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1. Introduction

Much attention has been paid to quantum entanglement in construction of quantum gravity,
since it seems to be deeply connected to emergent geometry[1]. Recently, a new type of quantum
entanglement called the target space entanglement entropy has been investigated in the context of
the gauge/gravity correspondence[2–9]. While the ordinary entanglement entropy is defined by
dividing the base space of field theory, target space entanglement entropy is defined by dividing the
configuration space of fields. In particular, the latter can be defined even in (0 + 1)-dimensional
field theory, namely quantum mechanics, although the latter cannot.

For instance, in matrix quantum mechanics, a space where the eigenvalues of the matrix
distribute can be viewed as a target space. It seems difficult to define entanglement entropy in
gravitational theories, since division of dynamical spaces is nontrivial. The authors of [3] have
conjectured in the gauge/gravity correspondence that the entanglement entropy in the bulk can be
defined by the target space entanglement entropy on the gauge theory side. In particular, the target
space entanglement entropy of a subregion in the D0-brane quantum mechanics[10] is expected to
be proportional with factor of proportionality 1/4𝐺𝑁 to the area of boundary of the corresponding
subregion in the bulk on the gravity side.

This talk is based on [8]. We consider the target space entanglement entropy in the D3-brane
holography, namely a conjectured correspondence between N = 4 super Yang-Mills theory (SYM)
and type IIB superstring theory on 𝐴𝑑𝑆5 × 𝑆5[11–13]. Here we focus on a correspondence between
the chiral primary sector of N = 4 SYM and the bubbling AdS geometry[14–16]. The former can
be described by a complex matrix model[17]. The target space in this case is a two-dimensional
plane where the eigenvalues of the complex matrix distribute (see also [18]). The target space can
be identified with a two-dimensional plane in the bubbling geometry where a boundary condition
for a half-BPS solution with 𝑅 × 𝑆𝑂 (4) × 𝑆𝑂 (4) symmetry in type IIB supergravity is specified
by giving a droplet that is identified with the eigenvalue distribution. We calculate the target space
entanglement entropy of a subregion in the two-dimensional plane for each of states that correspond
to 𝐴𝑑𝑆 × 𝑆5, an AdS giant graviton and a giant graviton and compare it with the area (length) of
boundary of the corresponding subregion in the bubbling geometry. We find a qualitative agreement
between the target space entanglement entropy and the area.

2. Review

In this section, we review some materials in brief.

2.1 Complex matrix model and fermions in two-dimensional plane

The chiral primary operators in N = 4 SYM, which are hal-BPS holomorphic operators, take
the form

O𝐽1,𝐽2, · · · ,𝐽𝐾 (𝑡) =
𝐾∏
𝑎=1

Tr(𝑍 𝐽𝑎 ) , (1)

where 𝑍 = 1√
2
(𝜙1 + 𝑖𝜙2) with 𝜙1 and 𝜙2 being two of six scalars. Kaluza-Klein gravitons and (AdS)

giant gravitons on the gravity side are represented in terms of a linear combination of the operators
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(1). The dynamics of the operators is described by a complex matrix model which is obtained by
dimensionally reducing the free part of the action for 𝑍 on 𝑅 × 𝑆3 to 𝑅 [17]. The complex matrix
model is defined by

Z =
∫

[𝑑𝑍 (𝑡)𝑑𝑍†(𝑡)]𝑒𝑖𝑆 ,

𝑆 =
∫

𝑑𝑡Tr( ¤𝑍 (𝑡) ¤𝑍†(𝑡) − 𝑍 (𝑡)𝑍†(𝑡)) , (2)

where 𝑍 (𝑡) is an 𝑁 × 𝑁 complex matrix depending on the time, and the path integral measure is
defined by a norm in matrix configuration space,

| |𝑑𝑍 (𝑡) | |2 = 2Tr(𝑑𝑍 (𝑡)𝑑𝑍†(𝑡)) (3)

The hamiltonian is given by

�̂� =
∑
𝑖, 𝑗

(
− 𝜕

𝜕𝑍𝑖 𝑗𝜕𝑍
∗
𝑖 𝑗

+ 𝑍𝑖 𝑗𝑍
∗
𝑖 𝑗

)
. (4)

