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1. Introduction

In view of the success of lattice gauge theory in understanding the nonperturbative dynamics of
QCD such as quark confinement and the spontaneous chiral symmetry breaking, it is quite natural to
consider that some kind of nonperturbative formulation of superstring theory should play a crucial
role in understanding the expected dynamics such as the compactification of six extra dimensions.
Indeed in 1996, the IKKT matrix model [1] (or the type IIB matrix model) was proposed as such
a formulation. Since then, numerical studies have been performed by many people in order to
understand the dynamical properties of the model.

The model has ten bosonic N x N Hermitian matrices, whose eigenvalue distribution describes
the ten-dimensional space-time in the large-N limit. It is therefore possible that the eigenvalue
distribution collapses to a lower-dimensional manifold, which implies that the “compactification”
can occur dynamically in this model. When this happens, the (9+1)D Lorentz symmetry of the
model has to be spontaneously broken.

There are quite a few pieces of evidence that the IKKT model provides a nonperturbative
formulation of superstring theory. In particular, direct connections to perturbative formulation
of superstring theory can be seen by considering the type IIB superstring theory in 10D. First,
the action of the model can be regarded as a kind of matrix regularization of the worldsheet
action of type IIB superstring theory in the Schild gauge [1]. Unlike the worldsheet formulation
of superstring theory, however, the matrix model is expected to be a “second quantization” of
superstrings because multiple worldsheets appear naturally in the matrix model as block-diagonal
configurations, where each block represents a single worldsheet embedded into the 10-dimensional
target space. Second, under a few modest assumptions, one can derive the string field Hamiltonian
for type IIB superstring theory from Schwinger-Dyson equations for the Wilson loop operators,
which play the role of creation and annihilation operators of strings [2]. If this is true, the IKKT
matrix model can reproduce perturbative expansions in type IIB superstring theory to all orders.

In these connections to type IIB superstring theory, one identifies the eigenvalues of the matri-
ces A, as the target space coordinates. This identification is suggested also by the supersymmetry
algebra of the model, in which the translation that appears from the anti-commutator of supersym-
metry generators is identified with the shift symmetry A, — A, +a,1 of the model, where o, € R.
It is also important to note that the model has extended N = 2 supersymmetry in ten dimensions,
which suggests that the model should include gravity since it is known in field theory that N’ = 1
supersymmetry is the maximal one that can be achieved in ten dimensions without including gravity.

For many years, the IKKT matrix model was studied in its SO(10) symmetric Euclidean version,
which is related to the Lorentzian version by deforming the integration contour of the 10 bosonic
matrices. This contour deformation amounts to multiplying some phase factors to the temporal
and spatial matrices, which is allowed since there is no singularity that one has to go through. We
can confirm explicitly that the Lorentzian version is indeed equivalent to the Euclidean version by
measuring correlation functions, which are identical up to some phase factors [3, 4]. Since the
emergent space-time in the Euclidean version has Euclidean signature, the equivalence between
the Lorentzian and Euclidean versions clearly poses a big challenge in obtaining a Lorentzian
space-time in the IKKT model. (See Refs. [5—7] for other recent developments on this model.)

Here we overcome this situation by adding a Lorentz invariant “mass” term to the original
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model [8]. The motivation for this term comes from our observation [9] that such a modified
model have classical solutions representing space-time with Lorentzian signature, which exhibits
expanding behavior with any number of expanding directions. If the mass is large enough, the path
integral is expected to be dominated by one of such classical solutions. The equivalence to the
Euclidean model is avoided since the corresponding SO(10) invariant mass term will have a phase
factor e37 with a negative real part, which makes the integral divergent. The mass is sent to zero
after taking the large-N limit so that the supersymmetry is restored. In such a limit, we expect to
obtain an inequivalent model, in which (3+1)D expanding space-time with Lorentzian signature
appears at late times.!

Unfortunately, it is extremely hard to perform Monte Carlo studies of these matrix models
due to the so-called sign problem caused by the complex weight in the partition function. In the
Euclidean IKKT model, it comes from the Pfaffian that is obtained by integrating out fermionic
matrices, while in the Lorentzian IKKT model, it comes from the phase factor ¢S with the bosonic
action Sp. If we treat the phase of the complex weight by reweighting, huge cancellation among
configurations with different phases occurs, which makes the calculation impractical. Recently
the complex Langevin method (CLM) [18, 19] has been attracting much attention as a promising
approach to this problem [20-24]. Here we use the same method in addressing the issues discussed
above using a technique [16] which enables us to extract the time evolution [10] from matrices
generated by the CLM.

The rest of this article is organized as follows. In section 2 we discuss the problem in the original
IKKT matrix model that one cannot obtain space-time with Lorentzian signature. In section 3 we
introduce the Lorentz invariant mass term to solve the problem of the original model. In section 4
we discuss how to extract the time evolution from matrix configurations. In section 5 we discuss
how we apply the CLM to this model. In section 6 we present our numerical results for the bosonic
model with the mass term, which show the emergence of (1+1)D expanding space-time. Section 7
is devoted to a summary and discussions. In particular, we speculate on the emergence of (3+1)D
expanding space-time when the fermionic matrices are added.

