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1. Introduction

The numerical sign problem has prevented us from the quantitative understanding of many
important physical systems with first-principles calculations. Typical examples for such systems
include finite-density QCD, strongly-correlated electron systems and frustrated spin systems, as
well as the real-time dynamics of quantum systems.

The main aim of this talk is to argue that the tempered Lefschetz thimble method (TLTM) [11]
and its extension, the worldvolume tempered Lefschetz thimble method (WV-TLTM) [15], may be a
reliable and versatile solution to the sign problem. The (WV-)TLTM actually has been confirmed
to work for toy models of some of the systems listed above. In this talk, we pick up the Stephanov
model, to which the WV-TLTM is applied. This matrix model has played a particularly important
role in attempts to establish a first-principles calculation method for finite-density QCD, because it
well approximates the qualitative behavior of finite-density QCD at large matrix sizes, and because
it has a serious sign problem which had not been solved by other methods than the (WV-)TLTM.
We also discuss the computational scaling of WV-TLTM.
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2. Sign problem

2.1 What is the sign problem?

Our aim is to numerically estimate the expectation value defined in a path-integral form:

⟨O(𝑥)⟩ ≡
∫
𝑑𝑥 𝑒−𝑆 (𝑥 ) O(𝑥)∫

𝑑𝑥 𝑒−𝑆 (𝑥 )
. (1)

Here, 𝑥 = (𝑥𝑖) ∈ R is a dynamical variable of 𝑁 degrees of freedom (DOF), 𝑆(𝑥) the action, and
O(𝑥) a physical observable of interest.

When 𝑆(𝑥) is real-valued, one can regard 𝑝eq(𝑥) ≡ 𝑒−𝑆 (𝑥 )/
∫
𝑑𝑥 𝑒−𝑆 (𝑥 ) as a probability

distribution, and can estimate ⟨O(𝑥)⟩ with a sample average as

⟨O(𝑥)⟩ ≈ 1
𝑁conf

𝑁conf∑︁
𝑘=1

O(𝑥 (𝑘 ) ). (2)

Here, {𝑥 (𝑘 ) } is a sample (a set of configurations) of size 𝑁conf , that is generated as a suitable Markov
chain with the equilibrium distribution 𝑝eq(𝑥).

The above prescription is no longer applicable when the action has an imaginary part as
𝑆(𝑥) = 𝑆𝑅 (𝑥) + 𝑖𝑆𝐼 (𝑥) ∈ C𝑁 . A naive way to handle this is the so-called reweighting method,
where we treat 𝑒−𝑆𝑅 (𝑥 )/

∫
𝑑𝑥 𝑒−𝑆𝑅 (𝑥 ) as a new weight and rewrite the expression (1) as a ratio of

reweighted averages:

⟨O(𝑥)⟩ = ⟨𝑒−𝑖𝑆𝐼 (𝑥 ) O(𝑥)⟩rewt

⟨𝑒−𝑖𝑆𝐼 (𝑥 ) ⟩rewt

(
⟨ 𝑓 (𝑥)⟩rewt ≡

∫
𝑑𝑥 𝑒−𝑆𝑅 (𝑥 ) 𝑓 (𝑥)∫

𝑑𝑥 𝑒−𝑆𝑅 (𝑥 )

)
. (3)

However, when the DOF, 𝑁 , is very large, the reweighted averages can become vanishingly small
of 𝑒−𝑂 (𝑁 ) , even though the operator itself is 𝑂 (1). This should not be a problem if we can estimate
both the numerator and the denominator precisely. However, in the numerical computation, they
are estimated separately with statistical errors:

⟨O(𝑥)⟩ ≡ ⟨𝑒−𝑖𝑆𝐼 (𝑥 )O(𝑥)⟩rewt

⟨𝑒−𝑖𝑆𝐼 (𝑥 )⟩rewt
≈ 𝑒−𝑂 (𝑁 ) ±𝑂 (1/

√
𝑁conf)

𝑒−𝑂 (𝑁 ) ±𝑂 (1/
√
𝑁conf)

. (4)

Thus, in order for the statistical errors to be smaller than the mean values, the sample size must be
exponentially large with respect to DOF, namely, 𝑁conf ≳ 𝑒𝑂 (𝑁 ) . The need of this unrealistically
large numerical cost is called the sign problem.

