two structure functions FA and FL . The bilinear maps are known from
(4) to define a Lie algebra (where A takes the values) and its module (where L takes the values). In
our case, the algebra is A0 = End(V ) for some vector space V and the module is the adjoint one.

Clearly, (6) is a particular case of a more general set up where one has a space-time manifold
Md and a formal graded manifoldN equipped with a homological vector field Q. If Φ = {ΦA } are
coordinates on N , then Q = QA∂/∂ΦA and the defining condition for an odd vector field Q to be
homological reads2

Q2 = 0 ⇐⇒ QB
∂

∂ΦB
QA = 0 . (7)

If N is non-negatively graded, one can write down a sigma-model by promoting ΦA to smooth
mapsΦA : T∗[1]Md → N of degree zero. Geometrically, on can think of these maps as differential
forms ΦA (x, dx) onMd with values in N . The sigma-model3

dΦ = Q(Φ) (8)

2The derivative with respect to ΦA is understood in the appropriate graded sense.
3As a historical note, systems of the form (2) were first introduced by Sullivan [22] as Free Differential Algebras,

re-introduced into physics [23, 24] in the supergravity and higher spin [25] contexts.
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is defined by requiring the map to respect the differentials, which is exactly (8). The most common
situation is when Φ are coordinates at a vicinity of a stationary point, i.e., Q(0) = 0. The Taylor
expansion of Q defines then multilinear graded-symmetric maps ln(•, . . . , •) that satisfy Stasheff’s
relations for an L∞-algebra. Eq. (8), regarded as a set of PDE’s for the form fields ΦA (x, dx), has
a very important property, which can be phrased in several equivalent ways: (i) there are no any
hidden algebraic constraints on the fields buried in (8); (ii) Eq. (8) is consistent with dd ≡ 0, which
is the Frobenius integrability condition. Sadly, this is not a type of integrability that helps to solve
the model.

From the modern point of view, every gauge PDE defines and is defined by a Q-manifold N ,
see e.g. [26]. In a few words, given a canonical BV-BRST formulation of a gauge theory, one can
consider its jet space extension [17, 21, 26], which is an L∞-algebra. This algebra may have positive
and negative degrees corresponding to ghosts (ghosts for ghosts etc.) as well as to anti-fields. A
useful ‘derivative’ of any L∞-algebra is its minimal model, which, being much smaller, contains all
the essential information (it is said to be quasi-isomorphic to the initial L∞-algebra). For a large
class of models, e.g. field theories, such minimal model is a non-negatively graded L∞-algebra. It
is the corresponding Q, Q2 = 0, that can be thought of as an invariant definition of the field theory
we started with [26]. At the same time Q is in the possession of all local relevant information about
the field theory, e.g. (8) defines solutions of the classical field equations.

As a result, we have system (6) that is a particular case of (8). Here, Φ = {A, L} and
Q = FA∂/∂A + FL∂/∂L. It is a smooth deformation of a trivial one, which is the Lax pair. The
deformation is required to be nontrivial: (i) in the field theory language, there is no field redefinition
that brings (6) into (4); (ii) in the L∞-language, ln(•, . . . , •), n > 2 cannot be eliminated by a natural
transformation of L∞-algebras; (iii) in the Q-manifold language, there is no coordinates in which
the homological vector field assumes the quadratic form, Q = ΦΦ∂/∂Φ.

System (6) is yet to be constructed! We arrive at a number of questions regarding (6): (a) how
to construct vertices ln given the initial data encoded in l2? (b) how to solve it? Under certain
assumptions [1, 2, 27] it can be shown that the L∞ originates from a certain A∞ and the latter is built
from a deformation of A0 as an associative algebra. Solutions can also be constructed explicitly.

We recall that l2 originates from an associative product on A0. Let us first recast these initial
data into L∞-language. In accordance with the form degrees, our L consists, as a vector space, of
two copies of A0 that are assigned degrees 0 and 1, i.e. L = L0 ⊕ L1, L0,1 ∼ A0. The bilinear
structure maps are defined as

l2(a, b) = [a, b]? , l2(a, v) = a ? v − v ? a , a, b ∈ L1 , v ∈ L0 . (9)

In fact, the associative structure is of immense help. The underlying structure will turn out
to be A∞ rather than L∞.4 Anticipating this fact, the same initial data can be encoded by a small