2. A problem in the original IKKT matrix model

The action of the IKKT matrix model is given by [1]

S = Sp+S¢, 1
1
Sy, = —@Tr ([Au AV][A*, AY]) | (2)
1
St = —3aTr (lpa (CT™) g [ Ape lPﬁ]) , 3)
where the bosonic variables A, (1 =0,...,9) and the fermionic variables ¥, (o =1,...,16)

are N X N Hermitian matrices. I'* are 10D gamma-matrices after the Weyl projection and C

1The Monte Carlo simulations in Refs. [10-14] avoided the sign problem by an approximation, which turned out to
be unjustifiable [15]. Moreover, the observed 3D expanding space turned out to be represented by Pauli matrices [15].
The present work is based on the CLM to overcome the sign problem [16], which revealed a new phase with the emergent
space-time being continuous instead of having the Pauli-matrix structure [17].
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is the charge conjugation matrix. The “coupling constant” g is merely a scale parameter in this
model since it can be absorbed by rescaling A, and ¥, appropriately. In what follows, we set
g’ = % without loss of generality. The indices u and v are contracted using the Lorentzian metric
Nuy = diag (=1,1,...,1).

The partition function of the Lorentzian IKKT matrix model can be written as [10]

Z= / dA e" PEM (A) )

where Pf M (A) is obtained by integrating out the fermionic matrices, and it is a polynomial in A

(331

that is known to take real values. The “i” in front of the bosonic action is motivated from the fact
that the string worldsheet metric should also have Lorentzian signature. Note also that the bosonic
action (2) can be written as

Sp = ;LNTr (Fuy F*) = %N {—2Tr(Fol~)2 +Tr (Fij)z} ; )

where we have introduced the Hermitian matrices F,,, = i[A,, A, ]. Since the two terms in the last
expression have opposite signs, Sy, is not positive semi-definite, and it is not bounded from below.

Clearly the integral that appears in (4) is not absolutely convergent. In order to cure this
problem, we use Cauchy’s theorem and deform the integration contour for A, in (4) as

AO — e—3s7ri/8A’O ,

A; = TBA; (6)

where A u are Hermitian. This amounts to making the bosonic action
Sp,=N {—%e_”i/zTr (Foi)? + %e”i/zTr (Fij)z} @)
= Ne'mi/2 {%Tr [e_s”i/zﬁo, Ai]z + %Tr (F,-J-)Z} , ®)

s7i/2 jn (8) can be identified as

—s7i/2

where we have defined F uv =1 [A u A, ]. The overall phase factor e
the Wick rotation of the worldsheet coordinates, whereas the phase factor e in front of Ay can
be identified as the Wick rotation of the target space coordinates. Similarly, the Pfaffian PfM (A)
in (4) is replaced by PEM (e ™57/2 Ay, A;) up to some irrelevant constant phase factor. In particular,
at s = 1, one obtains the Euclidean IKKT model, for which the bosonic part ¢ in (4) becomes real
positive for (8) and the fermionic part PfM(—iAg, A;) becomes complex. From (7), on the other
hand, one finds ImS}, > O for generic configurations? if 0 < s < 2, which suggests that the model
(4) becomes well defined in that region. Therefore, one can define the Lorentzian model by taking
the s — O limit3.

2There is a subtlety due to the flat direction Sy, = 0 corresponding to the configurations that satisfy [A w A,] =0.
Despite this subtlety, the finiteness of the partition function (4) is confirmed for s = 1, which corresponds to the Euclidean
IKKT model [25, 26]. We consider that the proof in Ref. [26] can be extended to 0 < s < 2.

3The author would like to thank Yuhma Asano for pointing this out to him in 2018.
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The model defined in this way is actually equivalent to the Euclidean IKKT model. For
instance, we obtain [3, 4]

3n

1 E .
Tr (A :‘4‘—TA2>, 9
(brecaor) =54 Lreiao?] 0

Y

1 1 _
—Tr(A =ed (=T A,—2>, 10
< r()>L <Nr()E (10)

where the suffixes “L” and “E” imply that the expectation values are defined in the Lorentzian model
and the Euclidean model, respectively. One can prove that the expectation values ( Il, Tr (Ao)z> and
( ~ It (A; )2>E are real positive using the fact that the Pfaffian becomes complex conjugate under the
parity transformation A, — —A,, for some y. This means that (3 Tr (Ag)?), and (FTr (A;)%),
have the phase factors e ~Fiand e % !, respectively. Thus the space-time that appears dynamically
in the Lorentzian model has Euclidean signature.

The Euclidean IKKT model has been studied recently by the complex Langevin method [27],
and the rotational SO(10) symmetry is found to be spontaneously broken down to SO(3) as suggested
earlier by the Gaussian expansion method [28]. While this is certainly an interesting dynamical
property of the Euclidean IKKT model, its relevance to our real world is unclear.