The wave function of the ground state is given by

𝜒0 =
1

𝜋
𝑁2
2

𝑒−Tr(𝑍𝑍† ) =
1

𝜋
𝑁2
2

𝑒Σ𝑖, 𝑗𝑍𝑖 𝑗𝑍
∗
𝑖 𝑗 , (5)

and the wave functions of excited states that correspond to the chiral primary states are given by

𝜒 (𝐽1, · · · ,𝐽𝐾 ) =

(
𝐾∏
𝑎=1

Tr(𝑍 𝐽𝑎 )
)
𝜒0 . (6)

The complex matrix 𝑍 is decomposed as 𝑍 = 𝑈𝑇𝑈† in terms of a unitary matrix 𝑈 and an
upper triangular matrix 𝑇 . The eigenvalues of 𝑍 are given by 𝑧𝑖 = 𝑇𝑖𝑖 (𝑖 = 1, · · · , 𝑁). The wave
functions (6) are rewritten in terms of 𝑧𝑖 and 𝑇𝑖 𝑗 (𝑖 < 𝑗) as

𝜒 (𝐽1, · · · ,𝐽𝐾 ) =

(
𝐾∏
𝑎=1

∑
𝑖𝑎

𝑧𝐽𝑎𝑖𝑎

)
𝜒0 ,

𝜒0 =
1

𝜋
𝑁2
2

𝑒
−Σ𝑖𝑧𝑖𝑧∗𝑖 −Σ 𝑗<𝑘𝑇𝑗𝑘𝑇∗

𝑗𝑘 , (7)

while the path integral measure as∫ ∏
𝑖, 𝑗

𝑑𝑍𝑖 𝑗𝑑𝑍
∗
𝑖 𝑗 =

∫ ∏
𝑖> 𝑗

𝑑𝐻𝑖 𝑗𝑑𝐻
∗
𝑖 𝑗

∏
𝑘<𝑙

𝑑𝑇𝑘𝑙𝑑𝑇
∗
𝑘𝑙

∏
𝑚

𝑑𝑧𝑚𝑑𝑧
∗
𝑚 |Δ(𝑧) |2 , (8)

where Δ(𝑧) =
∏
𝑖< 𝑗 (𝑧𝑖 − 𝑧 𝑗) and 𝑑𝐻 = −𝑖𝑈†𝑑𝑈. We can absorb Δ(𝑧) into the wave function

and define a new wave function 𝜒𝐹 by 𝜒𝐹 ≡ Δ(𝑧)𝜒. Then, 𝜒𝐹 is represented as a certain linear
combination of

1
√
𝑁!

det(Φ𝑙𝑖 (𝑧 𝑗 , 𝑧∗𝑗)) ×
∏
𝑗<𝑘

Φ0(𝑇𝑗𝑘 , 𝑇∗
𝑗𝑘) ,

with
∑
𝑖

𝑙𝑖 =
𝑁 (𝑁 − 1)

2
+

𝐾∑
𝑎=1

𝐽𝑎 , (9)
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(a) 𝐴𝑑𝑆5 × 𝑆5 (b) AdS giant graviton

(c) 𝐴𝑑𝑆5 × 𝑆5 (d) AdS giant graviton

Figure 1: (1a) and (1b) are droplets of the states that correspond to 𝐴𝑑𝑆5 × 𝑆5 and an AdS giant graviton,
respectively. (1c) and (1d) are the occupied energy levels of the states that correspond to 𝐴𝑑𝑆5 × 𝑆5, an AdS
giant graviton, respectively.

where Φ𝑙 (𝑧, 𝑧∗) are the wave function of the lowest Landau level which takes the form

Φ𝑙 (𝑧, 𝑧∗) =
√

2𝑙
𝑙!𝜋

𝑧𝑙𝑒−𝑧𝑧
∗
, (10)

and can be viewed as a wave function of the holomorphic sector for a particle in the harmonic
oscillator potential in two-dimensional plane. (9) is a wave function for 𝑁 fermions and 1