4For completeness, A∞ is a graded vector space, equipped with degree (−1) maps mn (•, . . . , •) that satisfy m◦m = 0,
where m = m1 +m2 + ... is a formal sum and ◦ is the Gerstenhaber product. The latter is defined for any two multilinear
maps f and g of degrees | f | and |g | and having k f and kg arguments as

f ◦ g =
∑
i

(−1)κ f (a1, . . . , ai, g(ai+1, . . . , ai+kg ), ai+kg+1, . . . , ak f +kg−1) . (10)

Here κ is the usual Koszul sign: κ = |g |( |a1 | + · · · + |ai |). Similar relations define L∞-algebras. However, it is more
handy to get them from the Taylor expansion of Q2 = 0.
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A∞-algebra:

m2(a, b) = a ? b , m2(a, v) = a ? ν , m2(v, a) = −v ? a , a, b ∈ A1 , v ∈ A0 . (11)

Our L∞-algebra will come from an A∞-algebra via the usual anti-symmetrization map

ln(x1, . . . , xn) =
∑
σ∈Sn

(−1) |σx |mn(xσ(1), . . . , xσ(n)) . (12)

We would like to deform (11) as to activate higher structure maps mn, n > 2, in a nontrivial way.

Main result. With all definitions above we can now formulate the main result [1, 2]. We need to
deform the A∞-algebra (11) that consists of an associative algebra A0 together with its natural bi-
module. Under some technical assumptions5, the deformation exists iff the underlying associative
algebra is soft, i.e. can be deformed into a (nontrivial, of course) one-parameter family of associative
algebras Au. Therefore, the product in Au deforms the one in A0:

a ◦ b = a ? b +
∞∑
k=1

φk (a, b) uk . (13)

That the deformed product is associative, a ◦ (b ◦ c) = (a ◦ b) ◦ c, imposes certain conditions on
the bilinear maps φk . The nontriviality of the deformations implies that φ1 is a nontrivial class of
the second Hochschild cohomology group HH2(A0,A0).

The algorithm for constructing the model is as follows. First, one constructs a deformation of
A0 as of an A∞-algebra. The first few structure maps read

m3(a, b, v) = φ1(a, b) ? v → l3 ,

m4(a, b, v,w) = φ2(a, b) ? v ? w + φ1(φ1(a, b), v) ? w → l4 .

There is a number of ways [2] to get all mn, including an explicit formula for any n. Secondly,
one induces the corresponding L∞-maps by means of anti-symmetrization (12). As a result we
have all ln or Q and it can be shown that model (6) so defined is not equivalent to a free one via
field-redefinitions.

Nevertheless, we can show that the model is integrable and its solution space can be understood
via an auxiliary Lax pair [1]. Not surprisingly the Lax pair, which has the same form as (4), is
based on the deformed product ◦, namely,

dA = A ◦ A , dL = A ◦ L − L ◦ A , (14)

where A, L take values in the associative algebra Au. The integrability means here that solutions
of (6) can be built from those of (14), the latter having pure gauge form

A = g−1 ◦ dg , L = g−1 ◦ L0 ◦ g . (15)

5The main assumption is that we are looking for a deformation that makes sense when A0 is replaced by MatN (A0) for
any N . Obviously, (11) can be defined forMatN (A0). It is this assumption that allows us to reduce a complicated problem
of Chevalley–Eilenberg cohomology to a much simpler Hochschild cohomology. Nevertheless, in some examples of
practical importance the N = 1 case seems to be as general as any N > 1.
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The map is constructed order by order in u as6

A = A + (∂uA) ◦ L + . . . ���u=0
, L = L + (∂uL) ◦ L + . . . ���u=0

. (16)

Provided the associative algebra Au admits a trace Tru, that is, Tru[a ◦ b − b ◦ a] = 0, we can also
define the integrals of motion In = Tru[L ◦ · · · ◦ L] obeying the conservation law dIn = 0.7 For
infinite-dimensional algebras there can be other types of integrals of motion [20].

To summarize, given a one-parameter family of associative algebras Au, one can construct a
non-linear system of formally consistent8 PDE’s that, nevertheless, can be solved via an auxiliary
Lax pair.

3. Deformation quantization of Poisson Orbifolds.

A natural question is where to find either soft associative algebras (to be deformed) or one-
parameter families of associative algebras right away. There are two large stocks of such algebras:
(1) finite dimensional associative algebras; (2) deformation quantization.

All finite-dimensional semi-simple associative algebras, by the Artin–Wedderburn theorem,
are products of matrix algebras. As such they cannot have free parameters. Therefore, soft algebras
have to be outside the nice class of semi-simple algebras. The classification of the latter is known
to be wild. Good news: there are a lot of soft algebras along these lines. Bad news: it is hard to
find them. Below we discuss the item (2) in more detail as it is of some interest due to its relation
to the 3d bosonization duality.