2.2 Various approaches proposed so far

We list some of the approaches proposed so far, which are intended to solve the sign problem.

class 1: no use of reweighting
A typical algorithm in this class is the complex Langevin method [1–6], where the complex

Boltzmann weight is rewritten to a positive probability distribution over a complex space C𝑁 .
Although its numerical cost is low [∼ 𝑂 (𝑁)], it often exhibits a wrong convergence (gives incorrect
estimates with small statistical errors) at parameter values of physical importance.
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class 2: deforming the integration surface
A typical algorithm is the Lefschetz thimble method [7–16], where the integration surface

Σ0 = R𝑁 is continuously deformed to a new surface Σ𝑡 ⊂ C𝑁 .1 The flow time 𝑡 is taken sufficiently
large so that Σ𝑡 is close to a union of Lefschetz thimble,

⋃
𝜎 J𝜎 , on each of which Im 𝑆(𝑧) (𝑧 ∈ J𝜎)

is constant.
Generic Lefschetz thimble method has been shown to suffer from an ergodicity problem for

physically important parameter regions of a model [19], where multiple thimbles become relevant
that are separated by infinitely high potential barriers. This problem was resolved by tempering the
system with the flow time [11].2 This tempered Lefschetz thimble method (TLTM) solves both the
sign problem (serious at small flow times) and the ergodicity problem (serious at large flow times)
simultaneously. The disadvantage is its high numerical cost of 𝑂 (𝑁3−4). Recently, this numerical
cost has been substantially reduced [expected to be𝑂 (𝑁∼2.25)] with a new method, the worldvolume
tempered Lefschetz thimble method (WV-TLTM), which is based on the idea to perform the Hybrid
Monte Carlo on a continuous accumulation of deformed integration surfaces (the worldvolume)
[15]. The algorithm (WV-)TLTM is the main subject in this talk.3

class 3: no use of MC in the first place
A typical algorithm in this class is the tensor network method (especially the tensor renormal-

ization group method [21]).4 This is good at calculating the free energy in the thermodynamic
limit, but not so much efficient to calculate correlation functions at large distances. We expect this
method to play a complementary role to methods based on Markov chain Monte Carlo.

3. Lefschetz thimble method

We complexify the dynamical variable 𝑥 = (𝑥𝑖) ∈ R𝑁 to 𝑧 = (𝑧𝑖 = 𝑥𝑖 + 𝑖𝑦𝑖) ∈ C𝑁 . We set
an assumption (which holds for most cases) that 𝑒−𝑆 (𝑧) and 𝑒−𝑆 (𝑧)O(𝑧) are entire functions over
C𝑁 . Then, Cauchy’s theorem ensures that the integrals do not change their values under continuous
deformation of the integration surface: Σ0 = R𝑁 → Σ (⊂ C𝑁 ), where the boundary at |𝑥 | → ∞ is
fixed so that the convergence of integration holds under the deformation:

⟨O(𝑥)⟩ =

∫
Σ0

𝑑𝑥 𝑒−𝑆 (𝑥 ) O(𝑥)∫
Σ0

𝑑𝑥 𝑒−𝑆 (𝑥 )
=

∫
Σ
𝑑𝑧 𝑒−𝑆 (𝑧) O(𝑧)∫
Σ
𝑑𝑧 𝑒−𝑆 (𝑧)

. (5)

Thus, even when the sign problem is severe on the original surface Σ0, it will be significantly
reduced if Im 𝑆(𝑧) is almost constant on the new surface Σ.

The prescription for the deformation is given by the anti-holomorphic gradient flow:

¤𝑧𝑡 = 𝜕𝑆(𝑧𝑡 ) with 𝑧𝑡=0 = 𝑥. (6)

1This algorithm will be explained in detail in the next section. Another interesting algorithm is the path-optimization
method [17, 18], where the integration surface is looked for with the machine learning technique so that the average
phase factor is maximized.

2A similar idea is proposed in Ref. [12].
3See Ref. [20] for a review from a different viewpoint.
4See Ref. [22] for a recent attempt to apply the tensor renormalization group method to Yang-Mills theory.

4



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
4

Numerical sign problem and the tempered Lefschetz thimble method Masafumi Fukuma

The most important property of this flow equation is the following inequality:

[𝑆(𝑧𝑡 )] · = 𝜕𝑆(𝑧𝑡 ) · ¤𝑧𝑡 = |𝜕𝑆(𝑧𝑡 ) |2 ≥ 0, (7)

from which we find that
(i) Re 𝑆(𝑧𝑡 ) always increases along the flow except at critical points,5
(ii) Im 𝑆(𝑧𝑡 ) is constant along the flow.

The Lefschetz thimble J associated with a critical point 𝜁 is defined by a set of orbits starting
at 𝜁 . From this construction and property (ii), we easily see that Im 𝑆(𝑧) is constant on J [i.e.,
Im 𝑆(𝑧) = Im 𝑆(𝜁) (𝑧 ∈ J)]. Denoting the solution of Eq. (6) by 𝑧𝑡 (𝑥) and assuming that
Σ𝑡 ≡ {𝑧𝑡 (𝑥) | 𝑥 ∈ R𝑁 } approaches a single Lefschetz thimble J , we expect that the sign problem
disappears on Σ𝑡 if we choose a sufficiently large 𝑡.