2𝑁 (𝑁 − 1)
bosons in the harmonic oscillator potential. The eigenvalues 𝑧𝑖 of 𝑍 can be viewed as the coordinates
of 𝑁 fermions, while (𝑇𝑖 𝑗 , 𝑇∗

𝑖 𝑗) as those of 1
2𝑁 (𝑁 − 1) bosons. Since the bosons are always in the

ground state, we can integrate out 𝑇𝑖 𝑗 and concentrate on 1√
𝑁 !

det(Φ𝑙𝑖 (𝑧 𝑗 , 𝑧∗𝑗)) in (9). In this way,
we can reduce the holomorphic sector of the complex matrix model, which describes the dynamics
of the operators (1), to a system of 𝑁 fermions in the two-dimensional harmonic oscillator potential.
For large 𝑁 , we can view the eigenvalue distribution corresponding to a state as a droplet in the
complex plane, which is formed by 𝑁 fermions.

In what follows, we focus on two particular states whose wave functions are given by

1
√
𝑁!

det(Φ𝑙𝑖 (𝑧 𝑗 , 𝑧∗𝑗)) (11)

in (9). The first one is the ground state where 𝑙1 = 0, 𝑙2 = 1, · · · , 𝑙𝑁 = 𝑁 − 1. We show the
corresponding droplet in Fig. 1a and the occupied energy levels in Fig. 1c. This corresponds
to 𝐴𝑑𝑆5 × 𝑆5 in the bubbling geometry. The second one is an excited state where 𝑙1 = 0, 𝑙2 =
1, · · · , 𝑙𝑁 = 𝑁 − 1, 𝑙𝑁+1 = 𝑁 + 𝐽. Note that the total number of fermions is 𝑁 + 1. We show
the corresponding droplet in Fig. 1b and the occupied energy levels in Fig. 1d. This corresponds

4
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to a bubbling geometry where there exists an AdS giant graviton, which is a D3-brane wrapped
on 𝑆3 in 𝐴𝑑𝑆5. As for an excited state corresponding to a bubbling geometry where there exists a
giant graviton, which is a D3-brane wrapped on 𝑆3 in 𝑆5, see [8]. The wave function Φ𝑙 (𝑧, 𝑧∗) is
localized on a circle centered at the origin with the radius

√
𝑙. Hence, 𝑟0 in Fig. 1a is equal to

√
𝑁

for large 𝑁 .

2.2 Bubbling geometry

Next, we review the bubbling geometry which was developed by Lin, Lunin and Maldacena.
They gave the general form of half-BPS solutions with 𝑅 × 𝑆𝑂 (4) × 𝑆𝑂 (4) symmetry in type IIB
supergravity [16]. The metric takes the form

𝑑𝑠2 = −ℎ−2

[
𝑑𝑡 +

2∑
𝑖=1

𝑉𝑖𝑑𝑥
𝑖

]2

+ ℎ2

[
𝑑𝑦2 +

2∑
𝑖=1

𝑑𝑥𝑖𝑑𝑥𝑖

]
+ 𝑦𝑒𝐺𝑑Ω2

3 + 𝑦𝑒−𝐺𝑑Ω̃2
3 , (12)

where

ℎ−2 = 2𝑦 cosh𝐺, 𝑧 =
1
2

tanh𝐺, 𝑦𝜕𝑦𝑉𝑖 = 𝜖𝑖 𝑗𝜕 𝑗 𝑧, 𝑦(𝜕𝑖𝑉 𝑗 − 𝜕 𝑗𝑉𝑖) = 𝜖𝑖 𝑗𝜕𝑦𝑧 . (13)

The solutions are completely determined by the function 𝑧(𝑥1, 𝑥2, 𝑦), which obeys a differential
equation

𝜕𝑖𝜕𝑖𝑧 + 𝑦𝜕𝑦

(
𝜕𝑦𝑧

𝑦

)
= 0 . (14)