Deformation quantization is an obvious source of one-parameter associative algebras. Let us
recall the main idea. Given any Poisson manifold P one considers the algebra of functions C∞(P).
It is an associative and commutative algebra. One then tries to deform the product

f ? g = f · g + ~{ f , g} + O(~2) , (17)

where the first order deformation is the Poisson bracket on P, which, at same time, is a nontrivial
Hochschild two-cocycle of C∞(P). The general solution of this problem was given by Kontsevich
in [34]. Later [35], it was shown that Kontsevich’s graphs can be understood as Feynman’s diagrams
of an auxiliary topological string theory, called Poisson sigma-model. Deformation quantization
gives a large class of one-parameter families of associative algebras, parameterized by Poisson
manifolds.

The space of algebras can be extended even further, leading to an interesting open problem
in deformation quantization. Poisson manifolds generally enjoy a lot of symmetries. For a given
PoissonmanifoldP one can pick up some group of discrete symmetries Γ. There are two associative
algebras naturally linked to these data:

6Similar maps relating interacting and quasi-free or non-commutative and commutative theories are known in the
literature [28–30].

7Note that this invariants differ from what is usually called integrals of motion (function(al)s of fields that are time
independent). In modern terms, integrals of motion correspond to zero-form symmetries and are given by closed (d−1)-
forms. Due to dIn = 0 functions In do not depend on space-time points at all and correspond to (d−1)-form symmetries,
[31].

8A word of warning is that formal consistency does not imply actual consistency. It is easy to construct examples
of formally consistent equations that do not make any sense, i.e. they are just symbolic expressions, but lead to infinite
tree-level amplitudes. See e.g. [32, 33] for explicit examples.
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1. Γ-invariant functions C∞(P)Γ ∼ C∞(P/Γ), where we see the orbifold P/Γ. This algebra is
commutative;

2. Cross-product algebra C∞(P) n Γ. The algebra is generated by sums
∑

i f i ⊗ γi, where the
f i ∈ C∞(P) and γi ∈ Γ. The product is defined as ( f ⊗ γ) � ( f ′ ⊗ γ′) = ( f γ( f ′), γγ′),
where γ( f ) denotes the action of γ ∈ Γ on a function f ∈ C∞(P). Note that this algebra is
generally non-commutative even for abelian Γ.

The two algebras above are closely related to each other. From the viewpoint of non-commutative
geometry the second algebra is more favorable. In some sense, it encodes complicated information
about singular manifolds like orbifolds through the non-commutativity of the algebra.

In both cases one can ask: (i) what are nontrivial deformations? (ii) how to construct them to all
orders? We will refer to both of the problems, i.e. for algebras (1) and (2) above, as to the problem
of Deformation Quantization of Poisson Orbifolds. More generally: is there any counterpart of
Kontsevich’s Formality Theorem for Poisson Orbifolds?

The first surprising result is that Poisson Orbifolds have more deformations! There are other
directions of deformation quantization that rely on orbifolding (or on the extension by Γ). These
new deformations are not captured by Kontsevich’s Formality at all. It is also not clear what
kind of Formality one should be looking for [36, 37]. In principle, following Kontsevich (who
mentioned in [34] that his construction originates from a topological string theory, which has been
then manifested by the quantization of the Poisson sigma-model in [35]) one should quantize the
same Poisson sigma-model on Poisson Orbifolds, which may crucially depend on the type of an
orbifold, preventing one from seeking out any universal extension of the Formality Theorem.

While the general problem of Deformation Quantization of Poisson Orbifolds is open, there
is a number of cases, where a constructive approach is possible. For example, let us consider the
Weyl algebra An extended by a finite group of symplectomorphisms Γ ⊂ Spn, i.e. An n Γ. The
Weyl algebra can be understood as a result of the deformation quantization of R2n endowed with the
canonical symplectic form dpi ∧ dqi. Now, on top of that we can have several new deformations.
The number of such deformations depends on Γ. The deformations can be constructed explicitly to
all orders via injective resolutions [38, 39].