3. Adding a Lorentz invariant ‘“mass” term

In order to overcome this situation, we propose to add a Lorentz invariant “mass” term to the
original model [8]. Namely, we add to the bosonic action (5), a quadratic term

Sm = —%N'yTr (A#A”) = %N’y {TI‘(A())2 - TI'(Ai)z} , (11)

where y > 0 is a parameter which is sent to zero after taking the large-N limit.
The motivation for this mass-deformed model defined above comes from our observation [9]
that the classical equation of motion*

[AY, [Ay, Au]] —vAL =0 (12)

derived from it has infinitely many solutions with Hermitian A, which represent space-time with
Lorentzian signature. Moreover, these solutions exhibit expanding behavior generically with any
number of expanding directions. If the coefficient y of the mass term is large enough, the path
integral is expected to be dominated by one of such classical solutions.> Our numerical results
presented below suggest that the expanding behavior continues longer as we decrease y although
there is a transition to the “Euclidean phase” at some critical y.(N) for finite N. It is conceivable
that y.(N) — 0 in the large-N limit since the expanding phase is entropically favored in that limit
compared to the Euclidean phase, in which the extent of space-time remains finite. Thus we expect
to obtain a space-time with Lorentzian signature and expanding behavior if we take the y — 0 limit
after the large-N limit.

4The mass term was introduced originally to represent the effects of the infrared cutoff used in the simulation [10].
>This can be understood by rescaling A, = \/7A~ u» which makes the total action proportional to ¥2. Hence at large
v, the path integral is dominated by some saddle-point configuration satisfying aaTS = 0, which is nothing but (12).
M
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The reason why we can avoid the problem of the original model discussed in the previous
section can be understood as follows. Upon rotation of the integration contour (6), one obtains

1 ; - - 7
Sm = ENy{e—&m/‘*Tr(Ao)z—e“”’/“Tr(A»z}. (13)

Unlike (7), one finds that ImS;, < 0 for0 < s < ‘3—‘, which implies that the bosonic part e’5» in the
partition function can become arbitrarily large in magnitude for (13). Therefore, one cannot make
the model well defined by simply introducing s > 0 and taking the s — O limit. In particular, at
s = 1, one obtains

1 ‘ _ 3
S, = ENyieS’”/“{Tr(A0)2+Tr(A,-)2}, (14)

37i/4 with a

which makes the corresponding Euclidean model ill defined due to the phase factor e
negative real part in front of the SO(10) invariant mass term.
In order to make the mass-deformed IKKT model well defined for finite y and finite N, we can

think of introducing some convergence factor in (11) as
1 . .
ste) = SNy {e'°Tr(Ag)? — e '*Tr(A)?} . (15)

We deform the integration contour as (6) and take the s — 0 limit before we take the £ — 0 limit.

Let us emphasize that the sign of the mass term (11) is crucial. For y < 0, we have ImSy,, > 0
for0 < s < ‘3—‘, which enables us to connect the theory to the Euclidean model with the mass term
(14), which is well defined. Therefore the situation is qualitatively the same as in the y = 0 case,
and nothing dramatic happens.

It is also known [9] that the classical equation of motion (12) does not have expanding solutions
for y < 0. When y = 0, the classical equation of motion (12) is satisfied if and only if all the
matrices are commutative; i.e., [A,, A, ] = 0 as is proved in Appendix A of ref. [29].

The mass term can be interpreted as the cosmological constant in the Einstein equation, which
is derived from the IKKT matrix model [30]. Incidentally, the mass term is introduced in obtaining
interesting classical solutions in Refs. [6, 29, 31-34]. See also Refs.[35-38] for related work, which
discuss the signature change in the IKKT type of matrix models from a different viewpoint.

4. How to extract the time evolution

Let us explain how we can extract the time evolution from matrix configurations following
ref. [10]. For that, we use the SU (N) symmetry of the model to bring the temporal matrix Ag into
the diagonal form

Ag = diag (ay,...,an) , where a; < ... <apy . (16)

By “fixing the gauge” in this way, we can rewrite the partition function (4) as

N
Z = / ndaaA(a)z / dA; ' SvSm) PEM (A) (17)
a=1
N
Ale) = 1_[ (g —ap) , (18)
a>b
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where A (@) is the van der Monde determinant. The factor A (a)? in (17) appears from the Fadeev-
Popov procedure for the gauge fixing, and it acts as a repulsive potential between a,,.