The function 𝑧 is fixed by specifying a boundary condition at 𝑦 = 0, and 𝑧 must take 1/2 or −1/2
at 𝑦 = 0. ‘black’ is assigned to the region with 𝑧 = −1/2, while ‘white’ to the region with 𝑧 = 1/2.
Thus, there is a correspondence between divisions of the 𝑥1 − 𝑥2 plane into black and white regions
and half-BPS solutions with 𝑅 × 𝑆𝑂 (4) × 𝑆𝑂 (4) symmetry. The two-dimensional plane specified
by 𝑦 = 0 in the bubbling geometry can identified with the target space in the complex matrix model
such that black regions correspond to droplets in the target space. Figs 1a and 1b correspond to
𝐴𝑑𝑆5 × 𝑆5, an AdS giant graviton, respectively, as mentioned before. Here 𝑟0 in Fig.1a is related to
the radius of 𝐴𝑑𝑆5 as 𝑟0 = 𝑅2

𝐴𝑑𝑆 =
√
𝑁 .

2.3 Target Space Entanglement Entropy

Finally, we review the target space entanglement entropy[2]. As a concrete example, we
consider a quantum mechanics of 𝑁 identical particles in 𝑑 dimensions. In this case, the target
space is the 𝑑-dimensional space where 𝑁 particle live. Division of the target space into a subregion
𝐴 and its complement �̄� leads to decomposition of the total Hilbert space H as

H =
⊕
𝑛

H𝐴,𝑛 ⊗ H�̄�,𝑛 , (15)

where 𝑛 labels a sector where 𝑛 particles exist in 𝐴 and 𝑁 − 𝑛 particles exist in �̄�. The target space
entanglement entropy of the subregion 𝐴 is given by

𝑆𝐴 = −
∑
𝑛

𝑝𝑛 log 𝑝𝑛 +
∑
𝑛

𝑝𝑛𝑆𝐴,𝑛 , (16)
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where 𝑝𝑛 is the probability of realization of the sector 𝑛, which is given by

𝑝𝑛 =

(
𝑁

𝑛

) ∫
𝐴

𝑛∏
𝑎=1

𝑑𝑑𝑥𝑎

∫
�̄�

𝑁∏
𝑏=𝑛+1

𝑑𝑑𝑦𝑏 |𝜓(®𝑥1, · · · , ®𝑥𝑛, ®𝑦𝑛+1, · · · , ®𝑦𝑁 ) |2 . (17)

The first and second terms in the RHS of (16) is classical and quantum parts, respectively. 𝑆𝐴,𝑛 is
interpreted as the entanglement entropy of the subregion 𝐴 in the sector 𝑛, which is given by

𝑆𝐴,𝑛 = −tr𝐴,𝑛𝜌𝐴,𝑛 log 𝜌𝐴,𝑛 , (18)

where 𝜌𝐴,𝑛 is the reduced density matrix of the sector 𝑛 and its matrix elements in the coordinate
basis are given by

〈®𝑥 | 𝜌𝐴,𝑛 | ®𝑥′〉 =
1
𝑝𝑛

(
𝑁

𝑛

) ∫
�̄�

𝑁∏
𝑏=𝑛+1

𝑑𝑑𝑦𝑏𝜓(®𝑥, ®𝑦)𝜓∗( ®𝑥′, ®𝑦) . (19)

In the following, we focus on the case of 𝑁 identical fermions which are not interacting each
other[6]. The wave function is given by a Slater determinant

𝜓(®𝑥1, · · · ®𝑥𝑁 ) =
1

√
𝑁!

det(𝜒𝑖 (®𝑥 𝑗)) , (20)

where 𝜒𝑖 (®𝑥) are orthonormal single-body wave functions:∫
𝑑𝑑𝑥𝜒∗

𝑖 (®𝑥)𝜒 𝑗 (®𝑥) = 𝛿𝑖 𝑗 . (21)

We introduce an 𝑁 × 𝑁 overlap matrix 𝑋𝑖 𝑗

𝑋𝑖 𝑗 ≡
∫
𝐴
𝑑𝑑𝑥 𝜒𝑖 (®𝑥)𝜒∗

𝑗 (®𝑥) , (22)