Let us consider in more detail the case of the algebra A1 n Z2, as it is relevant for the 3d
bosonization duality. Here A1 can be understood as an associative algebra generated by the pair of
canonical variables subject to the commutation relation

[q, p] = i~ , (18)

i.e. we have already quantized R2 along dq ∧ dp. The group of symplectic reflections Γ = Z2 is
generate by a single element R that sends (q, p) to (−q,−p). The crossed-product algebra A1 n Z2
is obtained by adding the new generator R to q and p such that

R2 = 1 , RqR = −q , RpR = −p . (19)

The general element of A1nZ2 is given by a polynomial f (q, p, R) = f0(q, p)+ f1(q, p)R and R acts
via the reflection whenever we need to drag it through q or p. We can also start from scratch: set
~ = 0. The algebraA0,0 of functions f (q, p, R) is still non-commutative due to R. As an associative

9
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algebra A0,0 admits a two-parameter family of deformations, the usual one along the classical
Poisson bracket {•, •} and another one, along R. We can also jump directly toA~,0 = A1 n Z2. The
latter algebra features the second deformation along R.

Independently of the ideas above, the deformation of A~,0 was found by Wigner [40] and
explored further in a great number of papers, see e.g. [41–44]. It is remarkable, that one can
generate the deformed algebraA~,u by deforming the canonical commutation relations [41, 42, 44]

[q, p] = i~ + iuR . (20)

Based on this relation, one can work out the structure constants, see [45–50] for different approaches
to the problem. There are closely related algebras: the R-invariant subalgebra, known as glλ [51],
and the non-commutative hyperboloid [46] (or fuzzy sphere, depending on the real form).

It is also interesting that the first order deformation of A~,0 can be derived [27] from an
extension of Kontsevich’s Formality known as the Shoikhet–Tsygan–Kontsevich formality [52, 53].
We start from A~,0, which can be realized as the algebra of functions f (q, p, R) equipped with the
Moyal–Weyl star-product, f ? g. Extension with R is easy and requires us to first move all R to the
left (or to the right), while properly commuting them with q, p, and then take the star-product. The
first order deformation along R,

f ◦ g = f ? g + u φ( f , g)R + O(u2) , (21)

is defined by a Hochschild two-cocycle φ. It is this two-cocycle that can be computed with the help
of Shoikhet-Tsygan-Kontsevich formality. None of the known formality theorems seems to have
anything to say about higher orders.

4. Slightly-broken higher spin symmetry and three-dimensional bosonization
duality

Another application of the A∞- and L∞-algebras constructed in section 2 is to the three-
dimensional bosonization duality conjecture [2, 3]. What is interesting here is that L∞-algebras
manifest themselves as symmetries of physical models. We begin with a brief overview of the
simplest models conjectured to exhibit the duality. Next, we discuss why and how these models
exhibit infinite-dimensional symmetries that are realized as L∞-algebras. Correlation functions can
then be understood as invariants of this symmetry, while the proof of their uniqueness leads to a
proof of the duality.

Higher spin symmetry of free theories. It has long been known that free QFT’s (as well as the
classical field theories they are based on) feature infinite-dimensional symmetries that are generated
by infinitely many conserved tensors on top of the usual low spin stress-tensor (spin-two) and
global symmetry currents (spin-one). Such symmetries were dubbed Zilch symmetries [54, 55]. In
modern terminology they are called higher spin currents and symmetries. The conserved tensors,
e.g. for the free scalar theory,

Ja1 · · ·as = φ̄∂a1 · · · ∂asφ + . . . (22)

10
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are sandwiches of two fields with an arbitrary number of derivatives. The omitted terms can be
arranged to make it conserved as a consequence of �φ = m2φ. In the momentum space, the
existence of the corresponding charges is obvious since any

Q f =

∫
dd−1p āp f (p,∇p)ap (23)

is a conserved charge for arbitrary kernel f . Locality of the conserved tensors imposes mild
restrictions on kernels f [54]. Charges Q f map one-particle states V to themselves, i.e. they belong
to End(V ). For QFT’s in Minkowski space End(V ) contains the Poincaré algebra and for massless
QFT’s it usually includes the conformal algebra. As a useful toy model we can think of the massless
scalar field, which is conformally-invariant.

A closely related classical concept is that of the (higher) symmetries of field equations, i.e.
maps S that map solutions of some equation Eφ = 0 to solutions. Suchmaps have to obey ES = S′E
for some S′ that depends on S. For the free massless scalar the conformal transformation reads

δvφ = vm∂mφ +
∆

d
(∂mvm)φ, (24)

where ∆ = (d − 2)/2 is the conformal weight and vm(x) is a conformal Killing vector. The stress-
tensor Jab gives rise to a number of currents jm = Jmbv

b that are parameterized by Killing vectors.
The infinitesimal transformations δv form the conformal algebra so(d, 2) under commutators.
Likewise, given a conserved rank-s tensor, one can construct a number of conserved currents

jm(v) = Jma1 · · ·as−1 v
a1 · · ·as−1 , ∂ (a1va2 · · ·as ) − traces = 0 , (25)

where va1 · · ·as−1 is a conformal Killing tensor.9 The charges Qs (v) corresponding to higher spin
currents jm(v) form an infinite-dimensional Lie algebra, denoted by hs, that contains so(d, 2) as a
subalgebra.