Let us see how the sign problem disappears as flow time 𝑡 increases. The integrals on a
deformed surface Σ𝑡 can be rewritten as

⟨O(𝑥)⟩ =
⟨𝑒𝑖𝜙 (𝑧)O(𝑧)⟩Σ𝑡

⟨𝑒𝑖𝜙 (𝑧)⟩Σ𝑡

, (8)

where6

⟨ 𝑓 (𝑧)⟩Σ𝑡
≡

∫
Σ𝑡

|𝑑𝑧 | 𝑒−Re 𝑆 (𝑧) 𝑓 (𝑧)∫
Σ𝑡

|𝑑𝑧 | 𝑒−Re 𝑆 (𝑧)
, 𝑒𝑖𝜙 (𝑧) ≡ 𝑒−𝑖Im 𝑆 (𝑧) 𝑑𝑧

|𝑑𝑧 | . (9)

As can be easily checked for a Gaussian case, the integrals take the form 𝑂 (𝑒−𝑒−𝜆𝑡𝑂 (𝑁 ) ), where 𝜆

is a typical singular value of 𝜕𝑖𝜕 𝑗𝑆(𝜁). Thus, the numerical estimate now becomes

⟨O(𝑥)⟩ ≈ 𝑂 (𝑒−𝑒−𝜆𝑡𝑂 (𝑁 ) ) ±𝑂 (1/
√
𝑁conf)

𝑂 (𝑒−𝑒−𝜆𝑡𝑂 (𝑁 ) ) ±𝑂 (1/
√
𝑁conf)

, (10)

from which we see that the main parts become 𝑂 (1) when the flow time 𝑡 satisfies a relation
𝑒−𝜆𝑡𝑂 (𝑁) = 𝑂 (1). We thus see that the sign problem disappears at flow times 𝑡 ≳ 𝑇 = 𝑂 (ln 𝑁).

4. Tempered Lefschetz thimble method (TLTM)

4.1 Ergodicity problem in the original Lefschetz thimble method

So far, so good; when a single Lefschetz thimble is relevant to estimation, one can resolve the
sign problem simply by taking a sufficiently large flow time. However, this nice story no longer
holds true when multiple thimbles are involved in estimation, because there comes up another
problem (ergodicity problem) as the flow time increases.

Figure 1 describes the case 𝑒−𝑆 (𝑥 ) = 𝑒−𝛽𝑥
2/2 (𝑥−𝑖)𝛽 (𝛽 ≫ 1). In addition to two critical points

𝜁± = ±
√

3/2 + (1/2) 𝑖 and the associated Lefschetz thimbles J±, here is the zero of 𝑒−𝑆 (𝑧) at 𝑧 = 𝑖.
We see that the integration surface Σ𝑇 is separated into two parts by an infinitely high potential
barrier at the zero. It is thus very hard for two configurations on different parts to communicate in
stochastic processes, which means that it takes a very long computation time for the system to reach
equilibrium.

5𝜁 is said to be a critical point when 𝜕𝑆(𝜁) = (𝜕𝑖𝑆(𝜁)) = 0.
6Note that ⟨ 𝑓 (𝑧)⟩Σ0 = ⟨ 𝑓 (𝑥)⟩rewt.
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Figure 1: Ergodicity problem.

4.2 Basic algorithm of TLTM

The tempered Lefschetz thimble method [11] was invented to overcome this problem by
implementing the tempering algorithm [23–26] to the thimble method, where the flow time is used
as a tempering parameter (see Fig. 2). The basic algorithm goes as follows:

ζ −
ζ +

−J +J

iy
( )��S z = + ∞

����������	�	
�����
��������
��

x

•

0t
Σ

1t
Σ

2t
Σ

At
Σ

TΣ

0
N= ℝΣ

Figure 2: Tempered Lefschetz thimble method (TLTM).

Step 0. We fix the target flow time 𝑇 so that the sign problem is not serious for a sample on Σ𝑇

except for the ergodicity problem. This is judged by looking at the average phase factor |⟨𝑒𝑖𝜙 (𝑧)⟩Σ𝑇
|.

Step 1. We introduce replicas in between the initial integration surface Σ0 = R𝑁 and the target
deformed surface Σ𝑇 as {Σ𝑡0=0, Σ𝑡1 , . . . , Σ𝑡𝐴=𝑇 }.
Step 2. We set up a Markov chain for the extended configuration space {(𝑥, 𝑡𝛼) | 𝑥 ∈ R𝑁 , 𝛼 =

0, 1, . . . , 𝐴}.
Step 3. After equilibration, we estimate observables with a sample on Σ𝑇 .

This tempering method prompts the equilibration onΣ𝑇 because two configurations on different
connected components now can communicate easily by passing through a detour. Thus, the TLTM
solves both the sign and ergodicity problems simultaneously.

4.3 Comment on transitions between adjacent replicas

We here comment that one can expect a significant acceptance rate for transitions between
adjacent replicas [13]. To see this, let us use the initial configurations 𝑥 ∈ R𝑁 as common

6
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coordinates for different replicas. When we employ the simulated tempering [23] for a tempering
method as in the previous subsection, a configuration (𝑥, 𝑡𝛼) moves to (𝑥, 𝑡𝛼±1) (after it explores on
Σ𝑡𝛼), keeping the 𝑥-coordinate values the same.7 Since the probability distribution on every replica
has peaks at the same points 𝑥𝜎 , where 𝑥𝜎 flows to a critical point 𝑧𝜎 , we can expect a significant
overlap between distributions on two adjacent replicas.