Because 𝑋𝑖 𝑗 is a hermitian matrix, it can be diagonalized by a unitary matrix 𝑈𝑖 𝑗 . The eigenvalues
of 𝑋𝑖 𝑗 denoted by 𝜆𝑖 are given by

𝜆𝑖 =
∫
𝐴
| �̃�𝑖 (®𝑥)2 | , (23)

where �̃�𝑖 (®𝑥) = 𝑈𝑖 𝑗 𝜒 𝑗 (®𝑥). 𝜆𝑖 is the probability of existence in the region 𝐴 when the wave function
for a particle is given by �̃�𝑖 (®𝑥).

𝑝𝑛 in (17) is given by

𝑝𝑛 =
∑
𝐼∈𝐹𝑛

∏
𝑖∈𝐼

𝜆𝑖
∏
𝑗∈𝐼

(1 − 𝜆 𝑗) . (24)

Here 𝐹𝑛 is a set of all subsets of {1, . . . , 𝑁} that consist of 𝑛 elements. 𝑝𝑛 is indeed the probability
that 𝑛 particles exist in the region 𝐴 when the probability that each of 𝑁 particles exists in 𝐴 is
given by 𝜆𝑖 .

The matrix elements of 𝜌𝐴,𝑛 in (19) are

〈®𝑥 | 𝜌𝐴,𝑛 | ®𝑥′〉 =
1
𝑝𝑛

∑
𝐼∈𝐹𝑛

𝜆𝐼 �̄�𝐼𝜓𝐼 (®𝑥)𝜓∗
𝐼 ( ®𝑥′) , (25)

6



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
6

Target space entanglement in the matrix model for bubbling geometry Asato Tsuchiya

where we put 𝜆𝐼 ≡
∏
𝑖∈𝐼 𝜆𝑖 and �̄�𝐼 ≡

∏
𝑖∈𝐼 (1 − 𝜆𝑖) for an element 𝐼 of 𝐹𝑛 and introduce a wave

function for 𝑛 particles

𝜓𝐼 =
1

√
𝜆𝐼

∑
𝜎∈𝑆𝑛

(−1)𝜎
√
𝑛!

�̃�𝑛𝜎 (1) (®𝑥1) · · · �̃�𝑛𝜎 (𝑛) (®𝑥𝑛) . (26)

The quantum part is calculated as

𝑁∑
𝑛=0

𝑝𝑛𝑆𝐴,𝑛 =
𝑁∑
𝑛=0

𝑝𝑛 log 𝑝𝑛 −
𝑁∑
𝑛=0

∑
𝐼∈𝐹𝑛

𝜆𝐼 �̄�𝐼 log(𝜆𝐼 �̄�𝐼 ) . (27)

Thus, we see from (25) and (27) that the total target space entanglement entropy (16) is given
by

𝑆𝐴 = −
𝑁∑
𝑛=0

∑
𝐼∈𝐹𝑛

𝜆𝐼 �̄�𝐼 log(𝜆𝐼 �̄�𝐼 ). (28)

By introducing 𝐻 (𝜆) ≡ −𝜆 log𝜆 − (1 − 𝜆) log(1 − 𝜆), we represent (28) as1

𝑆𝐴 =
𝑁∑
𝑖=1

𝐻 (𝜆𝑖) , (29)

where 𝐻 (𝜆) is the Shannon entropy for the Bernoulli distribution (𝜆, 1 − 𝜆).

3. Target Space Entanglement Entropy in the complex matrix model

In this section, we calculate the target space entanglement entropy for the two states in the
complex matrix model introduced in section 2.1. We consider a circle centered at the origin with
the radius 𝑟 as a subregion 𝐴. Then, the overlap matrix (22) is given by

𝑋𝑙𝑙′ (𝐴) = 2
∫
𝐴
𝑑𝑧𝑑𝑧∗Φ𝑙 (𝑧, 𝑧∗)Φ𝑙′ (𝑧, 𝑧∗)

= 𝛿𝑙𝑙′𝑎𝑙 (𝑟) . (30)