Thanks to the linearity of the equations of motion, the algebra of symmetries is associative, i.e.
the product S1S2 of any two symmetries S1,2 is a symmetry again. One does not have to take the
commutator [S1, S2] to get a symmetry. In particular, one can multiply a number of the conformal
symmetries (24) to get a genuine higher spin symmetry. An important conclusion is that the algebra
of symmetries is an infinite-dimensional associative algebra, still called hs and referred to as the
higher spin algebra, that contains so(d, 2) as a Lie subalgebra. (One can always get a Lie algebra
out of an associative one by defining the Lie bracket as the commutator.) Higher spin algebras
‘know’ everything about the underlying free field theories, which we summarize as

Free CFT = Associative Algebra .

The arguments above suggest that any higher spin algebra (for a conformally invariant theory) can
be understood as U (so(d, 2))/I for a suitable two-sided ideal I [56]. Different matter systems lead
to different higher spin algebras, e.g. the higher spin algebra of the free boson is not isomorphic to
that of the free fermion in d > 3.

9As an so(d, 2)-module the space of solutions for va1 · · ·ak can be identified [56] with an irreducible tensor
vA1 · · ·Ak,B1 · · ·Bk , A, B, . . . = 0, . . . , d + 1 being so(d, 2)-indices. This tensor is symmetric in A’s and B’s, separately. It
is traceless and subject to the Young condition v(A1 · · ·Ak,Ak+1)B2 · · ·Bk = 0.

11
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The 3d case is very special. First of all, one-particle states of the free boson |φ〉 and free
fermion |ψ〉 can be realized, respectively, as even and odd subspaces of the Fock space f (â†i ) |0〉
of the 2d harmonic oscillator [âi, â†j ] = δij , i, j = 1, 2. This is partly thanks to the isomorphism
so(3, 2) ∼ sp(4,R) and the latter algebra has the standard oscillator realization where the generators
of sp(4,R) can be identified with bilinears in the ladder operators. In particular, translations Pmσ

m
ij

act as â†i â†j , where σ
m
ij are the Pauli matrices. Secondly, the higher spin algebra of the free fermion

coincides with that of the free boson. Thirdly, they are both isomorphic to the even subalgebra Ae
2

of the Weyl algebra A2 [57–59], i.e. to the algebra of even functions f (â, â†) = f (−â,−â†). The
fact that the higher spin algebras of the free boson and fermion are isomorphic is the starting point
for the proof of the three-dimensional bosonization duality.

Correlation functions in a CFT must be conformally-invariant. Likewise, correlators in a CFT
with a higher spin symmetry hs should be invariant under the full hs. Therefore, one can ask if hs
as a Lie algebra admits any invariants that can serve as correlation functions provided one computes
them on appropriate elements. Indeed, each higher spin algebra is equipped with an invariant trace
Tr?[•], i.e. Tr?[a ? b − b? a] = 0, where ? denotes the product in hs. The ?-notation is not an
accident. In the case of 3d the product in the Weyl algebra can be realized as the Moyal–Weyl
star-product.10 It comes as no surprise that all n-point correlation functions of J can be computed
at once as higher spin invariants

〈J1 . . . Jn〉 = Tr?[J1 ? · · ·? Jn] , (26)

provided Ji are chosen appropriately to behave as quasi-primary operators that represent a generating
function Ji ≡ J (xi) of higher spin currents at point xi. Invariance under the higher spin and, hence,
under the conformal symmetry is manifest:

Qs〈J1 . . . Jn〉 = 0 ⇐⇒ δξTr?[J1 ? · · ·? Jn] = 0 , (27)

where δξJ = [ξ, J]?, ξ ∈ hs incorporates the action of the higher spin algebra, including the
conformal symmetries, of course. Transformation δξJ represents the action [Q, J] = J of higher
spin charges Q onto the higher spin current multiplet. δξ form the same higher spin algebra hs as a
Lie algebra, which corresponds to [Q,Q] = Q - type relations at the level of charges.