4.4 Computational cost for the original TLTM

An obvious advantage of the original TLTM is its versatility; the method can be applied to any
system once it is formulated in a path-integral form with continuous variables, resolving the sign
and ergodicity problems simultaneously. A disadvantage is its high numerical cost. It is expected to
be 𝑂 (𝑁3−4) due to (a) the increase of the necessary number of replicas [probably as 𝑂 (𝑁0−1)] and
(b) the need to compute the Jacobian matrix of the flow, 𝐽 (𝑥) ≡ (𝜕𝑧𝑖𝑡 (𝑥)/𝜕𝑥𝑎), every time we move
configurations between adjacent replicas [𝑂 (𝑁3)]. The worldvolume TLTM [15] was introduced
to significantly reduce the computational cost.

5. Worldvolume tempered Lefschetz thimble method (WV-TLTM)

5.1 Basic idea of the Worldvolume TLTM

Instead of introducing a finite set of replicas (a finite set of integrations surfaces), we consider
in the WV-TLTM a HMC algorithm on a continuous accumulation of deformed integration surfaces,

R ≡
⋃

0≤𝑡≤𝑇
Σ𝑡 =

{
𝑧𝑡 (𝑥)

�� 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R𝑁
}
. (11)

We call R the worldvolume because this is an orbit of integration surface in the “target space”
C𝑁 = R2𝑁 (see Fig. 3).8

ζ −
ζ +

+J

iy

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������R

T
Σ

x

0

N= ℝΣ

Figure 3: Worldvolume R of WV-TLTM.

Keeping the original virtues intact (solving the sign and ergodicity problems simultaneously),
the new algorithm significantly reduces the computational cost. In fact, we no longer need to
introduce replicas explicitly or to calculate the Jacobian matrix in every molecular dynamics
process, and we can move configurations largely due to the use of HMC algorithm.

7When the parallel tempering [24–26] is employed as in Ref. [11], two configurations on adjacent replicas, (𝑥, 𝑡𝛼)
and (𝑥′, 𝑡𝛼+1), move as (𝑥, 𝑡𝛼) → (𝑥, 𝑡𝛼+1) and (𝑥′, 𝑡𝛼+1) → (𝑥′, 𝑡𝛼), again keeping the 𝑥-coordinate values the same.

8We here use a terminology in string theory, where an orbit of particle is called a worldline, that of string a worldsheet,
and that of membrane (surface) a worldvolume.
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The key idea behind the algorithm is again Cauchy’s theorem. We start from the expression
(5):

⟨O(𝑥)⟩ =

∫
Σ0

𝑑𝑥 𝑒−𝑆 (𝑥 ) O(𝑥)∫
Σ0

𝑑𝑥 𝑒−𝑆 (𝑥 )
=

∫
Σ𝑡
𝑑𝑧𝑡 𝑒

−𝑆 (𝑧𝑡 ) O(𝑧𝑡 )∫
Σ𝑡
𝑑𝑧𝑡 𝑒

−𝑆 (𝑧𝑡 )
. (12)

Cauchy’s theorem ensures that both the numerator and the denominator do not depend on 𝑡, so that
we can average over 𝑡 with an arbitrary weight 𝑒−𝑊 (𝑡 ) , leading to an integration over R:9

⟨O(𝑥)⟩ =

∫ 𝑇

0 𝑑𝑡 𝑒−𝑊 (𝑡 )
∫
Σ𝑡
𝑑𝑧𝑡 𝑒

−𝑆 (𝑧𝑡 )O(𝑧𝑡 )∫ 𝑇

0 𝑑𝑡 𝑒−𝑊 (𝑡 )
∫
Σ𝑡
𝑑𝑧𝑡 𝑒

−𝑆 (𝑧𝑡 )
=

∫
R 𝑑𝑡 𝑑𝑧𝑡 𝑒

−𝑊 (𝑡 )−𝑆 (𝑧𝑡 )O(𝑧𝑡 )∫
R 𝑑𝑡 𝑑𝑧𝑡 𝑒

−𝑊 (𝑡 )−𝑆 (𝑧𝑡 )
. (13)

5.2 Algorithm

An explicit implementation can go in two ways, as described in the original paper [15]. One is
the target-space picture, in which the HMC is performed on the worldvolume R that is treated as a
submanifold in the target space C𝑁 . The other is the parameter-space picture, in which the HMC
is performed on the parameter space {(𝑥, 𝑡)}.10

In the target-space picture, we first parametrize the induced metric on R with the ADM
decomposition [28]:

𝑑𝑠2 = 𝛼2 𝑑𝑡2 + 𝛾𝑎𝑏 (𝑑𝑥𝑎 + 𝛽𝑎 𝑑𝑡) (𝑑𝑥𝑏 + 𝛽𝑏 𝑑𝑡). (14)

Here, the functions 𝛼 and 𝛽𝑎 are called the lapse and the shifts, respectively, and 𝛾𝑎𝑏 is the induced
metric on Σ𝑡 . The invariant volume element on R is then given by