The eigenvalues 𝜆𝑙 are

𝜆𝑙 = 𝑎𝑙 (𝑟) =
𝛾 [𝑙 + 1, 𝑟2]
Γ[𝑙 + 1] , (31)

where Γ[𝑥] is the gamma function and 𝛾 [𝑎, 𝑥] is the incomplete gamma function:

𝛾 [𝑎, 𝑥] =
∫ 𝑥

0
𝑡𝑎−1𝑒−𝑡𝑑𝑡 . (32)

1This formula was obtained in [19–21] in the context of condensed matter and statistical physics.
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Figure 2: The target space entanglement entropy for the ground state 𝑆0 with 𝑁 = 40, 60, 80, 100 are
plotted against the radius 𝑟 of the subregion 𝐴.

𝜆𝑙 is the provability of existence in 𝐴 of a single particle. By using (28)2, we evaluate the target
space entanglement entropy of the subregion 𝐴. The result is

𝑆(𝑟, 𝑁) =
𝑁∑
𝑖=1

𝐻 (𝑎𝑙(𝑖) (𝑟)), 𝐻 (𝑎𝑙(𝑖) (𝑟)) = −𝑎𝑙(𝑖) (𝑟) log 𝑎𝑙(𝑖) (𝑟) − (1 − 𝑎𝑙(𝑖) (𝑟)) log(1 − 𝑎𝑙(𝑖) (𝑟)) .

(33)

First, let us calculate the target space entanglement entropy for the ground state indicated in
Figs. 1a and 1c, which correspond to 𝐴𝑑𝑆5 × 𝑆5 in the bubbling geometry. (33) in this case is

𝑆0(𝑟, 𝑁) =
𝑁−1∑
𝑙=0

𝐻 (𝑎𝑙 (𝑟)), 𝐻 (𝑎𝑙 (𝑟)) = −𝑎𝑙 (𝑟) log 𝑎𝑙 (𝑟) − (1 − 𝑎𝑙 (𝑟)) log(1 − 𝑎𝑙 (𝑟)) . (34)

In Fig. 2, the target space entanglement entropy 𝑆0 for 𝑁 = 40, 60, 80, 100 is plotted against 𝑟 .
We see that 𝑆0 is proportional to 𝑟 as 𝑆0 = 1.81𝑟 when the subregion 𝐴 is included in the droplet,
namely 𝑟 <

√
𝑁 . This behavior shows that the entanglement entropy is proportional to the area of

boundary of the subregion 𝐴. The fact that 𝑆0 = 0 when the droplet is included in the subregion 𝐴,
namely 𝑟 >

√
𝑁 , shows that there is no entanglement between inside and outside of 𝐴 because all

particles are confined in 𝐴. This is a finite 𝑁 effect3 .
Second, we calculate the target space entanglement entropy for an excited state corresponding

to an AdS giant graviton indicated in Figs. 1b and 1d. (33) in this case is

𝑆𝐴𝑑𝑆 (𝑟, 𝑁, 𝐽) =
𝑁−1∑
𝑖=0

𝐻 (𝑎𝑖 (𝑟)) + 𝐻 (𝑎𝑁+𝐽 (𝑟)) . (35)

In Fig. 3, 𝑆𝐴𝑑𝑆 for 𝑁 = 50 and 𝐽 = 50 is plotted against 𝑟. In order to see only the contribution of

2Here we simply consider the full Hilbert space for 𝑁 fermions in two-dimensional plane in calculating the reduced
density matrix.

3In [20], 𝑆0 was calculated in the 𝑁 → ∞ limit. The result is that 𝑆0 = 2
√

2𝜋𝑟
∫ ∞
−∞

𝑑𝜇
2𝜋 𝐻 ( 1

2 Erfc(𝜇)) ∼ 1.804𝑟 for

8
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Figure 3: The solid line represents the target space entanglement entropy for the state corresponding to
the AdS giant graviton 𝑆𝐴𝑑𝑆 (𝑟) with 𝑁 = 50 and 𝐽 = 50, while the dashed line represents the target space
entanglement entropy for the ground state 𝑆0 (𝑟) with 𝑁 = 50.