We can extract a time-evolution from matrix configurations of A,. A crucial observation is
that the spatial matrices A; have a band-diagonal structure in the SU(V) basis in which Ag has the
diagonal form (16). See Fig. 3 (Right). More precisely, there exists some integer n such that the
elements of spatial matrices (A;),, for |a — b| > n are much smaller than those for |a — b| < n.
Based on this observation, we may naturally consider n X n submatrices of A;,

(A_i)lj (tV) = (Ai)v+l,v+J s (19)

where I,J =1,...,n,v=0,1,..., N —n, and ¢, is defined by

\4

ty= )1y =l (20)
p=1
1 n
@y =~ > (aver) @1
I=1

We interpret the A, (¢) as representing the state of the universe at time ¢. Note that @, € C in general,
since the weight in (17) is complex. The appearance of real time implies that @, — @, € R.
Using A; (1), we can define, for example, the extent of space at time 7 as

1 T 2
R (1) = <;tr D (A () > : (22)
where tr represents a trace over the n X n submatrix. Since R*>(t) e Cin general, let us define

R (1) = VIR (1)] . (23)

The appearance of real space implies that 65(¢) = 0.
We also define the “moment of inertia tensor”

7y (1) = (A0 A () 24)

which is a 9 x 9 real symmetric matrix since A;(¢) is Hermitian. The eigenvalues of T; ; (¢), which
we denote by A; (¢) with the order

@)>@)>...>2(), 25)

represent the spatial extent in each of the nine directions at time 7. Note that the expectation values
(A; (t)) € Ctend to be equal in the large-N limit if the SO(9) symmetry is not spontaneously broken.
If some of the eigenvalues (1; (¢)) (i = 1,. .., d) have significantly larger modulus than the rest, it
implies that d-dimensional space appears dynamically.

5. Applying the complex Langevin method

In this section, we review the CLM and discuss how we apply it to the model (17).
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5.1 Brief review of the CLM

Let us consider a system

7= / dx e 5™ (26)

of N real variables x; (k = 1, ..., N) as asimple example. Here the action S(x) is a complex-valued
function, which causes the sign problem.

In the CLM, the original real variables x; are complexified as x;y — zx = xx +iyx € C and one
considers a fictitious time evolution of the complexified variables zx using the complex Langevin
equation given, in its discretized form, by

2P (t+€) =27 (1) + evi (2 (1) + Vene (1) 27)

where ¢ is the fictitious time with a stepsize €. The second term v, (z) on the right-hand side is
called the drift term, which is defined by holomorphic extension of the one
oS (x)

axk

vie(x) = - (28)
for the real variables x;. The variables n(#) appearing on the right-hand side of eq. (27) are a
real Gaussian noise with the probability distribution o et Zeme(0) 2, which makes the time-evolved
variables z,((") (#) stochastic. The expectation values with respect to the noise 7 (¢) are denoted as
(- )y in what follows.

Let us consider the expectation value of an observable O(x). In the CLM, one computes the
expectation value of the holomorphically extended observable O(z) for complexified variables z.
Then, the correct convergence of the CLM implies the equality

1
; ; (m - — -S(x)
tlgglo llirb <O(z (t))>77 = / dxO(x)e , 29)

where the right-hand side is the expectation value of O(x) in the original theory (26). A proof of
eq. (29) was given in refs. [20, 21], where the notion of the time-evolved observable O(z;t) plays
a crucial role. In particular, it was pointed out that the integration by parts used in the argument
cannot be justified when the probability distribution of z; that appears during the simulation falls
off slowly in the imaginary direction.

While this argument provided theoretical understanding of the cases in which the CLM gives
wrong results, the precise condition on the probability distribution was not specified. Furthermore,
there is actually a subtlety in defining the time-evolved observable O(z;¢). Recently ref. [24]
provided a refined argument for justification of the CLM, which showed that the probability for
the drift term v (z) to become large has to be suppressed strongly enough. More precisely the
histogram of the magnitude of the drift term should fall off exponentially or faster. This criterion
tells us whether the results obtained by the CLM are reliable or not.

5.2 Applying the CLM to the bosonic IKKT model with the mass term

Let us apply the CLM to the model (17) following ref. [16]. From now on, we omit the Pfaffian
and consider the bosonic model for simplicity.
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The first step of the CLM is to complexify the real variables. As for the spatial matrices
A;, we simply treat them as general complex matrices instead of Hermitian matrices. As for the
temporal matrix Ag, which is diagonalized as (16), we have to take into account the ordering of the
eigenvalues. For that purpose, we make the change of variables as

N-1
a;1=0, a=e", az=e"+e, ..., aN=ZeT“ 30)
a=1
so that the ordering is implemented automatically, and then complexify 7, (a = 1,...,N — 1).

Using the shift symmetry Ay — Ao + const.1 of the original IKKT action, we make a shift
Ay — Ag - #Tr Ag so that Ag becomes traceless in what follows.
The effective action that appears in the Boltzmann weight eS¢ reads

1 1
Seff = — ZiN{z Tr [Ag, A;]% = Tr [A;, Aj]z} - EiNy{Tr(Ao)z - Tr(Ai)z}
N-1
—logA(a) - Ta (31
a=1
where the last term comes from the Jacobian associated with the change of variables (30). The
complex Langevin equation is given by

dTa _ BSeff
- or, +1a(1),
d(Ai)ap 0Ses
== ila 2 2
= T aans  ma® (32)

where the 77, (¢) in the first equation are random real numbers obeying the probability distribution
exp(—% f dt Y ,{n.()}?) and the n;(¢) in the second equation are random Hermitian matrices
obeying the probability distributions exp —% / dtY,; Tr{n:(1)}?).