𝐷𝑧 = 𝛼 𝑑𝑡 |𝑑𝑧𝑡 (𝑥) | = 𝛼 | det 𝐽 | 𝑑𝑡 𝑑𝑥
(
| det 𝐽 | =

√︁
det 𝛾

)
, (15)

and the expectation value can be rewritten to a ratio of reweighted averages on R:

⟨O(𝑥)⟩ =
∫
R 𝐷𝑧 𝑒−𝑉 (𝑧) 𝐴(𝑧) O(𝑧)∫

R 𝐷𝑧 𝑒−𝑉 (𝑧) 𝐴(𝑧)
=

⟨𝐴(𝑧) O(𝑧)⟩R
⟨𝐴(𝑧)⟩R

. (16)

Here, the reweighted average of a function 𝑓 (𝑧) is defined by

⟨ 𝑓 (𝑧)⟩R ≡
∫
R 𝐷𝑧 𝑒−𝑉 (𝑧) 𝑓 (𝑧)∫

R 𝐷𝑧 𝑒−𝑉 (𝑧)
(17)

with 𝑉 (𝑧) ≡ Re 𝑆(𝑧) +𝑊 (𝑡 (𝑧)), and the associated reweighting factor takes the form

𝐴(𝑧) ≡ 𝑑𝑡 𝑑𝑧𝑡

𝐷𝑧
𝑒−𝑖Im 𝑆 (𝑧) = 𝛼−1(𝑧) det 𝐽

| det 𝐽 | 𝑒
−𝑖Im 𝑆 (𝑧) . (18)

9The weight 𝑒−𝑊 (𝑡 ) is determined such that the probability to appear on Σ𝑡 is (almost) independent of 𝑡.
10The latter picture was further studied in Ref. [27]. In this picture, however, the Jacobian determinant det 𝐽 (𝑥) is

treated as part of observable, which is exponentially large and has no guarantee to have a significant overlap with the
weight 𝑒−Re 𝑆 (𝑧𝑡 (𝑥 ) ) . This is why we have not pursued the second option seriously in the original paper [15].
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π

π ′

Figure 4: RATTLE on the worldvolume R [15].

The reweighted average can be estimated with the RATTLE algorithm [29, 30], where molecular
dynamics is performed on R which is treated as a submanifold of C𝑁 [15]. The algorithm takes the
following form (see Fig. 4):11

𝜋1/2 = 𝜋 − Δ𝑠 𝜕𝑉 (𝑧) − 𝜆𝑎𝐹𝑎 (𝑧), (19)
𝑧′ = 𝑧 + Δ𝑠 𝜋1/2, (20)
𝜋′ = 𝑧 − Δ𝑠 𝜕𝑉 (𝑧′) − 𝜆′𝑎𝐹𝑎 (𝑧′). (21)

Here, 𝐹𝑎 (𝑧) ≡ 𝑖𝐽𝑎 (𝑧) (𝑎 = 1, . . . , 𝑁) with 𝐽𝑎 ≡ (𝐽𝑖𝑎 = 𝜕𝑧𝑖𝑡 (𝑥)/𝜕𝑥𝑎) form a basis of the normal space
𝑁𝑧Σ𝑡 at 𝑧 ∈ Σ𝑡 (⊂ R). The Lagrange multipliers 𝜆𝑎 and 𝜆′𝑎 are determined using 𝐸0(𝑧) ≡ 𝜕𝑆(𝑧)
such that

• 𝑧′ ∈ R and 𝜆𝑎𝐹𝑎 (𝑧) ⊥ 𝐸0(𝑧), (22)
• 𝜋′ ∈ 𝑇𝑧′R and 𝜆′𝑎𝐹𝑎 (𝑧′) ⊥ 𝐸0(𝑧′). (23)

The second equation in each line ensures that 𝜆𝑎𝐹𝑎 (𝑧) actually belongs to 𝑁𝑧R (⊂ 𝑁𝑧Σ𝑡 ). The
statistical analysis method for WV-TLTM (or more generally, for WV-HMC that is the HMC
algorithm on a foliated manifold) is established in Ref. [16].

5.3 Various models to which (WV-)TLTM is applied

The (WV-)TLTM has been successfully applied to various models, including
• (0 + 1)-dimensional massive Thirring model [11]
• two-dimensional Hubbard model [13, 14]
• Stephanov model (a chiral random matrix model as a toy model of finite density QCD) [15]
• antiferromagnetic Ising model on the triangular lattice [33].
Correct results have always been obtained when they can be compared with analytic results, although
the system sizes are yet small.

In the next section, we discuss the application of WV-TLTM to the Stephanov model.

11RATTLE on a single Lefschetz thimble J = Σ𝑡=∞ was first introduced in Ref. [9], which is extended to Σ𝑡 with
finite 𝑡 in Ref. [31] (see also Ref. [14] for the combination of RATTLE with the tempering algorithm).