Figure 4: 𝑆′𝐴𝑑𝑆 = 𝑆𝐴𝑑𝑆 (𝑟, 50, 50) − 𝑆0 (𝑟, 50) is plotted against 𝑟 .

the AdS giant graviton to the target space entanglement entropy, we subtract 𝑆0 from 𝑆𝐴𝑑𝑆 . In Fig.
4, 𝑆′𝐴𝑑𝑆 = 𝑆𝐴𝑑𝑆 (𝑟, 50, 50) − 𝑆0(𝑟, 50) is plotted against 𝑟 . Note here that 𝑁 for 𝑆𝐴𝑑𝑆 is different
from that for 𝑆0. We see that there is a peak at 𝑟 =

√
𝑁 + 1 + 𝐽, which is considered as the position

of the AdS giant graviton.
As for the target space entanglement entropy for an excited state corresponding to a giant

graviton, see [8].

0 ≤ 𝑟 < ∞.

9
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4. Area of boundary in the bubbling AdS geometry

In this section, we calculate the area (length) of boundary of the subregion 𝐴 in the bubbling
geometry.

We introduce the polar coordinates (𝑟, 𝜙) in the 𝑥1 − 𝑥2 plane. The solution determined by a
droplet in Fig. 1a corresponding to 𝐴𝑑𝑆5 × 𝑆5 is given by [16]

𝑧(𝑟, 𝑦; 𝑟0) ≡ 𝑧 − 1
2
=

𝑟2 − 𝑟2
0 + 𝑦2

2
√
(𝑟2 + 𝑟2

0 + 𝑦2)2 − 4𝑟2𝑟2
0

− 1
2
,

𝑉𝜙 = −1
2

©«
𝑟2 + 𝑟2

0 + 𝑦2√
(𝑟2 + 𝑟2

0 + 𝑦2)2 − 4𝑟2𝑟2
0

− 1
ª®®¬ , (36)

where 𝑟0 is related to the radius of 𝐴𝑑𝑆5 as 𝑟0 = 𝑅2
𝐴𝑑𝑆 =

√
𝑁 .

Using (36), a solution for a general circular symmetric droplet can be constructed as [16]

𝑧 =
∑
𝑖

(−1)𝑖+1𝑧(𝑟, 𝑦; 𝑟𝑖), 𝑉Φ =
∑
𝑖

(−1)𝑖+1𝑉𝜙 (𝑟, 𝑦; 𝑟𝑖) , (37)

where 𝑟1 is the radius of the most outer circle and 𝑟2 is the radius of the second outer circle and so
on. We can construct 𝑧 corresponding to the droplets in Fig. 1b using (37).

We identify the target space of the complex matrix model with the 𝑥1 − 𝑥2 plane at 𝑦 = 0 and
consider the subregion 𝐴 in the 𝑥1 −𝑥2 plane. We calculate the area (length) of boundary of 𝐴 using
the metric (12). The induced metric in the 𝑥1 − 𝑥2 plane at 𝑦 = 0 denoted by 𝛾𝑖 𝑗 is

𝛾𝑟𝑟 = ℎ2, 𝛾𝜙𝜙 = −ℎ−2𝑉2
𝜙 + ℎ2𝑟2, 𝛾𝑟 𝜙 = 𝛾𝜙𝑟 = 0 . (38)

Then , the area (length) of the boundary of 𝐴 in the 𝑥1 − 𝑥2 plane, which we denote by 𝐿, is given
by

𝐿 (𝑟) =
∫ 2𝜋

0
𝑑𝜙

√
𝛾𝜙𝜙 = 2𝜋

√
−ℎ−2𝑉2

𝜙 + ℎ2𝑟2 , (39)

where ℎ and 𝑉𝜙 are defined in (13).
First of all, we calculate the area of boundary of 𝐴 for 𝐴𝑑𝑆5 × 𝑆5. We see from (36) that 𝛾𝜙𝜙

is in the 𝑦 → 0 limit given by

𝛾𝜙𝜙 = lim
𝑦→0

(−ℎ−2𝑉2
𝜙 + ℎ2𝑟2) =

𝑟2 + 𝑟2
0 − |𝑟2 − 𝑟2

0 |
2𝑟0

. (40)