The calculation of the invariants is simple and gives all n-point functions [61–64]. For example,
the four-point correlation function (generating function of all four-point correlators of J) in the free
boson CFT reads [62]

〈J J J J〉F .B. =
1

|x12 | |x23 | |x34 | |x41 |
×

× cos(Q2
13 +Q3

24 +Q4
31 +Q1

43) cos(P12) cos(P23) cos(P34) cos(P41)

+ permutations .

Here Q and P are the standard conformally-invariant variables [65].

10In general, higher spin algebras can be understood as a result of deformation quantization, see e.g. [47, 60] and
references therein.
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Three-dimensional bosonization duality. The 3d bosonization duality is a recently discovered
type of duality that takes place in vector models [5–10]. In what follows, we deal with the four
simplest vector models. These models are constructed by taking an order parameter, which is an
N-component complex scalar φi or Dirac fermion ψi, and writing down the most general U (N )-
invariant action:

k
4π

SCS (A) +Matter




(Dφi)2 free boson
(Dφi)2 + g(φiφi)2 Wilson–Fisher (Ising)
ψ̄ /Dψ free fermion
ψ̄ /Dψ + g(ψ̄ψ)2 Gross–Neveu

where SCS =
∫

Tr[AdA + 2
3 A3] is the Chern–Simons action. Other gaugings, e.g. O(N )-gauging,

are straightforward. There is a huge variety of vector models with different matter multiplets, with
and without supersymmetry. Coupling g is not a free parameter, it has to be tuned to the fixed point,
so that the model is conformally invariant. The true parameters are the number of fields N and the
Chern–Simons level k. It is convenient to work with λ = N/k, which is an analog of the t’Hooft
coupling in the large-N limit. Note that due to the Chern–Simons term and covariant derivatives,
even the g = 0 models are not free and it is difficult to say anything concrete about them.

The 3d-bosonization duality can be formulated with the help of the following diagram:

free boson Gross–Neveu

Wilson–Fisher free fermion

λ̃b -coupling

λ̃ f -coupling

λ̃b -coupling

λ̃ f -coupling

The conjecture is that all gauge-invariant observables should be identical along the double-arrows
at the top and at the bottom, i.e. the four theories are dual pairwise. The vertical lines indicate
that the ’top’ and ’bottom’ models are related via RG-flows. The upper line connects the free
boson theory to the Gross–Neveu model, while the bottom line connects the free fermion theory
to the Wilson–Fisher model. The red color is for fermionic matter and the blue is for bosonic one.
Therefore, the conjecture is that along the upper and along the bottom line there are two equivalent
descriptions of the same physics, one in terms of a model with fermionic matter and another one in
terms of a model with bosonic matter (provided λ and N are mapped appropriately). Let us make
this a bit more precise.

Intuitively, it is clear that in the k → ∞ limit the Chern–Simons action implies the flatness of
A, dA + AA = 0. Therefore, A effectively decouples, the only trace of it being in that we have to
consider gauge-invariant observables built out of the matter fields. Note that neither φ nor ψ are
gauge-invariant. The 3d-bosonization duality, as different from the 2d one, does not imply any
explicit map between φ and ψ. O(N )-models are simpler due to the absence of the spin-one current
that can be gauged again.

13



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
3

Integrable models and 3d dualities Evgeny Skvortsov

There is a number of simple observations that can be made in the large-N limit, irrespective of
the value of λ. The simplest gauge-invariant operators are bilinears

Js = φD · · · Dφ, Js = ψ̄γD · · · Dψ . (28)

They reduce to the usual higher spin currents for free theories once the Chern–Simons term is
removed, e.g. via k = ∞ or just A = 0. Therefore, the higher spin symmetry is present in N = ∞
limit. It is also clear that all local gauge-invariant operators can be built from the higher spin
tensors. For example, the simplest class next to Js are ’double-trace’ operators of type [J J], see
e.g. [66] for explicit formulas. Schematically,

[Js1 Js2]s =
∑

∂ . . . ∂Js1∂ . . . ∂Js2 − traces . (29)

Out of Js1 and Js2 one can build primary operators of spin s ≥ s1+s2. Obviously, (higher) correlation
functions of Js contain full information about OPE coefficients and anomalous dimensions of all
the other local gauge-invariant operators. Therefore, we should concentrate on learning as much as
possible about Js.

To the leading order the spectrum of higher spin tensors is identical for both theories on the
bottom line and for both theories on the top line. The only difference between the top and bottom
models is that the spin-zero operator J0 has conformal dimension 1 + O(N−1) for the top ones and
dimension 2 + O(N−1) for the bottom ones. That the spectra coincide in the large-N limit for the
dual models is the first indication of the duality.