9
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6. Application to the Stephanov model

6.1 Stephanov model

The finite density QCD is given by the following partition function after 𝑁 𝑓 quark fields
(assumed to have the same mass) are integrated out:

𝑍QCD = tr 𝑒−𝛽 (𝐻−𝜇𝑁 )

=

∫
[𝑑𝐴𝜇] 𝑒 (1/2𝑔2

0 )
∫
𝑑4𝑥 tr 𝐹2

𝜇𝜈 Det 𝑁 𝑓

(
𝑚 𝜎𝜇 (𝜕𝜇 + 𝐴𝜇) + 𝜇

𝜎†(𝜕𝜇 + 𝐴𝜇) + 𝜇 𝑚

)
. (24)

The Stephanov model [34, 35] takes the following form at temperature 𝑇 = 0:

𝑍Steph =

∫
𝑑2𝑊 𝑒−𝑛 tr𝑊†𝑊 det 𝑁 𝑓

(
𝑚 𝑖𝑊 + 𝜇

𝑖𝑊† + 𝜇 𝑚

)
, (25)

where the 𝑛 × 𝑛 complex matrix 𝑊 = (𝑊𝑖 𝑗) = (𝑋𝑖 𝑗 + 𝑖𝑌𝑖 𝑗) represents quantum-field degrees of
freedom (including space-time dependences).12 This model plays a particularly important role
because (a) it well approximates the qualitative behavior of finite-density QCD at large matrix sizes
and (b) it has a serious sign problem which can hardly be solved by the complex Langevin method
due to a wrong convergence [36].

Figures 5 and 6 show the results for the chiral condensate ⟨�̄�𝜓⟩ and the number density
⟨𝜓†𝜓⟩ at 𝑛 = 10, 𝑚 = 0.004 and 𝑁 𝑓 = 1 obtained with the WV-TLTM, where the sample size
is 𝑁conf = 4, 000 − 17, 000 (varying on 𝜇). We see that they agree with the exact results within
statistical errors. For comparison, we also plot the results obtained with the naive reweighting
method (showing large deviations from the exact values due to the sign problem) and also with the
complex Langevin method (exhibiting a serious wrong convergence). The sample size is 𝑁conf = 104

for both the reweighting and the complex Langevin.

�����������

	
�������������
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Figure 5: Chiral condensate ⟨�̄�𝜓⟩ ≡ (1/2𝑛) (𝜕/𝜕𝑚) ln 𝑍Steph [15].

6.2 Computational scaling

In the RATTLE algorithm, we need to make an inversion of the linear problem, 𝐽𝑣 = 𝑏 (𝐽: the
Jacobian matrix). The total numerical cost of WV-TLTM depends on which solver is used.

12The degrees of freedom is given by 𝑁 = 2𝑛2, which should be compared with those of link variables, 4𝐿4 (𝑁2
𝑐 − 1),

where 𝐿 is the linear size of four-dimensional square lattice and 𝑁𝑐 is color.

10
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Figure 6: Number density ⟨𝜓†𝜓⟩ ≡ (1/2𝑛) (𝜕/𝜕𝜇) ln 𝑍Steph [15].

When a direct method (e.g., LU decomposition) is used, the computational cost is expected
to be 𝑂 (𝑁3). In this case, the Jacobian matrix 𝐽 = (𝐽𝑡 (𝑥)) is explicitly computed by numerically
integrating the differential equation ¤𝐽𝑡 = 𝜕2𝑆(𝑧𝑡 ) 𝐽𝑡 together with Eq. (6), whose cost is also𝑂 (𝑁3).
Figure 7 shows the real computation time for generating a single configuration, performed on a
supercomputer (Yukawa-21) at Yukawa Institute, Kyoto University. We clearly see that it scales as
expected, and smaller than 𝑂 (𝑁3−4) expected for the original TLTM. We also see that the aid of
GPU is quite effective.

Figure 7: Computation time to generate a configuration with a direct method in the linear inversion.

The computational cost can be further reduced if we adopt an iterative method (such as
BiCGStab) as in Ref. [32]. The numerical cost is then expected to be 𝑂 (𝑁2) if the Krylov subspace
iteration converges quickly. This factor will be multiplied by 𝑂 (𝑁1/4) if we reduce the step size of
molecular dynamics so that the acceptance rate of the final Metropolis test is independent of 𝑁 .

7. Summary and outlook

We have reported that the tempered Lefschetz thimble method and its worldvolume extension,
(WV-)TLTM, has a potential to be a reliable and versatile solution to the sign problem, because the
algorithm solves the sign and ergodicity problems simultaneously and can be applied to any system
in principle if it is formulated in a path-integral form with continuous variables. The (WV-)TLTM

11
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has been successfully applied to various models (yet only to toy models with small DOF at this
stage), which include important toy models such as the Stephanov model (for finite density QCD),
the 1D/2D Hubbard model (for strongly correlated electron systems), and the antiferromagnetic
Ising model on the triangular lattice (for frustrated classical/quantum spin systems).