The expectation values of observables can be calculated by defining them holomorphically
for complexified 7, and A; and taking an average using the configurations generated by solving
the discretized version of (32) for sufficiently long time. In order for this method to work, the
probability distribution of the drift terms, namely the first terms on the right-hand side of (32), has
to fall off exponentially [24]. We have checked that this criterion is indeed satisfied for all the values
of parameters used in this paper.

6. Results for the bosonic IKKT model with the mass term

In this section we present our preliminary results for the bosonic IKKT model (17) with the
mass term [8]. We choose the matrix size to be N = 32 and set £ = 0 in (15) for simplicity.

When the mass term is absent y = 0, we obtain the results equivalent to the Euclidean model
as in (9) and (10). The complex Langevin simulation is completely stable. This is understandable
since for y = 0 the simulation can find the contour deformation by itself ending up in simulating
the Euclidean model, which is free from the sign problem.®

%Note that this is no more the case if we incorporate the Pfaffian in the simulation.
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Figure 1: The expectation values («;) are plotted in the complex plane for y = 1,3,5,7. The solid line
represents the prediction (9) for y = 0 obtained from the equivalence to the Euclidean IKKT model.

When we start our simulation with large y, however, the simulation turns out to be unstable,
which forces us to use some trick to obtain meaningful results. Let us note here that one of the
classical solutions represented by Hermitian A, is expected to dominate at large y. Therefore, we
insert a procedure

AiHL(AiH;A?) fori=1,...,9 (33)
1+n L

after each Langevin step to stabilize the simulation, which is similar in spirit to the dynamical
stabilization proposed in the complex Langevin simulation of finite density QCD [39]. Fornp =1,
this amounts to Hermitizing A; after each Langevin step, whereas n = 0 corresponds to doing
nothing. We tried to decrease 1 as much as possible, and found that the simulation is stable for
n 2 0.001 and the results do not depend much on 7 within the region 0.001 < n < 0.01. In what
follows, we present our results for = 0.01.

After we obtain a thermalized configuration for y = 7 in this way, we decrease y adiabatically
and obtain results for smaller y. Aty ~ 2.5, there is a drastic change in the results. The results for
v =1 are close to those for y = 0, and we set 7 = 0 since the technique (33) is not only needless
but also unjustifiable since the configurations are not close to Hermitian in this Euclidean phase.

In Fig. 1, we plot our results for {@;) in the complex plane for y = 1,3,5,7. Note that the
aspect ratio is chosen as 1 : 6. For y = 7, the distribution of {a;) is close to the real axis, which is
consistent with the fact that one of the classical solutions represented by Hermitian A, dominates at
large y. As y becomes smaller, we observe that the distribution moves away from the real axis, but
the flat region at both ends extends, suggesting the emergence of real time in that region. The results
for y = 1 are close to the prediction (9) for y = 0 obtained from the equivalence to the Euclidean
model, and they are qualitatively different from the results for y > 3, suggesting a first order phase
transition” at some vy = y.(N), which lies around 2.5 for the present matrix size N = 32. From our
preliminary results for N = 64, the (lower) critical point y.(N) seems to decrease for larger N.

7This is also suggested by the existence of hysteresis; starting from a thermalized configuration at y = 0 and increasing

10
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Figure 2: (Left) The extent of space |R(¢)| is plotted against time ¢ for y = 3,5,7. (Right) The complex
phase 6(¢) of the space is plotted against time ¢ for y = 3,5,7. The dashed line 65(r) = ¢ represents the
prediction (10) for y = 0 obtained from the equivalence to the Euclidean model.

In Fig. 2, we plot |R?(1)| (Left) and 6,(¢) (Right) defined by (23) for y > 3. The block size
used in defining @, in (21) and A;(¢) in (19) is chosen to be n = 4. From the left panel, we find
that the expanding behavior of |R?(z)| is analogous to that observed for classical solutions [9].
Scaling behavior is observed for different values of y, and decreasing y results in extending the time
direction and hence the space becomes larger at the end time. From the right panel, we find that the
space becomes real at late times, while the phase 6,(7) becomes positive near t ~ 0. Emergence
of the real space-time at late times observed even for v = 3 can be understood as a consequence of
classicalization since the value of the action increases with the expansion [32].

Figures 1 and 2 exhibit symmetries around ¢ = 0, which is due to the symmetry of the model
(17) under Ag — —Ag. The behavior is reminiscent of bouncing cosmology.

Let us also look at the order parameter for the SSB of SO(9) symmetry for y > 3. It is not
straightforward to calculate the expectation values of (25) by the CLM since they cannot be regarded
as holomorphic functions of 7, and A;. Here we estimate them by defining the “moment of inertia
tensor” (24) using only the Hermitian part of A;(¢), which is expected to be a good approximation
according to our results in Fig. 2 (Right). The results for y = 3 are shown in Fig. 3 (Left). We
observe that only one direction expands and the other directions remain small. Thus the expanding
space is actually one dimensional. We can fit our data for the largest eigenvalue (1;(¢)) to an
exponential behavior, which shows that our data are consistent with an exponential expansion.