Slightly-broken higher spin symmetry. The main question is what happens to Js once we depart
from the N = ∞ limit. Conserved higher spin tensors signal that the theory is a free one in disguise
[67–70]. Therefore, they cannot be conserved. However, the spectrum of vector models is very
sparse and there are not so many operators to violate the conservation law:

∂ · Js =
1
N

∑
s1+s2≤s

Cs
s1,s2[Js1 Js2]s . (30)

Here the structure constants Cs
s1,s2 contain the dynamical input, while the form of the double-trace

operators is fixed by conformal symmetry to the leading order.11
It was shown in [6], that the non-conservation law (30) is powerful enough as to fix the form

of three-point functions of Js. The idea was to abstract the non-conservation law from any concrete
microscopical realization without making any assumptions about structure constants Cs

s1,s2 . The
non-conservation law should be combined with the corresponding violation (or, more precisely,
deformation) of the action of charges Qs on Js:

[Qs1, Js2] =
∑
s

As
s1,s2 Js +

1
N

∑
Bl1,l2,k
s1,s2 [Jl1 Jl2]k . (31)

Here A’s encode the structure constants of the higher spin algebra and B’s signal a violation of the
Lie algebra module structure. Now, one can use the fact that three-point functions are fixed up to

11We note that a simple spin/conformal dimension counting ensures that in the ‘worst case scenario’ one can find in
addition N−2[J J J] on the right-hand side, which happens for the models with J0 of dimension 1 + O(N−1).
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three numbers per each triplet of spins:

〈Js1 Js2 Js3〉 ∼ as1,s2,s3〈Js1 Js2 Js3〉b + bs1,s2,s3〈Js1 Js2 Js3〉 f + cs1,s2,s3〈Js1 Js2 Js3〉o . (32)

The first two structure can be computed in the free boson and free fermion theory, respectively. The
last one, called odd, does not show up in any free theory. Nevertheless, it can be shown to exist and
to be unique. Constants a, b, c represent the dynamical information about a given theory and can
depend on spins and coupling constants. A remarkable result [6], is that the slightly-broken higher
spin symmetry along can fix all the structure constants in (30), (31) and (32) in terms of only two
phenomenological parameters Ñ and cos2 θ = 1/(1 + λ̃2). The final expression for the three-point
functions reads12

〈Js1 Js2 Js3〉 = Ñ
[
cos2 θ〈Js1 Js2 Js3〉b + sin2 θ〈Js1 Js2 Js3〉 f + cos θ sin θ〈Js1 Js2 Js3〉o

]
. (33)

Similar results have been obtained for other three-point functions and some four-point correlators,
see e.g. [72–76]. This indicates that the slightly-broken higher spin symmetry can be powerful
enough to fix all correlation functions! It remains to understand what it is mathematically.

Slightly-broken higher spin symmetry via strong homotopy algebras. At this point, it is
important to understand what "slightly-broken higher spin symmetry" is. The currents are no
longer conserved (30); the action of charges on higher spin currents gets deformed (31); the charges
themselves cannot form a Lie algebra. Therefore, we cannot abstract a single structure – higher spin
algebra – and deform it as a Lie algebra. In fact, the algebra does not even have such deformations.

Since the non-conservation operator is built from the higher spin currents, it should be clear
that one cannot disentangle hs from its action on J’s. One has to deform the whole package [2]:
algebra hs plus its module J. The structure that accommodates this is L∞-algebra. The starting
point is an L∞-algebra L = L0 ⊕ L1 concentrated in degree zero and one, with L1 being reserved
for hs and L0 for the hs-module that J’s form:

[δξ1, δξ2] = l2(ξ1, ξ2) , δξ J = l2(ξ, J) , ξ , ξ1,2 ∈ hs .

From now on we can abstract J’s and think of them as of specific hs-moduleL0 rather than concrete
operators. What one can do now is to look for the most general deformation

δξ J = l2(ξ, J) + l3(ξ, J, J) + . . . , [δξ1, δξ2] = δξ ,

where ξ = l2(ξ1, ξ2) + l3(ξ1, ξ2, J) + . . . Self-consistency requires ln’s to form an L∞-algebra.
There is one specific feature of the problem that allows us to apply the results of section 2,

i.e. to reduce L∞ to A∞. Higher spin tensors Js, being bilinear operators, belong to the tensor
product |φ〉 ⊗ |φ〉 or |ψ〉 ⊗ |ψ〉. Higher spin algebra hs is the endomorphism algebra of one-particle
states |φ〉 or |ψ〉. As such it is formally isomorphic to |φ〉〈φ| or |ψ〉〈ψ |. Recall that the latter two
tensor products are isomorphic since the higher spin algebra of free boson and free fermion are
identical. Also, |φ〉 ⊗ |φ〉 is formally isomorphic to |φ〉〈φ|, idem. for ψ. Therefore, we can map the