We are now porting the code of WV-TLTM such that it can run on a large-scale supercomputer,
which we expect to be completed soon. In parallel with this, it should be important to keep improving
the algorithm itself so that the estimation can be made more efficiently for large-scale systems. It
would be also interesting to combine various algorithms that have been proposed as solutions
to the sign problem. An interesting candidate we have in mind as a partner of (WV-)TLTM
is the tensor renormalization group method, which is actually complementary to Monte Carlo
method in many aspects. A particularly important subject in the near future will be to establish
a Monte Carlo algorithm for the calculation of time-dependent systems. This will open a way to
the quantitative understanding of nonequilibrium processes, such as those happening in heavy ion
collision experiments and in the very early universe.

A study along these lines is in progress, and we hope we can report some of the achievements
in the next Corfu conference.

Acknowledgments

The authors thank Issaku Kanamori, Yoshio Kikukawa and Jun Nishimura for useful discus-
sions. M.F. thanks the organizers of Corfu 2021, especially George Zoupanos and Konstantinos
Anagnostopoulos, for organizing wonderful conference series. This work was partially supported
by JSPS KAKENHI Grant Numbers JP20H01900, JP21K03553. N.M. is supported by the Special
Postdoctoral Researchers Program of RIKEN. Some of our numerical calculations are performed
on Yukawa-21 at Yukawa Institute for Theoretical Physics, Kyoto University.

References

[1] G. Parisi, “On complex probabilities,” Phys. Lett. 131B, 393 (1983).

[2] J. R. Klauder, “Stochastic quantization,” Acta Phys. Austriaca Suppl. 25, 251-281 (1983)

[3] J. R. Klauder, “Coherent state Langevin equations for canonical quantum systems with appli-
cations to the quantized Hall effect,” Phys. Rev. A 29, 2036-2047 (1984)

[4] G. Aarts, F. A. James, E. Seiler and I. O. Stamatescu, “Complex Langevin: Etiology and
diagnostics of its main problem,” Eur. Phys. J. C 71, 1756 (2011) [arXiv:1101.3270 [hep-lat]].

[5] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty and I. O. Stamatescu, “Controlling complex
Langevin dynamics at finite density,” Eur. Phys. J. A 49, 89 (2013) [arXiv:1303.6425 [hep-lat]].

[6] K. Nagata, J. Nishimura and S. Shimasaki, “Argument for justification of the complex Langevin
method and the condition for correct convergence,” Phys. Rev. D 94, no. 11, 114515 (2016)
[arXiv:1606.07627 [hep-lat]].

12



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
4

Numerical sign problem and the tempered Lefschetz thimble method Masafumi Fukuma

[7] E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv. Math. 50,
347-446 (2011) [arXiv:1001.2933 [hep-th]].

[8] M. Cristoforetti, F. Di Renzo and L. Scorzato, “New approach to the sign problem in quantum
field theories: High density QCD on a Lefschetz thimble,” Phys. Rev. D 86, 074506 (2012)
[arXiv:1205.3996 [hep-lat]].

[9] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, “Hybrid Monte Carlo
on Lefschetz thimbles - A study of the residual sign problem,” JHEP 1310, 147 (2013)
[arXiv:1309.4371 [hep-lat]].

[10] A. Alexandru, G. Başar, P. F. Bedaque, G. W. Ridgway and N. C. Warrington, “Sign prob-
lem and Monte Carlo calculations beyond Lefschetz thimbles,” JHEP 1605, 053 (2016)
[arXiv:1512.08764 [hep-lat]].

[11] M. Fukuma and N. Umeda, “Parallel tempering algorithm for integration over Lefschetz
thimbles,” PTEP 2017, no. 7, 073B01 (2017) [arXiv:1703.00861 [hep-lat]].

[12] A. Alexandru, G. Başar, P. F. Bedaque and N. C. Warrington, “Tempered transitions between
thimbles,” Phys. Rev. D 96, no.3, 034513 (2017) [arXiv:1703.02414 [hep-lat]].

[13] M. Fukuma, N. Matsumoto and N. Umeda, “Applying the tempered Lefschetz thimble method
to the Hubbard model away from half filling,” Phys. Rev. D 100, no. 11, 114510 (2019)
[arXiv:1906.04243 [cond-mat.str-el]].

[14] M. Fukuma, N. Matsumoto and N. Umeda, “Implementation of the HMC algorithm on the
tempered Lefschetz thimble method,” [arXiv:1912.13303 [hep-lat]].

[15] M. Fukuma and N. Matsumoto, “Worldvolume approach to the tempered Lefschetz thimble
method,” PTEP 2021, no. 2, 023B08 (2021) [arXiv:2012.08468 [hep-lat]].

[16] M. Fukuma, N. Matsumoto and Y. Namekawa, “Statistical analysis method for the worldvolume
hybrid Monte Carlo algorithm,” PTEP 2021, no.12, 123B02 (2021) [arXiv:2107.06858 [hep-
lat]].

[17] Y. Mori, K. Kashiwa and A. Ohnishi, “Toward solving the sign problem with path optimization
method,” Phys. Rev. D 96, no.11, 111501 (2017) [arXiv:1705.05605 [hep-lat]].