Thus, the length of the boundary of 𝐴 is

𝐿 (𝑟) =
∫ 2𝜋

0

√
𝛾𝜙𝜙 =

√
2𝜋

√
𝑟2 + 𝑟2

0 − |𝑟2 − 𝑟2
0 |

𝑟0
. (41)

𝐿 is proportional to 𝑟 for 𝑟 < 𝑟0: 𝐿 (𝑟) =
√

2
𝑟0
𝜋𝑟 . This behavior qualitatively agrees with that of the

target space entanglement entropy in Fig. 2. 𝐿 is constant for 𝑟 > 𝑟0,: 𝐿 (𝑟) =
√

2𝑟0𝜋. As for the
calculation of the area of the boundary of 𝐴 for an AdS giant graviton and a giant graviton, see [8].
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Figure 5: The solid line represents the area of the boundary of the subregion 𝐴 for an AdS giant graviton
𝐿𝐴𝑑𝑆 with 𝑟1 =

√
101, 𝑟2 = 10 and 𝑟3 =

√
50, while the dashed line represents that for the ground state 𝐿0

with 𝑟0 =
√

50.

Figure 6: 𝐿′
𝐴𝑑𝑆 = 𝐿𝐴𝑑𝑆 (𝑟) − 𝐿0 (𝑟) is plotted against 𝑟.

We denote the area of boundary of 𝐴 for 𝐴𝑑𝑆5 × 𝑆5 and an AdS giant graviton by 𝐿0(𝑟).
𝐿𝐴𝑑𝑆 (𝑟), respectively. In Fig. 5, 𝐿𝐴𝑑𝑆 (𝑟) for 𝑟1 =

√
101, 𝑟2 = 10, 𝑟3 =

√
50 and 𝐿0(𝑟) for 𝑟0 = 𝑟3

are plotted against 𝑟 . As in the target space entanglement entropy, we subtract 𝐿0 from 𝐿𝐴𝑑𝑆 . In Fig
.6, 𝐿′

𝐴𝑑𝑆 = 𝐿𝐴𝑑𝑆 (𝑟) − 𝐿0(𝑟) is plotted against 𝑟 . We see that 𝐿′
𝐴𝑑𝑆 has a peak around 𝑟 = 𝑟1 =

√
𝑁 .

This behavior of 𝐿′
𝐴𝑑𝑆 qualitatively agrees with 𝑆′𝐴𝑑𝑆 in Fig. 4.

In this way, we find that the contribution of an AdS giant graviton to the area (length) of
boundary of 𝐴 qualitatively agrees with that to the target space entanglement entropy. We have also
seen the similar qualitative agreement for a giant graviton[8].

11
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5. Conclusion and discussion

In this talk, we studied the target space entanglement entropy in the complex matrix mode that
describes the chiral primary sector of N = 4 SYM on 𝑅× 𝑆3, which is associated with the bubbling
AdS geometry. The target space of the complex matrix model is a two-dimensional plane where
the eigenvalues of the complex matrix distribute and form droplets. This two-dimensional plane
is identified with that in the bubbling geometry, where the boundary conditions for the solutions
are specified by the droplets. We calculated the target space entanglement entropy of a subregion
in two-dimensional plane with droplets corresponding to 𝐴𝑑𝑆5 × 𝑆5, an AdS giant graviton and a
giant graviton in the bubbling geometry. We also calculated the area of boundary of the subregion
in the bubbling geometry, and found a qualitative agreement between the target space entanglement
entropy and the area of boundary.

In order to see whether the target space entanglement entropy and the area agree quantitatively,
we need to evaluate the effective Newton constant in (2+1)-dimensional space-time consisting of
the two-dimensional plane and the time and fix the factor of proportionality 1/4𝐺𝑁 between the
target space entanglement entropy and the area. Possibly, more elaborated correspondence between
chiral primary states and droplets is needed. We hope to report progress in these issues in the near
future.
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