12Note that this requires the building blocks to be properly normalized, so that the spin dependence is trivial. The
exact form of all the structures can be found in [71] in the light-cone gauge and in [66] manifestly Lorentz invariant
expressions are given for ‘almost’ all the structures.
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module of higher spin tensors onto hs. The difference between |φ〉 ⊗ |φ〉 and |φ〉〈φ| is by the map
R : |φ〉 → 〈φ|, which is realized via the inversion map R. Inversion R is a discrete automorphism of
the conformal and, hence, of the higher spin algebra. Finally, the underlying associative structure
of hs is important again and leads to the following realization of the initial data:

l2(a, b) = a ? b − b? a , l2(a, v) = a ? v − v ? R(a) , a, b ∈ L1 , v ∈ L0 .

The last step is to encode R in the smash product A0 = hs n Z2, where Z2 = {e, R}. Now, one can
apply the powerful machinery of section 2, see [2]. While hs does not have any deformations as an
associative algebra, A0 is soft and can be deformed into Au, with u being a formal parameter.13 This
gives the deformation quantization of the simplest Poisson Orbifold R2/Z2 discussed in section 3
(one needs to copies of this Poisson Orbifold since A2 = A1 ⊗ A1). As a result, there is an explicit
description of all ln’s.

In order to discuss the bosonization duality it is also important to understand what is the most
general deformation of l2’s that are based on a given hs. Restricting for simplicity to the O(N ) case,
i.e. even spin currents, it may be shown [20] that the deformation depends on two phenomenological
parameters. They can be related to the microscopical parameters N and k, if needed.

Correlation functions as invariants. For the unbroken higher spin symmetry the correlation
functions are given by simple hs-invariants of type Tr?[•], (26). It was shown in [20] that these
invariants are unique, i.e. there are no other invariants that can serve as correlation functions. Now,
one can ask if it is possible to deform them

〈J1 . . . Jn〉 = Tr0[J1 ? · · ·? Jn] + . . . (34)

in such a way that they remain invariant under the deformed higher spin symmetry, i.e. under the
L∞-transformations. Here we also trivially rewrote Tr?[•] on hs as Tr0[•] on A0, since hs ∈ A0 and
A0 admits a trace as well. In what follows it is important that the trace can be deformed to a trace
Tru[•] on Au.

It is worth noting that there is a simple generating function of the free CFT correlators

Wfree[J] = P.p. Tr?
[
log?[1 − u−1J]

]
, (35)

where P.p. stands for the principal part of the Laurent series in u. Note that u is introduced artificially
here and is not present in the ?-product. Now, it is possible to show that the free CFT correlators
admit a smooth deformation that is invariant under the full L∞-algebra [3, 77]. The final result can
be expressed as a very similar generating function:

WSBHS[J] = P.p. Tru
[
log◦[1 − u−1J]

]
, (36)

where u is now present in the deformed ◦-product and in the trace, cf. (13).
It remains now to compute the corrections to the free CFT correlators. However, several

important observations can be made without having to do that. First of all, it can be shown [20]

13For a multi-parameter deformation there is always an overall scale of the parameters that we call u here. It is
important to count orders in the expansion, the rest of the parameters, if any, being implicit.
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that the deformed invariants – the L∞-invariants – are unique. Therefore, if the idea of the slightly-
broken higher spin symmetry is correct, there is a unique L∞-invariant to serve as a correlation
function. This statement proves, in principle, the bosonization duality since the invariant is fixed by
the symmetry and does not require any microscopical realization via Chern–Simons vector models,
i.e. it has to be the same both for bosonic and fermionic matter. Secondly, a very simple observation
is that for any n the n-point correlation functions have to have the following form

〈J . . . J〉 =
∑
〈fixed〉i × params ,

i.e. it has to be a sum of a finite number of fixed conformally invariant structures multiplied
by the powers of the phenomenological deformation parameters. Considering unitarity, the two
deformation parameters u1,2 have to be of the form u1 = ue+iθ , u2 = ue−iθ . This is consistent with
all available correlation functions [5–7, 66, 72–76, 78–80]. It is intriguing that expression (36)
bears close similarity to the partition function of a one-loop exact theory.
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