[18] A. Alexandru, P. F. Bedaque, H. Lamm and S. Lawrence, “Finite-Density Monte Carlo Calcula-
tions on Sign-Optimized Manifolds,” Phys. Rev. D 97, no.9, 094510 (2018) [arXiv:1804.00697
[hep-lat]].

[19] H. Fujii, S. Kamata and Y. Kikukawa, “Lefschetz thimble structure in one-dimensional lattice
Thirring model at finite density,” JHEP 11, 078 (2015) [erratum: JHEP 02, 036 (2016)]
[arXiv:1509.08176 [hep-lat]].

[20] A. Alexandru, G. Başar, P. F. Bedaque and N. C. Warrington, “Complex paths around the sign
problem,” Rev. Mod. Phys. 94, no.1, 015006 (2022) [arXiv:2007.05436 [hep-lat]].

13



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
4

Numerical sign problem and the tempered Lefschetz thimble method Masafumi Fukuma

[21] M. Levin and C. P. Nave, Phys. Rev. Lett. 99, no.12, 120601 (2007)
doi:10.1103/PhysRevLett.99.120601 [arXiv:cond-mat/0611687 [cond-mat.stat-mech]].

[22] M. Fukuma, D. Kadoh and N. Matsumoto, “Tensor network approach to 2D Yang-Mills
theories,” [arXiv:2107.14149 [hep-lat]].

[23] E. Marinari and G. Parisi, “Simulated tempering: A new Monte Carlo scheme,” Europhys.
Lett. 19, 451-458 (1992) [hep-lat/9205018].

[24] R. H. Swendsen and J.-S. Wang, “Replica Monte Carlo simulation of spin-glasses,” Phys. Rev.
Lett. 57 2607 (1986).

[25] C. J. Geyer, “Markov chain Monte Carlo maximum likelihood,” in computing science and
statistics: Proceedings of the 23rd Symposium on the Interface, American Statistical Associ-
ation, New York, p. 156 (1991).

[26] K. Hukushima and K. Nemoto, “Exchange Monte Carlo method and application to spin glass
simulations,” J. Phys. Soc. Jpn. 65, 1604 (1996).

[27] G. Fujisawa, J. Nishimura, K. Sakai and A. Yosprakob, “Backpropagating Hybrid Monte Carlo
algorithm for fast Lefschetz thimble calculations,” [arXiv:2112.10519 [hep-lat]].

[28] R. L. Arnowitt, S. Deser and C. W. Misner, “The Dynamics of general relativity,” Gen. Rel.
Grav. 40, 1997-2027 (1962) [arXiv:gr-qc/0405109 [gr-qc]].

[29] H. C. Andersen, “RATTLE: A “velocity” version of the SHAKE algorithm for molecular
dynamics calculations,” J. Comput. Phys. 52, 24 (1983).

[30] B. J. Leimkuhler and R. D. Skeel, “Symplectic numerical integrators in constrained Hamilto-
nian systems,” J. Comput. Phys. 112, 117 (1994).

[31] A. Alexandru, “Improved algorithms for generalized thimble method,” talk at the 37th inter-
national conference on lattice field theory, Wuhan, 2019.

[32] A. Alexandru, G. Başar, P. F. Bedaque and G. W. Ridgway, “Schwinger-Keldysh formalism
on the lattice: A faster algorithm and its application to field theory,” Phys. Rev. D 95, no.11,
114501 (2017) [arXiv:1704.06404 [hep-lat]].

[33] M. Fukuma, N. Matsumoto and N. Umeda, “Applying the tempered Lefschetz thimble method
to the sign problem of quantum spin systems and the estimation of the computational scaling,”
talk at JPS 2020 Autumn Meeting (Condensed Matter Physics division), online, 2020.

[34] M. A. Stephanov, “Random matrix model of QCD at finite density and the nature of the
quenched limit,” Phys. Rev. Lett. 76, 4472 (1996) [hep-lat/9604003].

[35] M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov and J. J. M. Verbaarschot, “On
the phase diagram of QCD,” Phys. Rev. D 58, 096007 (1998) [hep-ph/9804290].

14



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
4

Numerical sign problem and the tempered Lefschetz thimble method Masafumi Fukuma

[36] J. Bloch, J. Glesaaen, J. J. M. Verbaarschot and S. Zafeiropoulos, “Complex Langevin Sim-
ulation of a Random Matrix Model at Nonzero Chemical Potential,” JHEP 03, 015 (2018)
[arXiv:1712.07514 [hep-lat]].

15


	Introduction
	Sign problem
	What is the sign problem?
	Various approaches proposed so far

	Lefschetz thimble method
	Tempered Lefschetz thimble method (TLTM)
	Ergodicity problem in the original Lefschetz thimble method
	Basic algorithm of TLTM
	Comment on transitions between adjacent replicas
	Computational cost for the original TLTM

	Worldvolume tempered Lefschetz thimble method (WV-TLTM)
	Basic idea of the Worldvolume TLTM
	Algorithm
	Various models to which (WV-)TLTM is applied

	Application to the Stephanov model
	Stephanov model
	Computational scaling

	Summary and outlook