Finally, let us confirm that the spatial matrices A;(¢) has a band diagonal structure, which is
important in defining the submatrices (19). For that, we plot

9
1
ﬂpq = § Z |(Ai)pq|2 (34)
i=1

against p and g for y = 3 in Fig. 3 (Right). We find that the off-diagonal elements are quite small.
Similar behaviors are observed for y = 5,7, which justifies our choice n = 4 of the block size for
v > 3. Such band-diagonal structure is not observed for y < 2.

v adiabatically, we find that the system is in the Euclidean phase even for y 2 2.5.

11
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Figure 3: (Left) The expectation values (1;(¢)) are plotted against ¢ for y = 3. The dashed line represents
a fit of {11 ()) to the behavior {(1;(r)) = ae®’ + ¢, where a = 3.55(9), b = 0.38(5) and ¢ = —5(1). (Right)
The magnitude A, of each element of the spatial matrices is plotted against p and ¢ for y = 3.

7. Summary and discussions

In this article, we have discussed the signature of the emergent space-time in the IKKT matrix
model, which was proposed as a nonperturbative formulation of superstring theory. A naive
definition of the model leads to a space-time with Euclidean signature. In order to avoid this, we
have proposed to add a Lorentz invariant mass term to the original action. We investigate the bosonic
IKKT model with the mass term by the CLM. When the mass parameter vy is large enough, the path
integral is dominated by one of the classical solutions with Lorentzian signature and expanding
behavior. As y is decreased, the extent of the emergent time increases and the emergent space at
the end time becomes larger. The signature of the space-time is Lorentzian at late times, while it
seems to deviate from Lorentzian towards Euclidean at early times. The expansion at late times
is consistent with an exponential behavior, and we also observed that only one out of nine spatial
directions expands. We speculate that an expanding space-time with Lorentzian signature emerges
at late times even in the y — O limit after taking the large-N limit.

The mechanism for the appearance of the (1+1)D space-time may be understood from the
bosonic action (5). Since the spatial direction expands exponentially, the Tr [A;, A ;] 2 term becomes
dominant. The fluctuation of this term can be made small by having only one expanding direction.

As a future prospect, it would be important to include the effect of fermionic matrices, which is
represented by the Pfaffian in (4). It is known that the Pfaffian vanishes if we set A, to zero except
for two of them [25, 40]. Therefore the (14+1)D space-time observed in our simulation of the bosonic
model is strongly suppressed by the Pfaffian. Considering that the expansion of space is exponential
with respect to time, it is conceivable that the Pfaffian favors the emergence of three exponentially
extended spatial directions. Such effects are already confirmed in the Euclidean IKKT model, in
which one indeed obtains three extended directions [27, 28].

Acknowledgements

The author would like to thank K.N. Anagnostopoulos, Y. Asano, T. Azuma, K. Hatakeyama,
M. Hirasawa, Y. Ito, F. Klinkhamer, S.K. Papadoudis, H. Steinacker and A. Tsuchiya for valuable

12



Signature change of the emergent space-time... Jun Nishimura

discussions. This research was supported by MEXT as “Program for Promoting Researches on
the Supercomputer Fugaku” (Simulation for basic science: from fundamental laws of particles
to creation of nuclei, JPMXP1020200105) and JICFuS. This work used computational resources
of supercomputer Fugaku provided by the RIKEN Center for Computational Science (Project
ID: hp210165) and Oakbridge-CX provided by the University of Tokyo (Project IDs: hp200106,
hp200130, hp210094) through the HPCI System Research Project. Numerical computation was
also carried out on PC clusters in KEK Computing Research Center. This work was also supported
by computational time granted by the Greek Research and Technology Network (GRNET) in the
National HPC facility ARIS, under the project IDs SUSYMM and SUSYMM?2.

References

[1] N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, A Large N reduced model as
superstring, Nucl. Phys. B498 (1997) 467-491, [hep-th/9612115].

[2] M. Fukuma, H. Kawai, Y. Kitazawa, and A. Tsuchiya, String field theory from IIB matrix
model, Nucl. Phys. B 510 (1998) 158-174, [hep-th/9705128].

[3] K. Hatakeyama, K. Anagnostopoulos, T. Azuma, M. Hirasawa, Y. Ito, J. Nishimura, S. K.
Papadoudis, and A. Tsuchiya, Relationship between the Euclidean and Lorentzian versions of
the type 1IB matrix model, in 38th International Symposium on Lattice Field Theory, 12,
2021. arXiv:2112.15368.

[4] K. Hatakeyama, K. Anagnostopoulos, T. Azuma, M. Hirasawa, Y. Ito, J. Nishimura, S. K.
Papadoudis, and A. Tsuchiya, Complex Langevin studies of the emergent space-time in the
type IIB matrix model, in East Asia Joint Symposium on Fields and Strings 2021, 1, 2022.
arXiv:2201.13200.

[5] S. Brahma, R. Brandenberger, and S. Laliberte, Emergent cosmology from matrix theory,
JHEP 03 (2022) 067, [arXiv:2107.11512].

[6] H. C. Steinacker, Gravity as a quantum effect on quantum space-time, Phys. Lett. B 827
(2022) 136946, [arXiv:2110.03936].

[7] F. R. Klinkhamer, Towards a Numerical Solution of the Bosonic Master-Field Equation of the
IIB Matrix Model, Acta Phys. Polon. B 53 (2022), no. 1 1, [arXiv:2110.15309].

[8] K. Anagnostopoulos, T. Azuma, K. Hatakeyama, M. Hirasawa, J. Nishimura, S. K.
Papadoudis, and A. Tsuchiya, work in progress.

[9] K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, and A. Yosprakob, The
emergence of expanding space-time and intersecting D-branes from classical solutions in the
Lorentzian type IIB matrix model, PTEP 2020 (2020), no. 4 043B10, [arXiv:1911.08132].

[10] S.-W. Kim, J. Nishimura, and A. Tsuchiya, Expanding (3+1)-dimensional universe from a
Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett. 108
(2012) 011601, [arXiv:1108.1540].

13


http://arxiv.org/abs/hep-th/9612115
http://arxiv.org/abs/hep-th/9705128
http://arxiv.org/abs/2112.15368
http://arxiv.org/abs/2201.13200
http://arxiv.org/abs/2107.11512
http://arxiv.org/abs/2110.03936
http://arxiv.org/abs/2110.15309
http://arxiv.org/abs/1911.08132
http://arxiv.org/abs/1108.1540

Signature change of the emergent space-time... Jun Nishimura

[11] Y. Ito, S.-W. Kim, Y. Koizuka, J. Nishimura, and A. Tsuchiya, A renormalization group
method for studying the early universe in the Lorentzian IIB matrix model, PTEP 2014
(2014), no. 8 083B01, [arXiv:1312.5415].

[12] Y. Ito, J. Nishimura, and A. Tsuchiya, Power-law expansion of the Universe from the bosonic
Lorentzian type 1IB matrix model, JHEP 11 (2015) 070, [arXiv:1506.04795].

[13] Y. Ito, J. Nishimura, and A. Tsuchiya, Universality and the dynamical space-time
dimensionality in the Lorentzian type IIB matrix model, JHEP 03 (2017) 143,
[arXiv:1701.07783].

[14] T. Azuma, Y. Ito, J. Nishimura, and A. Tsuchiya, A new method for probing the late-time
dynamics in the Lorentzian type IIB matrix model, PTEP 2017 (2017), no. 8 083B03,
[arXiv:1705.07812].

[15] T. Aoki, M. Hirasawa, Y. Ito, J. Nishimura, and A. Tsuchiya, On the structure of the emergent
3d expanding space in the Lorentzian type IIB matrix model, PTEP 2019 (2019), no. 9
093B03, [arXiv:1904.05914].

[16] J. Nishimura and A. Tsuchiya, Complex Langevin analysis of the space-time structure in the
Lorentzian type IIB matrix model, JHEP 06 (2019) 077, [arXiv:1904.05919].

[17] M. Hirasawa, K. Anagnostopoulos, T. Azuma, K. Hatakeyama, Y. Ito, J. Nishimura, S. K.
Papadoudis, and A. Tsuchiya, A new phase in the Lorentzian type IIB matrix model and the
emergence of continuous space-time, in 38th International Symposium on Lattice Field
Theory, 12,2021. arXiv:2112.15390.

[18] G. Parisi, On Complex Probabilities, Phys. Lett. B131 (1983) 393-395.

[19] J. R. Klauder, Coherent State Langevin Equations for Canonical Quantum Systems With
Applications to the Quantized Hall Effect, Phys. Rev. A29 (1984) 2036-2047.

[20] G. Aarts, E. Seiler, and I.-O. Stamatescu, The Complex Langevin method: When can it be
trusted?, Phys. Rev. D81 (2010) 054508, [arXiv:0912.3360].

[21] G. Aarts, F. A. James, E. Seiler, and 1.-O. Stamatescu, Complex Langevin: Etiology and
Diagnostics of its Main Problem, Eur. Phys. J. C71 (2011) 1756, [arXiv:1101.3270].

[22] J. Nishimura and S. Shimasaki, New insights into the problem with a singular drift term in
the complex Langevin method, Phys. Rev. D92 (2015), no. 1 011501, [arXiv:1504.08359].

[23] K. Nagata, J. Nishimura, and S. Shimasaki, Justification of the complex Langevin method
with the gauge cooling procedure, PTEP 2016 (2016), no. 1 013B01, [arXiv:1508.02377].

[24] K. Nagata, J. Nishimura, and S. Shimasaki, Argument for justification of the complex
Langevin method and the condition for correct convergence, Phys. Rev. D94 (2016), no. 11
114515, [arXiv:1606.07627].

14


http://arxiv.org/abs/1312.5415
http://arxiv.org/abs/1506.04795
http://arxiv.org/abs/1701.07783
http://arxiv.org/abs/1705.07812
http://arxiv.org/abs/1904.05914
http://arxiv.org/abs/1904.05919
http://arxiv.org/abs/2112.15390
http://arxiv.org/abs/0912.3360
http://arxiv.org/abs/1101.3270
http://arxiv.org/abs/1504.08359
http://arxiv.org/abs/1508.02377
http://arxiv.org/abs/1606.07627

Signature change of the emergent space-time... Jun Nishimura

[25] W. Krauth, H. Nicolai, and M. Staudacher, Monte Carlo approach to M theory, Phys. Lett.
B431 (1998) 31-41, [hep-th/9803117].

[26] P. Austing and J. F. Wheater, Convergent Yang-Mills matrix theories, JHEP 04 (2001) 019,
[hep-th/0103159].

[27] K. N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo, and S. K. Papadoudis,
Complex Langevin analysis of the spontaneous breaking of 10D rotational symmetry in the
Euclidean IKKT matrix model, JHEP 06 (2020) 069, [arXiv:2002.07410].

[28] J. Nishimura, T. Okubo, and F. Sugino, Systematic study of the SO(10) symmetry breaking
vacua in the matrix model for type IIB superstrings, JHEP 10 (2011) 135,
[arXiv:1108.1293].

[29] H. C. Steinacker, Cosmological space-times with resolved Big Bang in Yang-Mills matrix
models, JHEP 02 (2018) 033, [arXiv:1709.10480].

[30] M. Hanada, H. Kawai, and Y. Kimura, Describing curved spaces by matrices, Prog. Theor.
Phys. 114 (2006) 1295-1316, [hep-th/0508211].

[31] S.-W. Kim, J. Nishimura, and A. Tsuchiya, Expanding universe as a classical solution in the
Lorentzian matrix model for nonperturbative superstring theory, Phys. Rev. D86 (2012)
027901, [arXiv:1110.4803].

[32] S.-W. Kim, J. Nishimura, and A. Tsuchiya, Late time behaviors of the expanding universe in
the IIB matrix model, JHEP 10 (2012) 147, [arXiv:1208.0711].

[33] H. C. Steinacker, Quantized open FRW cosmology from Yang-Mills matrix models, Phys.
Lert. B782 (2018) 176180, [arXiv:1710.11495].

[34] M. Sperling and H. C. Steinacker, Covariant cosmological quantum space-time, higher-spin
and gravity in the IKKT matrix model, JHEP 07 (2019) 010, [arXiv:1901.03522].

[35] A. Chaney, L. Lu, and A. Stern, Matrix Model Approach to Cosmology, Phys. Rev. D93
(2016), no. 6 064074, [arXiv:1511.06816].

[36] A. Chaney, L. Lu, and A. Stern, Lorentzian Fuzzy Spheres, Phys. Rev. D92 (2015), no. 6
064021, [arXiv:1506.03505].

[37] A. Chaney and A. Stern, Fuzzy C P? spacetimes, Phys. Rev. D95 (2017), no. 4 046001,
[arXiv:1612.01964].

[38] A. Stern and C. Xu, Signature change in matrix model solutions, Phys. Rev. D98 (2018),
no. 8 086015, [arXiv:1808.07963].

[39] F. Attanasio and B. Jager, Dynamical stabilisation of complex Langevin simulations of QCD,
Eur. Phys. J. C79 (2019), no. 1 16, [arXiv:1808.04400].

[40] J. Nishimura and G. Vernizzi, Spontaneous breakdown of Lorentz invariance in IIB matrix
model, JHEP 04 (2000) 015, [hep-th/0003223].

15


http://arxiv.org/abs/hep-th/9803117
http://arxiv.org/abs/hep-th/0103159
http://arxiv.org/abs/2002.07410
http://arxiv.org/abs/1108.1293
http://arxiv.org/abs/1709.10480
http://arxiv.org/abs/hep-th/0508211
http://arxiv.org/abs/1110.4803
http://arxiv.org/abs/1208.0711
http://arxiv.org/abs/1710.11495
http://arxiv.org/abs/1901.03522
http://arxiv.org/abs/1511.06816
http://arxiv.org/abs/1506.03505
http://arxiv.org/abs/1612.01964
http://arxiv.org/abs/1808.07963
http://arxiv.org/abs/1808.04400
http://arxiv.org/abs/hep-th/0003223

	Introduction
	A problem in the original IKKT matrix model
	Adding a Lorentz invariant ``mass'' term
	How to extract the time evolution
	Applying the complex Langevin method
	Brief review of the CLM
	Applying the CLM to the bosonic IKKT model with the mass term

	Results for the bosonic IKKT model with the mass term
	Summary and discussions

